METHOD OF MULTIPLEX IMMUNE PROFILING OF MOUSE BLOOD CELLS WITH HIGHLY SENSITIVE DETECTION OF REPORTER β-GALACTOSIDASE LacZ

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Bacterial β-galactosidase (LacZ) has been widely used as a reporter in the creation of mouse lines to study gene expression. However, LacZ reporters have limitations related to the presence of endogenous β-galactosidase in cells, as well as the low sensitivity and penetrating ability of existing substrates to detect LacZ activity. Multicolor flow cytometry analysis of gene expression in living cells requires precise, sensitive, non-toxic fluorescent indicators. In this study, we evaluated the effectiveness of the immobilized SPiDER-βGal fluorescent probe for LacZ detection in main populations of blood cells of reporter mice by multicolored flow cytometry. The results showed that SPiDER-βGal was highly sensitive to LacZ, but it also detected endogenous β-galactosidase. Myeloid cells had the highest background activity. Application of the proton pump inhibitor Bafilomycin A1 elevates lysosomal pH and increases the resolution of LacZ detection in leukocyte populations by suppressing background endogenous β-galactosidase activity. Extending the incubation with the SPiDER-βGal to 60 minutes improved the sensitivity of the method tenfold. Thus, the use of specific inhibitors of lysosomal proton transport increases the resolution of LacZ activity analysis in reporter animals for multi-channel sorting of LacZ-expressing live leukocytes in the context of surface markers for further functional and genetic studies of blood populations.

About the authors

V. S. Mihailovskaya

Sirius University of Science and Technology, Scientific Center for Genetics and Life Sciences

Sirius, Russia

D. A. Bogdanova

Sirius University of Science and Technology, Scientific Center for Genetics and Life Sciences; Institute of Cytology, Russian Academy of Sciences

Sirius, Russia; St. Petersburg, Russia

O. N. Demidov

Sirius University of Science and Technology, Scientific Center for Genetics and Life Sciences; Institute of Cytology, Russian Academy of Sciences

Sirius, Russia; St. Petersburg, Russia

S. A. Rybtsov

Sirius University of Science and Technology, Scientific Center for Genetics and Life Sciences

Email: rybtsov.sa@talantiuspeh.ru
Sirius, Russia

References

  1. Friedel, R. H., Seisenberger, C., Kaloff, C., and Wurst, W. (2007) EUCOMM - the European conditional mouse mutagenesis program, Brief. Funct. Genomics Proteomics, 6, 180-185, https://doi.org/10.1093/bfgp/elm022.
  2. Krämer, M. S., Feil, R., Schmidt, H. (2021) Analysis of gene expression using lacZ reporter mouse lines, in Mouse Genetics. Methods in Molecular Biology (Singh, S. R., Hoffman, R. M., Singh, A., eds), vol. 2224, https://doi.org/10.1007/978-1-0716-1008-4_2.
  3. Doura, T., Kamiya, M., Obata, F., Yamaguchi, Y., Hiyama, T. Y., Matsuda, T., Fukamizu, A., Noda, M., Miura, M., and Urano, Y. (2016) Detection of LacZ-positive cells in living tissue with single-cell resolution, Angew. Chem. Int. Ed. Engl., 55, 9620-9624, https://doi.org/10.1002/anie.201603328.
  4. Ito, H., Kawamata, Y., Kamiya, M., Tsuda-Sakurai, K., Tanaka, S., Ueno, T., Komatsu, T., Hanaoka, K., Okabe, S., Miura, M., and Urano, Y. (2018) Red-shifted fluorogenic substrate for detection of lacZ-positive cells in living tissue with single-cell resolution, Angewandte Chemie, 57, 15702-15706, https://doi.org/10.1002/anie.201808670.
  5. Ayadi, A., Birling, M. C., Bottomley, J., Bussell, J., Fuchs, H., Fray, M., Gailus-Durner, V., Greenaway, S., Houghton, R., Karp, N., Leblanc, S., Lengger, C., Maier, H., Mallon, A. M., Marschall, S., Melvin, D., Morgan, H., Pavlovic, G., Ryder, E., Skarnes, W. C., et al. (2012) Mouse large-scale phenotyping initiatives: overview of the European Mouse Disease Clinic (EUMODIC) and of the Wellcome Trust Sanger Institute Mouse Genetics Project, Mammal. Genome, 23, 600-610, https://doi.org/10.1007/s00335-012-9418-y.
  6. Kamiya, M., Asanuma, D., Kuranaga, E., Takeishi, A., Sakabe, M., Miura, M., Nagano, T., and Urano, Y. (2011) β-Galactosidase fluorescence probe with improved cellular accumulation based on a spirocyclized rhodol scaffold, J. Am. Chem. Soc., 133, 12960-12963, https://doi.org/10.1021/ja204781t.
  7. Nakamura, Y., Mochida, A., Nagaya, T., Okuyama, S., Ogata, F., Choyke, P. L., and Kobayashi, H. (2017) A topically-sprayable, activatable fluorescent and retaining probe, SPiDER-βGal for detecting cancer: Advantages of anchoring to cellular proteins after activation, Oncotarget, 8, 39512-39521, https://doi.org/10.18632/oncotarget.17080.
  8. Cho, J. H., Kim, E. C., Son, Y., Lee, D. W., Park, Y. S., Choi, J. H., Cho, K. H., Kwon, K. S., and Kim, J. R. (2020) CD9 induces cellular senescence and aggravates atherosclerotic plaque formation, Cell Death Differ., 27, 2681-2696, https://doi.org/10.1038/s41418-020-0537-9.
  9. Hall, B. M., Balan, V., Gleiberman, A. S., Strom, E., Krasnov, P., Virtuoso, L. P., Rydkina, E., Vujcic, S., Balan, K., Gitlin, I. I., Leonova, K. I., Consiglio, C. R., Gollnick, S. O., Chernova, O. B., and Gudkov, A. V. (2017) p16(Ink4a) and senescence-associated β-galactosidase can be induced in macrophages as part of a reversible response to physiological stimuli, Aging, 9, 1867-1884, https://doi.org/10.18632/aging.101268.
  10. Kubo, H., Murayama, Y., Ogawa, S., Matsumoto, T., Yubakami, M., Ohashi, T., Kubota, T., Okamoto, K., Kamiya, M., Urano, Y., and Otsuji, E. (2021) β-Galactosidase is a target enzyme for detecting peritoneal metastasis of gastric cancer, Sci. Rep., 11, 10664, https://doi.org/10.1038/s41598-021-88982-2.
  11. Martínez-Zamudio, R. I., Dewald, H. K., Vasilopoulos, T., Gittens-Williams, L., Fitzgerald-Bocarsly, P., and Herbig, U. (2021) Senescence-associated β-galactosidase reveals the abundance of senescent CD8+ T cells in aging humans, Aging Cell, 20, e13344, https://doi.org/10.1111/acel.13344.
  12. Valieva, Y., Ivanova, E., Fayzullin, A., Kurkov, A., and Igrunkova, A. (2022) Senescence-associated β-galactosidase detection in pathology, Diagnostics, 12, 2309, https://doi.org/10.3390/diagnostics12102309.
  13. Hendrikx, P. J., Martens, A. C. M., Visser, J. W. M., and Hagenbeek, A. (1994) Differential suppression of background mammalian lysosomal β-galactosidase increases the detection sensitivity of LacZ-marked leukemic cells, Anal. Biochem., 222, 456-460, https://doi.org/10.1006/abio.1994.1516.
  14. Merkwitz, C., Blaschuk, O., Schulz, A., and Ricken, A. M. (2016) Comments on methods to suppress endogenous β-galactosidase activity in mouse tissues expressing the LacZ reporter gene, J. Histochem. Cytochem., 64, 579-586, https://doi.org/10.1369/0022155416665337.
  15. Young, D. C., Kingsley, S. D., Ryan, K. A., and Dutko, F. J. (1993) Selective inactivation of eukaryotic beta-galactosidase in assays for inhibitors of HIV-1 TAT using bacterial beta-galactosidase as a reporter enzyme, Anal. Biochem., 215, 24-30, https://doi.org/10.1006/abio.1993.1549.
  16. Knapp, T., Hare, E., Feng, L., Zlokarnik, G., and Negulescu, P. (2003) Detection of beta-lactamase reporter gene expression by flow cytometry, Cytometry, 51, 68-78, https://doi.org/10.1002/cyto.a.10018.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».