Restriction-modification systems with specificity GGATC, GATGC and GATGG. Part 1. Evolution and ecology

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The evolution of proteins from restriction–modification systems containing an endonuclease domain of the RE_AlwI family and either two DNA methyltransferases, each with a domain of the MethyltransfD12 family, or one DNA methyltransferase with two domains of this family was studied. It was found that all such systems recognize one of three DNA sequences, namely GGATC, GATGC or GATGG, and the restriction endonucleases of these systems are divided by sequence similarity into three clades that unambiguously correspond to specificities. The DNA methyltransferase domains of these systems are divided into two groups based on sequence similarity, with two domains of each system belonging to different groups. Within each group, the domains are divided into three clades according to their specificity. Evidence of multiple interspecific horizontal transfers of systems as a whole is found, as well as evidence of gene transfer between systems, including transfer of one of the DNA methyltransferases with a change in specificity. Evolutionary relationships of DNA methyltransferases from such systems with other DNA methyltransferases, including orphan DNA methyltransferases, were revealed.

About the authors

S. A. Spirin

Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University; National Research University Higher School of Economics; NRC “Kurchatov Institute” – SRISA

Email: sas@belozersky.msu.ru
119234 Moscow, Russia; 109028 Moscow, Russia; 117218 Moscow, Russia

I. S. Rusinov

Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University

119234 Moscow, Russia

O. L. Makarikova

National Research University Moscow Institute of Physics and Technology

117303 Moscow, Russia

A. V. Alexeevski

Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University; NRC “Kurchatov Institute” – SRISA

119234 Moscow, Russia; 117218 Moscow, Russia

A. S. Karyagina

Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University; N. F. Gamaleya National Research Center for Epidemiology and Microbiology; All-Russia Research Institute of Agricultural Biotechnology

119234 Moscow, Russia; 123098 Moscow, Russia; 127550 Moscow, Russia

References

  1. Williams, R. J. (2003) Restriction endonucleases: classification, properties, and applications,Mol. Biotechnol.,23, 225-244,https://doi.org/10.1385/mb:23:3:225.
  2. Roberts, R. J. (2003) A nomenclature for restriction enzymes, DNA methyltransferases, homing endonucleases and their genes,Nucleic Acids Res.,31, 1805-1812,https://doi.org/10.1093/nar/gkg274.
  3. Madhusoodanan, U. K., and Rao, D. N. (2010) Diversity of DNA methyltransferases that recognize asymmetric target sequences,Crit. Rev. Biochem. Mol. Biol.,45, 125-145,https://doi.org/10.3109/10409231003628007.
  4. Vasu, K., and Nagaraja, V. (2013) Diverse functions of restriction-modification systems in addition to cellular defense,Microbiol. Mol. Biol. Rev.,77, 53-72,https://doi.org/10.1128/mmbr.00044-12.
  5. Fokina, A. S., Karyagina, A. S., Rusinov, I. S., Moshensky, D. M., Spirin, S. A., and Alexeevski, A. V. (2023) Evolution of restriction–modification systems consisting of one restriction endonuclease and two DNA methyltransferases,Biochemistry (Moscow),88, 253-261,https://doi.org/10.1134/S0006297923020086.
  6. Mistry, J., Chuguransky, S., Williams, L., Qureshi, M., Salazar, G. A., Sonnhammer, E. L. L., Tosatto, S. C. E.,Paladin, L., Raj, S., Richardson, L. J., Finn, R. D., and Bateman, A. (2020) Pfam: the protein families database in 2021,Nucleic Acids Res.,49, D412-D419,https://doi.org/10.1093/nar/gkaa913.
  7. Roberts, R. J., Vincze, T., Posfai, J., and Macelis, D. (2014) REBASE – a database for DNA restriction and modification: enzymes, genes and genomes,Nucleic Acids Res.,43, D298-D299,https://doi.org/10.1093/nar/ gku1046.
  8. Edgar, R.C. (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput,Nucleic Acids Res.,32, 1792-1797,https://doi.org/10.1093/nar/gkh340.
  9. Lefort, V., Desper, R., and Gascuel, O. (2015) FastME 2.0: A comprehensive, accurate, and fast distance-based phylogeny inference program,Mol. Biol. Evol.,32, 2798-2800,https://doi.org/10.1093/molbev/msv150.
  10. Kumar, S., Stecher, G., and Tamura, K. (2016) MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets,Mol. Biol. Evol., 33, 1870-1874, doi: 10.1093/molbev/msw054.
  11. Letunic, I., and Bork, P. (2021) Interactive tree of life (iTOL) v5: an online tool for phylogenetic tree display and annotation,Nucleic Acids Res.,49, W293-W296,https://doi.org/10.1093/nar/gkab301.
  12. Li, W., and Godzik, A. (2006) Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences,Bioinformatics,22, 1658-1659,https://doi.org/10.1093/bioinformatics/btl158.
  13. Burge, C., Campbell, A. M., and Karlin, S. (1992) Over- and under-representation of short oligonucleotides in DNA sequences,Proc. Natl. Acad. Sci. USA,89, 1358-1362,https://doi.org/10.1073/pnas.89.4.1358.
  14. Rusinov, I. S., Ershova, A. S., Karyagina, A. S., Spirin, S. A., and Alexeevski, A. V. (2018) Comparison of methods of detection of exceptional sequences in prokaryotic genomes,Biochemistry (Moscow),83, 129-139,https://doi.org/10.1134/S0006297918020050.
  15. Karlin, S., Burge, C., and Campbell, A. M. (1992) Statistical analyses of counts and distributions of restriction sites in DNA sequences,Nucleic Acids Res.,20, 1363-1370,https://doi.org/10.1093/nar/20.6.1363.
  16. Rusinov, I., Ershova, A., Karyagina, A., Spirin, S., and Alexeevski, A. (2015) Lifespan of restriction-modification systems critically affects avoidance of their recognition sites in host genomes,BMC Genomics,16, 1-15,https://doi.org/10.1186/s12864-015-2288-4.
  17. Brézellec, P., Hoebeke, M., Hiet, M. S., Pasek, S., and Ferat, J. L. (2006) DomainSieve: a protein domain-based screen that led to the identification of dam-associated genes with potential link to DNA maintenance,Bioinformatics,22, 1935-1941,https://doi.org/10.1093/bioinformatics/btl336.
  18. Murray, N. E. (2002) 2001 Fred Griffith review lecture. Immigration control of DNA in bacteria: self versus non-self,Microbiology,148, 3-20,https://doi.org/10.1099/00221287-148-1-3.
  19. Friedrich, T., Fatemi, M., Gowhar, H., Leismann, O., and Jeltsch, A. (2000) Specificity of DNA binding and methylation by the M.FokI DNA methyltransferase,Biochim. Biophys. Acta,1480, 145-159,https://doi.org/10.1016/s0167-4838(00)00065-0.
  20. Horton, J. R., Liebert, K., Bekes, M., Jeltsch, A., and Cheng, X. (2006) Structure and substrate recognition of theEscherichiacoliDNA adenine methyltransferase,J. Mol. Biol.,358, 559-570,https://doi.org/10.1016/j.jmb.2006.02.028.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Supplementary material (online resource 2) to the article "RESTRICTION-MODIFICATION SYSTEMS WITH GGATC, GATGC AND GATGG SPECIFICITIES. PART 1. EVOLUTION AND ECOLOGY"
Download (88KB)
3. Supplementary material (online resource 3) to the article "RESTRICTION-MODIFICATION SYSTEMS WITH GGATC, GATGC AND GATGG SPECIFICITIES. PART 1. EVOLUTION AND ECOLOGY"
Download (2MB)

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).