Effect of cultivation conditions on the expression of the Exiguobacterium sibiricum proteorhodopsin gene
- 作者: Petrovskaya L.E.1,2, Spirina E.V.3, Sukhanov A.Y.4, Kryukova E.A.1, Lukashev E.P.5, Ziganshin R.H.1, Rivkina E.M.3, Dolgikh D.A.1,5, Kirpichnikov M.P.1,5
-
隶属关系:
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences
- Moscow Institute of Physics and Technology
- Institute of Physicochemical and Biological Problems in Soil Science, Russian Academy of Sciences
- FRC Kazan Scientific Center, Russian Academy of Sciences
- Faculty of Biology, Lomonosov Moscow State University
- 期: 卷 90, 编号 7 (2025): VOL 90, NO7 (2025)
- 页面: 993-1003
- 栏目: Articles
- URL: https://journals.rcsi.science/0320-9725/article/view/356225
- DOI: https://doi.org/10.31857/S0320972525070088
- EDN: https://elibrary.ru/JZFXQZ
- ID: 356225
如何引用文章
详细
作者简介
L. Petrovskaya
Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences; Moscow Institute of Physics and Technology
Email: lpetr65@yahoo.com
Moscow; Dolgoprudny, Moscow Region
E. Spirina
Institute of Physicochemical and Biological Problems in Soil Science, Russian Academy of Sciences
Email: lpetr65@yahoo.com
Pushchino, Moscow Region
A. Sukhanov
FRC Kazan Scientific Center, Russian Academy of Sciences
Email: lpetr65@yahoo.com
Kazan
E. Kryukova
Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences
Email: lpetr65@yahoo.com
Moscow
E. Lukashev
Faculty of Biology, Lomonosov Moscow State University
Email: lpetr65@yahoo.com
Moscow
R. Ziganshin
Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences
Email: lpetr65@yahoo.com
Moscow
E. Rivkina
Institute of Physicochemical and Biological Problems in Soil Science, Russian Academy of Sciences
Email: lpetr65@yahoo.com
Pushchino, Moscow Region
D. Dolgikh
Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences; Faculty of Biology, Lomonosov Moscow State University
Email: lpetr65@yahoo.com
Moscow
M. Kirpichnikov
Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences; Faculty of Biology, Lomonosov Moscow State University
Email: lpetr65@yahoo.com
Moscow
参考
- Rozenberg, A., Inoue, K., Kandori, H., and Beja, O. (2021) Microbial rhodopsins: the last two decades, Annu. Rev. Microbiol., 75, 427-447, https://doi.org/10.1146/annurev-micro-031721-020452.
- Pinhassi, J., DeLong, E. F., Beja, O., Gonzalez, J. M., and Pedros-Alio, C. (2016) Marine bacterial and archaeal ion-pumping rhodopsins: genetic diversity, physiology, and ecology, Microbiol. Mol. Biol. Rev., 80, 929-954, https://doi.org/10.1128/mmbr.00003-16.
- Govorunova, E. G., Sineshchekov, O. A., Li, H., and Spudich, J. L. (2017) Microbial rhodopsins: diversity, mechanisms, and optogenetic applications, Annu. Rev. Biochem., 86, 845-872, https://doi.org/10.1146/annurev-biochem-101910-144233.
- Gordeliy, V., Kovalev, K., Bamberg, E., Rodriguez-Valera, F., Zinovev, E., Zabelskii, D., Alekseev, A., Rosselli, R., Gushchin, I., and Okhrimenko, I. (2022) Microbial rhodopsins, in Rhodopsin: Methods and Protocols (Gordeliy, V. ed) Springer US, New York, NY, pp. 1-52, https://doi.org/10.1007/978-1-0716-2329-9_1.
- Brown, L. S. (2022) Light-driven proton transfers and proton transport by microbial rhodopsins - A biophysical perspective, Biochim. Biophys. Acta, 1864, 183867, https://doi.org/10.1016/j.bbamem.2022.183867.
- Martinez, A., Bradley, A. S., Waldbauer, J. R., Summons, R. E., and DeLong, E. F. (2007) Proteorhodopsin photosystem gene expression enables photophosphorylation in a heterologous host, Proc. Nat. Acad. Sci. USA, 104, 5590-5595, https://doi.org/10.1073/pnas.0611470104.
- Atamna-Ismaeel, N., Finkel, O. M., Glaser, F., Sharon, I., Schneider, R., Post, A. F., Spudich, J. L., von Mering, C., Vorholt, J. A., Iluz, D., Beja, O., and Belkin, S. (2012) Microbial rhodopsins on leaf surfaces of terrestrial plants, Environ. Microbiol., 14, 140-146, https://doi.org/10.1111/j.1462-2920.2011.02554.x.
- Beja, O., Spudich, E. N., Spudich, J. L., Leclerc, M., and DeLong, E. F. (2001) Proteorhodopsin phototrophy in the ocean, Nature, 411, 786-789, https://doi.org/10.1038/35081051.
- Atamna-Ismaeel, N., Sabehi, G., Sharon, I., Witzel, K.-P., Labrenz, M., Jurgens, K., Barkay, T., Stomp, M., Huisman, J., and Beja, O. (2008) Widespread distribution of proteorhodopsins in freshwater and brackish ecosystems, ISME J., 2, 656-662, https://doi.org/10.1038/ismej.2008.27.
- Koh Eileen, Y., Atamna-Ismaeel, N., Martin, A., Cowie Rebecca, O. M., Beja, O., Davy Simon, K., Maas Elizabeth, W., and Ryan Ken, G. (2010) Proteorhodopsin-bearing bacteria in antarctic sea ice, Appl. Environ. Microbiol., 76, 5918-5925, https://doi.org/10.1128/AEM.00562-10.
- Gomez-Consarnau, L., Akram, N., Lindell, K., Pedersen, A., Neutze, R., Milton, D. L., Gonzalez, J. M., and Pinhassi, J. (2010) Proteorhodopsin phototrophy promotes survival of marine bacteria during starvation, PLOS Biol., 8, e1000358, https://doi.org/10.1371/journal.pbio.1000358.
- Steindler, L., Schwalbach, M. S., Smith, D. P., Chan, F., and Giovannoni, S. J. (2011) Energy starved candidatus Pelagibacter ubique substitutes light-mediated ATP production for endogenous carbon respiration, PLoS One, 6, e19725, https://doi.org/10.1371/journal.pone.0019725.
- DeLong, E. F., and Beja, O. (2010) The light-driven proton pump proteorhodopsin enhances bacterial survival during tough times, PLoS Biol., 8, e1000359, https://doi.org/10.1371/journal.pbio.1000359.
- Gomez-Consarnau, L., Raven, J. A., Levine, N. M., Cutter, L. S., Wang, D., Seegers, B., Aristegui, J., Fuhrman, J. A., Gasol, J. M., and Sanudo-Wilhelmy, S. A. (2019) Microbial rhodopsins are major contributors to the solar energy captured in the sea, Sci. Adv., 5, eaaw8855, https://doi.org/10.1126/sciadv.aaw8855.
- Finkel, O. M., Beja, O., and Belkin, S. (2013) Global abundance of microbial rhodopsins, ISME J., 7, 448-451, https://doi.org/10.1038/ismej.2012.112.
- Feng, S., Powell, S. M., Wilson, R., and Bowman, J. P. (2013) Light-stimulated growth of proteorhodopsin-bearing sea-ice psychrophile Psychroflexus torquis is salinity dependent, ISME J., 7, 2206-2213.
- Kondo, K., Ohtake, R., Nakano, S., Terashima, M., Kojima, H., Fukui, M., Demura, M., Kikukawa, T., and Tsukamoto, T. (2024) Contribution of proteorhodopsin to light-dependent biological responses in Hymenobacter nivis P3T isolated from red snow in antarctica, Biochemistry, 63, 2257-2265, https://doi.org/10.1021/acs.biochem.4c00286.
- Kim, S.-H., Jung, B., Hong, S. G., and Jung, K.-H. (2020) Temperature dependency of proton pumping activity for marine microbial rhodopsin from antartic ocean, Sci. Rep., 10, 1356, https://doi.org/10.1038/s41598-020-58023-5.
- Lamm, G. H. U., Marin, E., Alekseev, A., Schellbach, A. V., Stetsenko, A., Bourenkov, G., Borshchevskiy, V., Asido, M., Agthe, M., Engilberge, S., Rose, S. L., Caramello, N., Royant, A., Schneider, T. R., Bateman, A., Mager, T., Moser, T., Wachtveitl, J., Guskov, A., and Kovalev, K. (2024) CryoRhodopsins: a comprehensive characterization of a group of microbial rhodopsins from cold environments, bioRxiv, https://doi.org/10.1101/2024.01.15.575777.
- Guerrero, L. D., Vikram, S., Makhalanyane, T. P., and Cowan, D. A. (2017) Evidence of microbial rhodopsins in Antarctic Dry Valley edaphic systems, Environ. Microbiol., 19, 3755-3767, https://doi.org/https://doi.org/10.1111/1462-2920.13877.
- Rodrigues, D. F., Goris, J., Vishnivetskaya, T., Gilichinsky, D., Thomashow, M. F., and Tiedje, J. M. (2006) Characterization of Exiguobacterium isolates from the Siberian permafrost. Description of Exiguobacterium sibiricum sp. nov, Extremophiles, 10, 285-294, https://doi.org/10.1007/s00792-005-0497-5.
- Petrovskaya, L. E., Lukashev, E. P., Chupin, V. V., Sychev, S. V., Lyukmanova, E. N., Kryukova, E. A., Ziganshin, R. H., Spirina, E. V., Rivkina, E. M., Khatypov, R. A., Erokhina, L. G., Gilichinsky, D. A., Shuvalov, V. A., and Kirpichnikov, M. P. (2010) Predicted bacteriorhodopsin from Exiguobacterium sibiricum is a functional proton pump, FEBS Lett., 584, 4193-4196, https://doi.org/10.1016/j.febslet.2010.09.005.
- Balashov, S. P., Petrovskaya, L. E., Lukashev, E. P., Imasheva, E. S., Dioumaev, A. K., Wang, J. M., Sychev, S. V., Dolgikh, D. A., Rubin, A. B., Kirpichnikov, M. P., and Lanyi, J. K. (2012) Aspartate-histidine interaction in the retinal Schiff base counterion of the light-driven proton pump of Exiguobacterium sibiricum, Biochemistry, 51, 5748-5762, https://doi.org/10.1021/bi300409m.
- Balashov, S. P., Petrovskaya, L. E., Imasheva, E. S., Lukashev, E. P., Dioumaev, A. K., Wang, J. M., Sychev, S. V., Dolgikh, D. A., Rubin, A. B., Kirpichnikov, M. P., and Lanyi, J. K. (2013) Breaking the carboxyl rule: lysine 96 facilitates reprotonation of the Schiff base in the photocycle of a retinal protein from Exiguobacterium sibiricum, J. Biol. Chem., 288, 21254-21265, https://doi.org/10.1074/jbc.M113.465138.
- Petrovskaya, L., Balashov, S., Lukashev, E., Imasheva, E., Gushchin, I. Y., Dioumaev, A., Rubin, A., Dolgikh, D., Gordeliy, V., Lanyi, J., and Kirpichnikov, M. (2015) ESR - a retinal protein with unusual properties from Exiguobacterium sibiricum, Biochemistry (Moscow), 80, 688-700, https://doi.org/10.1134/S000629791506005X.
- Siletsky, S. A., Mamedov, M. D., Lukashev, E. P., Balashov, S. P., Dolgikh, D. A., Rubin, A. B., Kirpichnikov, M. P., and Petrovskaya, L. E. (2016) Electrogenic steps of light-driven proton transport in ESR, a retinal protein from Exiguobacterium sibiricum, Biochim. Biophys. Acta, 1857, 1741-1750, https://doi.org/10.1016/j.bbabio.2016.08.004.
- Petrovskaya, L. E., Siletsky, S. A., Mamedov, M. D., Lukashev, E. P., Balashov, S. P., Dolgikh, D. A., and Kirpichnikov, M. P. (2023) Features of the mechanism of proton transport in ESR, retinal protein from Exiguobacterium sibiricum, Biochemistry (Moscow), 88, 1544-1554, https://doi.org/10.1134/s0006297923100103.
- Gushchin, I., Chervakov, P., Kuzmichev, P., Popov, A. N., Round, E., Borshchevskiy, V., Ishchenko, A., Petrovskaya, L., Chupin, V., Dolgikh, D. A., Arseniev, A. S., Kirpichnikov, M., and Gordeliy, V. (2013) Structural insights into the proton pumping by unusual proteorhodopsin from nonmarine bacteria, Proc. Natl. Acad. Sci. USA, 110, 12631-12636, https://doi.org/10.1073/pnas.1221629110.
- Rappsilber, J., Mann, M., and Ishihama, Y. (2007) Protocol for micro-purification, enrichment, pre-fractionation and storage of peptides for proteomics using StageTips, Nat. Protocols, 2, 1896-1906, https://doi.org/10.1038/nprot.2007.261.
- Tyanova, S., Temu, T., and Cox, J. (2016) The MaxQuant computational platform for mass spectrometry-based shotgun proteomics, Nat. Protocols, 11, 2301-2319, https://doi.org/10.1038/nprot.2016.136.
- Tyanova, S., Temu, T., Sinitcyn, P., Carlson, A., Hein, M. Y., Geiger, T., Mann, M., and Cox, J. (2016) The Perseus computational platform for comprehensive analysis of (prote)omics data, Nat. Meth., 13, 731-740, https://doi.org/10.1038/nmeth.3901.
- Rodrigues, D. F., Ivanova, N., He, Z., Huebner, M., Zhou, J., and Tiedje, J. M. (2008) Architecture of thermal adaptation in an Exiguobacterium sibiricum strain isolated from 3 million year old permafrost: a genome and transcriptome approach, BMC Genomics, 9, 547, https://doi.org/10.1186/1471-2164-9-547.
- Jinendiran, S., Dileep Kumar, B. S., Dahms, H.-U., Arulanandam, C. D., and Sivakumar, N. (2019) Optimization of submerged fermentation process for improved production of beta-carotene by Exiguobacterium acetylicum S01, Heliyon, 5, e01730, https://doi.org/https://doi.org/10.1016/j.heliyon.2019.e01730.
- Patel, V. K., Srivastava, R., Sharma, A., Srivastava, A. K., Singh, S., Srivastava, A. K., Kashyap, P. L., Chakdar, H., Pandiyan, K., Kalra, A., and Saxena, A. K. (2018) Halotolerant Exiguobacterium profundum PHM11 tolerate salinity by accumulating L-proline and fine-tuning gene expression profiles of related metabolic pathways, Front. Microbiol., 9, 423, https://doi.org/10.3389/fmicb.2018.00423.
- Gilichinsky, D. A., and Rivkina, E. M. (2011) Permafrost microbiology, in Encyclopedia of Geobiology, Springer, pp. 726-732, https://doi.org/10.1007/978-1-4020-9212-1_162.
- Jansson, J. K., and Tas, N. (2014) The microbial ecology of permafrost, Nat. Rev. Microbiol., 12, 414-425, https://doi.org/10.1038/nrmicro3262.
- Akram, N., Palovaara, J., Forsberg, J., Lindh, M. V., Milton, D. L., Luo, H., Gonzalez, J. M., and Pinhassi, J. (2013) Regulation of proteorhodopsin gene expression by nutrient limitation in the marine bacterium Vibrio sp. AND4, Environ. Microbiol., 15, 1400-1415, https://doi.org/https://doi.org/10.1111/1462-2920.12085.
- Kimura, H., Young, C. R., Martinez, A., and DeLong, E. F. (2011) Light-induced transcriptional responses associated with proteorhodopsin-enhanced growth in a marine flavobacterium, ISME J., 5, 1641-1651, https://doi.org/10.1038/ismej.2011.36.
- Kopejtka, K., Tomasch, J., Kaftan, D., Gardiner, A. T., Bina, D., Gardian, Z., Bellas, C., Droge, A., Geffers, R., Sommaruga, R., and Koblizek, M. (2022) A bacterium from a mountain lake harvests light using both proton-pumping xanthorhodopsins and bacteriochlorophyll-based photosystems, Proc. Nat. Acad. Sci. USA, 119, e2211018119, 10.1073/pnas.2211018119' target='_blank'>https://doi.org/doi: 10.1073/pnas.2211018119.
- Liu, Q., Li, W., Liu, D., Li, L., Li, J., Lv, N., Liu, F., Zhu, B., Zhou, Y., Xin, Y., and Dong, X. (2021) Light stimulates anoxic and oligotrophic growth of glacial Flavobacterium strains that produce zeaxanthin, ISME J., 15, 1844-1857, https://doi.org/10.1038/s41396-020-00891-w.
- Klassen, J. L. (2010) Phylogenetic and evolutionary patterns in microbial carotenoid biosynthesis are revealed by comparative genomics, PLoS One, 5, e11257, https://doi.org/10.1371/journal.pone.0011257.
- Jaffe, A. L., Konno, M., Kawasaki, Y., Kataoka, C., Beja, O., Kandori, H., Inoue, K., and Banfield, J. F. (2022) Saccharibacteria harness light energy using type-1 rhodopsins that may rely on retinal sourced from microbial hosts, ISME J., 16, 2056-2059, https://doi.org/10.1038/s41396-022-01231-w.
- Keffer, J. L., Hahn, M. W., and Maresca, J. A. (2015) Characterization of an unconventional rhodopsin from the freshwater actinobacterium Rhodoluna lacicola, J. Bacteriol., 197, 2704-2712, 10.1128/jb.00386-15' target='_blank'>https://doi.org/doi: 10.1128/jb.00386-15.
- Fang, J., Zhang, Y., Zhu, T., and Li, Y. (2023) Scramblase activity of proteorhodopsin confers physiological advantages to Escherichia coli in the absence of light, iScience, 26, 108551, https://doi.org/10.1016/j.isci.2023.108551.
- Raymond-Bouchard, I., and Whyte, L. G. (2017) From transcriptomes to metatranscriptomes: cold adaptation and active metabolisms of psychrophiles from cold environments, in Psychrophiles: From Biodiversity to Biotechnology (Margesin, R. ed), Springer International Publishing, Cham, pp. 437-457, https://doi.org/10.1007/978-3-319-57057-0_18.
- Wu, G., Baumeister, R., and Heimbucher, T. (2023) Molecular mechanisms of lipid-based metabolic adaptation strategies in response to cold, Cells, 12, https://doi.org/10.3390/cells12101353.
- Zhao, Z., Liu, Z., and Mao, X. (2020) Biotechnological advances in lycopene beta-cyclases, J. Agric. Food Chem., 68, 11895-11907, https://doi.org/10.1021/acs.jafc.0c04814.
- Sajjad, W., Din, G., Rafiq, M., Iqbal, A., Khan, S., Zada, S., Ali, B., and Kang, S. (2020) Pigment production by cold-adapted bacteria and fungi: colorful tale of cryosphere with wide range applications, Extremophiles, 24, 447-473, https://doi.org/10.1007/s00792-020-01180-2.
- Collins, T., and Margesin, R. (2019) Psychrophilic lifestyles: mechanisms of adaptation and biotechnological tools, Appl. Microbiol. Biotechnol., 103, 2857-2871, https://doi.org/10.1007/s00253-019-09659-5.
- Singh, A., Krishnan, K. P., Prabaharan, D., and Sinha, R. K. (2017) Lipid membrane modulation and pigmentation: A cryoprotection mechanism in Arctic pigmented bacteria, J. Basic Microbiol., 57, 770-780, https://doi.org/10.1002/jobm.201700182.
- Seel, W., Baust, D., Sons, D., Albers, M., Etzbach, L., Fuss, J., and Lipski, A. (2020) Carotenoids are used as regulators for membrane fluidity by Staphylococcus xylosus, Sci. Rep., 10, 330, https://doi.org/10.1038/s41598-019-57006-5.
- Jagannadham, M. V., Chattopadhyay, M. K., Subbalakshmi, C., Vairamani, M., Narayanan, K., Rao, C. M., and Shivaji, S. (2000) Carotenoids of an Antarctic psychrotolerant bacterium, Sphingobacterium antarcticus, and a mesophilic bacterium, Sphingobacterium multivorum, Arch. Microbiol., 173, 418-424, https://doi.org/10.1007/s002030000163.
补充文件

