DIFFERENTIAL EXPRESSION OF CIRCULAR RNAs IN THE FRONTAL CORTEX OF RATS UNDER ISCHEMIA-REPERFUSION CONDITIONS

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Circular RNAs (circRNAs) are covalently closed non-coding RNAs that have increased metabolic stability and are capable of regulating gene expression. CircRNAs are considered as potential biomarkers and therapeutic targets for various diseases, including ischemic stroke. The transient right middle cerebral artery occlusion (tMCAO) model is actively used in stroke transcriptomics. In this study, we used whole-genome RNA sequencing to study the circRNA expression profile in the frontal cortex of rat brain 24 h after tMCAO. We identified 64 differentially expressed circRNAs (Fold change >1.5; Padj <0.05), which predominantly increased their levels compared to sham-operated animals. According to MRI data, the studied frontal cortex region included the penumbra zone, cell survival in which is important for stroke recovery. Also, using our previously obtained data on differential mRNA expression in this brain region, we bioinformatically predicted mRNA-miRNA-circRNA regulatory networks. Functional analysis of these networks showed that genes whose expression may depend on circRNA activity during ischemia are responsible for synaptic signaling and inflammatory response. Our study shows a significant role of circRNA-mediated transcriptome regulation in the penumbra-associated brain region during ischemia and allows us to consider circRNAs as potential targets for new strategies for the treatment of stroke and post-stroke complications.

About the authors

I. V. Mozgovoy

National Research Centre “Kurchatov Institute”

Moscow, Russia

Y. Y. Shpetko

National Research Centre “Kurchatov Institute”

Moscow, Russia

A. E. Denisova

Pirogov Russian National Research Medical University

Moscow, Russia

V. V. Stavchansky

National Research Centre “Kurchatov Institute”

Moscow, Russia

M. A. Vinogradina

National Research Centre “Kurchatov Institute”

Moscow, Russia

L. V. Gubsky

Pirogov Russian National Research Medical University; Federal Center for the Brain and Neurotechnology, Federal Medical Biological Agency

Moscow, Russia; Moscow, Russia

L. V. Dergunova

National Research Centre “Kurchatov Institute”

Moscow, Russia

S. A. Limborska

National Research Centre “Kurchatov Institute”

Moscow, Russia

I. B. Filippenkov

National Research Centre “Kurchatov Institute”

Email: filippenkov-ib.img@yandex.ru
Moscow, Russia

References

  1. Абрамов А. Ю., Муравьева А. А., Михайлова Ю. В, Стерликов С. А. (2023) Заболеваемость цереброваскулярными болезнями в Российской Федерации в 2010-2022 годах, Казан. Мед. Журн., 104, 915-926, https://doi.org/10.17816/KMJ546013.
  2. Pu, L., Wang, L., Zhang, R., Zhao, T., Jiang, Y., and Han, L. (2023) Projected global trends in ischemic stroke incidence, deaths and disability-adjusted life years from 2020 to 2030, Stroke, 54, 1330-1339, https://doi.org/10.1161/STROKEAHA.122.040073.
  3. Shin, T. H., Lee, D. Y., Basith, S., Manavalan, B., Paik, M. J., Rybinnik, I., Mouradian, M. M., Ahn, J. H., and Lee, G. (2020) Metabolome changes in cerebral ischemia, Cells, 9, 1630, https://doi.org/10.3390/CELLS9071630.
  4. Qin, C., Yang, S., Chu, Y. H., Zhang, H., Pang, X. W., Chen, L., Zhou, L. Q., Chen, M., Tian, D. S., and Wang, W. (2022) Signaling pathways involved in ischemic stroke: molecular mechanisms and therapeutic interventions, Signal Transduct. Target. Ther., 7, 215, https://doi.org/10.1038/s41392-022-01064-1.
  5. Dergunova, L. V., Filippenkov, I. B., Stavchansky, V. V., Denisova, A. E., Yuzhakov, V. V., Mozerov, S. A., Gubsky, L. V., and Limborska, S. A. (2018) Genome-wide transcriptome analysis using RNA-Seq reveals a large number of differentially expressed genes in a transient MCAO rat model, BMC Genom., 19, 655, https://doi.org/10.1186/S12864-018-5039-5.
  6. Shi, J., Chen, X., Li, H., Wu, Y., Wang, S., Shi, W., Chen, J., and Ni, Y. (2017) Neuron-autonomous transcriptome changes upon ischemia/reperfusion injury, Sci. Rep., 7, 5800, https://doi.org/10.1038/s41598-017-05342-9.
  7. Salviano-Silva, A., Lobo-Alves, S. C., de Almeida, R. C., Malheiros, D., and Petzl-Erler, M. L. (2018) Besides pathology: long non-coding RNA in cell and tissue homeostasis, Noncoding RNA, 4, 3, https://doi.org/10.3390/NCRNA4010003.
  8. Lekka, E., and Hall, J. (2018) Noncoding RNAs in disease, FEBS Lett., 592, 2884, https://doi.org/10.1002/18733468.13182.
  9. Zhou, M., Li, S., and Huang, C. (2024) Physiological and pathological functions of circular RNAs in the nervous system, Neural. Regen. Res., 19, 342, https://doi.org/10.4103/1673-5374.379017.
  10. Filippenkov, I. B., Sudarkina, O. Y., Limborska, S. A., and Dergunova, L. V. (2018) Multi-step splicing of sphingomyelin synthase linear and circular RNAs, Gene, 654, 14-22, https://doi.org/10.1016/J.GENE.2018.02.030.
  11. Lasda, E., and Parker, R. (2014) Circular RNAs: diversity of form and function, RNA, 20, 1829-1842, https://doi.org/10.1261/RNA.047126.114.
  12. Kristensen, L. S., Andersen, M. S., Stagsted, L. V. W., Ebbesen, K. K., Hansen, T. B., and Kjems, J. (2019) The biogenesis, biology and characterization of circular RNAs, Nat. Rev. Genet., 20, 675-691, https://doi.org/10.1038/s41576-019-0158-7.
  13. Zhang, L., Liu, Y., Tao, H., Zhu, H., Pan, Y., Li, P., Liang, H., Zhang, B., and Song, J. (2021) Circular RNA CircUBE2J2 acts as the sponge of microRNA-370-5P to suppress hepatocellular carcinoma progression, Cell Death Dis., 12, 985, https://doi.org/10.1038/s41419-021-04269-4.
  14. Yifan, D., Jiaheng, Z., Yili, X., Junxia, D., and Chao T. (2025) CircRNA: a new target for ischemic stroke, Gene, 933, 148941, https://doi.org/10.1016/j.gene.2024.148941.
  15. Liu, C., Zhang, C., Yang, J., Geng, X., Du, H., Ji, X., and Zhao, H. (2017) Screening circular RNA expression patterns following focal cerebral ischemia in mice, Oncotarget, 8, 86535, https://doi.org/10.18632/ONCOTARGET.21238.
  16. Lin, S. P., Ye, S., Long, Y., Fan, Y., Mao, H. F., Chen, M. T., and Ma, Q. J. (2016) Circular RNA expression alterations are involved in OGD/R-induced neuron injury, Biochem. Biophys. Res. Commun., 471, 52-56, https://doi.org/10.1016/J.BBRC.2016.01.183.
  17. Duan, X., Li, L., Gan, J., Peng, C., Wang, X., Chen, W., and Peng, D. (2019) Identification and functional analysis of circular RNAs induced in rats by middle cerebral artery occlusion, Gene, 701, 139-145, https://doi.org/10.1016/J.GENE.2019.03.053.
  18. Chen, W., Wang, H., Feng, J., and Chen, L. (2020) Overexpression of CircRNA CircUCK2 attenuates cell apoptosis in cerebral ischemia-reperfusion injury via MiR-125b-5p/GDF11 signaling, Mol. Ther. Nucleic. Acids, 22, 673-683, https://doi.org/10.1016/j.omtn.2020.09.032.
  19. Wu, F., Han, B., Wu, S., Yang, L., Leng, S., Li, M., Liao, J., Wang, G., Ye, Q., Zhang, Y., Chen, H., Chen, X., Zhong, M., Xu, Y., Liu, Q., Zhang, J. H., and Yao, H. (2019) Circular RNA TLK1 aggravates neuronal injury and neurological deficits after ischemic stroke via MiR-335-3p/TIPARP, J. Neurosci., 39, 7369-7393, https://doi.org/10.1523/JNEUROSCI.0299-19.2019.
  20. Bai, Y., Zhang, Y., Han, B., Yang, L., Chen, X., Huang, R., Wu, F., Chao, J., Liu, P., and Hu, G. (2018) Circular RNA DLGAP4 Ameliorates Ischemic Stroke Outcomes by Targeting MiR-143 to regulate endothelial-mesenchymal transition associated with blood-brain barrier integrity, J. Neurosci., 38, 32-50, https://doi.org/10.1523/JNEUROSCI.1348-17.2017.
  21. Dai, Q., Ma, Y., Xu, Z., Zhang, L., Yang, H., Liu, Q., and Wang, J. (2021) Downregulation of circular RNA HECTD1 induces neuroprotection against ischemic stroke through the microRNA-133b/TRAF3 pathway, Life Sci., 264, 118626, https://doi.org/10.1016/j.lfs.2020.118626.
  22. Han, B., Zhang, Y., Zhang, Y., Bai, Y., Chen, X., Huang, R., Wu, F., Leng, S., Chao, J., and Zhang, J. H. (2018) Novel insight into circular RNA HECTD1 in astrocyte activation via autophagy by targeting MIR142-TIPARP: implications for cerebral ischemic Stroke, Autophagy, 14, 1164-1184, https://doi.org/10.1080/15548627.2018.1458173.
  23. Filippenkov, I. B., Stavchansky, V. V., Denisova, A. E., Valieva, L. V., Remizova, J. A., Mozgovoy, I. V., Zaytceva, E. I., Gubsky, L. V., Limborska, S. A., and Dergunova, L. V. (2021) Genome-wide RNA-sequencing reveals massive circular RNA expression changes of the neurotransmission genes in the rat brain after ischemia-reperfusion, Genes (Basel), 12, 1870, https://doi.org/10.3390/GENES12121870.
  24. Filippenkov, I. B., Shpetko, Y. Yu., Stavchansky, V. V., Denisova, A. E., Gubsky, L. V., Andreeva, L. A., Myasoedov, N. F., Limborska, S. A., and Dergunova, L. V. (2024) ACTH-like peptides compensate rat brain gene expression profile disrupted by ischemia a day after experimental stroke, Biomedicines, 12, 2830, https://doi.org/10.3390/BIOMEDICINES12122830.
  25. Koizumi, J., Yoshida, Y., Nakazawa, T., and Ooneda, G. (1986) Experimental studies of ischemic brain edema. A new experimental model of cerebral embolism in rats in which recirculation can be introduced in the ischemic area, Japan. J. Stroke, 8, 1-8, https://doi.org/10.3995/JSTROKE.8.1.
  26. Filippenkov, I. B., Remizova, J. A., Denisova, A. E., Stavchansky, V. V., Golovina, K. D., Gubsky, L. V., Limborska, S. A., and Dergunova, L. V. (2022) Comparative use of contralateral and sham operated controls reveals traces of a bilateral genetic response in the rat brain after focal stroke, Int. J. Mol. Sci., 23, 7308, https://doi.org/10.3390/IJMS23137308/S1.
  27. Langmead, B., Wilks, C., Antonescu, V., Charles, R. (2019) Scaling read aligners to hundreds of threads on general-purpose processors, Bioinformatics, 35, 421-432, https://doi.org/10.1093/bioinformatics/bty648.
  28. Izuogu, O. G., Alhasan, A. A., Alafghani, H. M., Santibanez-Koref, M., Elliott, D. J., and Jackson, M. S. (2016) PTESFinder: a computational method to identify post-transcriptional exon shuffling (PTES) events, BMC Bioinform., 17, 31, https://doi.org/10.1186/s12859-016-0881-4.
  29. Love, M. I., Huber, W., and Anders, S. (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2, Genome Biol., 15, 550, https://doi.org/10.1186/s13059-014-0550-8.
  30. Pfaffl, M. W., Horgan, G. W., and Dempfle, L. (2002) Relative expression software tool (REST) for group-wise comparison and statistical analysis of relative expression results in real-time PCR, Nucleic Acids Res., 30, e36, https://doi.org/10.1093/NAR/30.9.E36.
  31. Enright, A. J., John, B., Gaul, U., Tuschl, T., Sander, C., and Marks, D. S. (2003) MicroRNA targets in Drosophila, Genome Biol., 5, R1, https://doi.org/10.1186/GB-2003-5-1-R1.
  32. Krüger, J., and Rehmsmeier, M. (2016) RNAhybrid: microRNA target prediction easy, fast and flexible, Nucleic Acids Res., 34, W451-4, https://doi.org/10.1093/NAR/GKL243.
  33. Lewis, B. P., Burge, C. B., and Bartel, D. P. (2005) Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets, Cell, 120, 15-20, https://doi.org/10.1016/j.cell.2004.12.035.
  34. Kozomara, A., Birgaoanu, M., and Griffiths-Jones, S. (2019) miRBase: from microRNA sequences to function, Nucleic Acids Res., 47, D155-D162, https://doi.org/10.1093/nar/gky1141.
  35. Marín, R. M., and Vaníek, J. (2011) Efficient use of accessibility in microRNA target prediction, Nucleic Acids Res., 39, 19, https://doi.org/10.1093/NAR/GKQ768.
  36. Sherman, B. T., Hao, M., Qiu, J., Jiao, X., Baseler, M. W., Lane, H. C., Imamichi, T., and Chang, W. (2022) DAVID: a web server for functional enrichment analysis and functional annotation of gene lists (2021 update), Nucleic Acids Res., 50, W216-W221, https://doi.org/10.1093/NAR/GKAC194.
  37. Bardutzky, J., Shen, Q., Henninger, N., Schwab, S., Duong, T. Q., and Fisher, M. (2007) Characterizing tissue fate after transient cerebral ischemia of varying duration using quantitative diffusion and perfusion imaging, Stroke, 38, 1336-1344, https://doi.org/10.1161/01.STR.0000259636.26950.3b.
  38. Ebinger, M., De Silva, D. A., Christensen, S., Parsons, M. W., Markus, R., Donnan, G. A., and Davis, S. M. (2009) Imaging the penumbra - strategies to detect tissue at risk after ischemic stroke, J. Clin. Neurosci., 16, 178-187, https://doi.org/10.1016/j.jocn.2008.04.002.
  39. Fisher, M., Feuerstein, G., Howells, D. W., Hurn, P. D., Kent, T. A., Savitz, S. I., and Lo, E. H. (2009) Update of the stroke therapy academic industry roundtable preclinical recommendations, Stroke, 40, 2244, https://doi.org/10.1161/STROKEAHA.108.541128.
  40. Friedrich, J., Lindauer, U., and Höllig, A. (2022) Procedural and methodological quality in preclinical stroke research-a cohort analysis of the rat MCAO model comparing periods before and after the publication of STAIR/ARRIVE, Front. Neurol., 13, 834003, https://doi.org/10.3389/FNEUR.2022.834003.
  41. Fisher, M. (1999) Recommendations for standards regarding preclinical neuroprotective and restorative drug development, Stroke, 30, 2752-2758, https://doi.org/10.1161/01.STR.30.12.2752.
  42. Zhang, Y., Liu, J., Su, M., Wang, X., and Xie, C. (2021) Exosomal microRNA-22-3p alleviates cerebral ischemic injury by modulating KDM6B/BMP2/BMF axis, Stem Cell Res. Ther., 12, 111, https://doi.org/10.1186/S13287-02002091-X/.
  43. Filippenkov, I. B., Kolomin, T. A., Limborska, S. A., and Dergunova, L. V. (2018) Developmental stage-specific expression of genes for sphingomyelin synthase in rat brain, Cell Tissue. Res., 372, 33-40, https://doi.org/10.1007/s00441-017-2762-1.
  44. Filippenkov, I. B., Sudarkina, O. Y., Limborska, S. A., and Dergunova, L. V. (2015) Circular RNA of the human sphingomyelin synthase 1 gene: multiple splice variants, evolutionary conservatism and expression in different tissues, RNA Biol., 12, 1030-1042, https://doi.org/10.1080/15476286.2015.1076611.
  45. Jia, X., Sun, Y., Wang, T., Zhong, L., Deng, J., and Zhu, X. (2023) Mechanism of circular RNA-mediated regulation of L-DOPA to improve wet age-related macular degeneration, Gene, 861, 147247, https://doi.org/10.1016/J.GENE.2023.147247.
  46. Ma, X., Wang, H., Ye, G., Zheng, X., and Wang, Y. (2024) Hsa_circ_0018401 and MiR-127-5p expressions are diagnostic and prognostic markers for traumatic brain injury (TBI) in trauma patients, Neuroscience, 545, 59-68, https://doi.org/10.1016/J.NEUROSCIENCE.2024.03.010.
  47. Zhang, X., Connelly, J., Levitan, E. S., Sun, D., and Wang, J. Q. (2021) Calcium/calmodulin-dependent protein kinase II in cerebrovascular diseases, Transl. Stroke Res., 12, 513-529, https://doi.org/10.1007/S12975021-00901-9.
  48. McCullough, L. D., Tarabishy, S., Liu, L., Benashski, S., Xu, Y., Ribar, T., Means, A., and Li, J. (2013) Inhibition of calcium/calmodulin-dependent protein kinase kinase β and calcium/calmodulin-dependent protein kinase IV is detrimental in cerebral ischemia, Stroke, 44, 2559-2566, https://doi.org/10.1161/STROKEAHA.113.001030.
  49. Ayuso, M. I., Martínez-Alonso, E., Regidor, I., and Alcázar, A. (2016) Stress granule induction after brain ischemia is independent of eukaryotic translation initiation factor (EIF) 2α phosphorylation and is correlated with a decrease in EIF4B and EIF4E proteins, J. Biol. Chem., 291, 27252-27264, https://doi.org/10.1074/JBC.M116.738989.
  50. Hao, M. Q., Xie, L. J., Leng, W., and Xue, R. W. (2019) Trim47 is a critical regulator of cerebral ischemia-reperfusion injury through regulating apoptosis and inflammation, Biochem. Biophys. Res. Commun., 515, 651-657, https://doi.org/10.1016/J.BBRC.2019.05.065.
  51. Pisignano, G., Michael, D. C., Visal, T. H., Pirlog, R., Ladomery, M., and Calin, G. A. (2023) Going circular: history, present, and future of circRNAs in cancer, Oncogene, 42, 2783-2800, https://doi.org/10.1038/s41388023-02780-w.
  52. Liu, W., and Wang, X. (2019) Prediction of functional microRNA targets by integrative modeling of microRNA Binding and target expression data, Genome Biol., 20, 18, https://doi.org/10.1186/S13059-019-1629-Z.
  53. Lee, D., and Shin, C. (2012) MicroRNA-target interactions: new insights from genome-wide approaches, Ann. N. Y. Acad. Sci., 1271, 118, https://doi.org/10.1111/J.1749-6632.2012.06745.X.
  54. Selbach, M., Schwanhäusser, B., Thierfelder, N., Fang, Z., Khanin, R., and Rajewsky, N. (2008) Widespread changes in protein synthesis induced by microRNAs, Nature, 455, 58-63, https://doi.org/10.1038/NATURE07228.
  55. Friedman, R. C., Farh, K. K. H., Burge, C. B., and Bartel, D. P. (2009) Most mammalian mRNAs are conserved targets of microRNAs, Genome Res., 19, 92, https://doi.org/10.1101/GR.082701.108.
  56. Ma, Q., Li, G., Tao, Z., Wang, J., Wang, R., Liu, P., Luo, Y., and Zhao, H. (2019) Blood microRNA-93 as an indicator for diagnosis and prediction of functional recovery of acute stroke patients, J. Clin. Neurosci., 62, 121-127, https://doi.org/10.1016/j.jocn.2018.12.003.
  57. Icli, B., Wu, W., Ozdemir, D., Li, H., Cheng, H. S., Haemmig, S., Liu, X., Giatsidis, G., Avci, S. N., and Lee, N. (2019) MicroRNA-615-5p regulates angiogenesis and tissue repair by targeting Akt/ENOS (protein kinase B/endothelial nitric oxide synthase) signaling in endothelial cells, Arterioscler. Thromb. Vasc. Biol., 39, 1458-1474, https://doi.org/10.1161/ATVBAHA.119.312726.
  58. Theofilatos, K., Korfiati, A., Mavroudi, S., Cowperthwaite, M. C., and Shpak, M. (2019) Discovery of stroke-related blood biomarkers from gene expression network models, BMC Med. Genomics, 12, 118, https://doi.org/10.1186/S12920-019-0566-8.
  59. Zheng, T., Yang, J., Zhang, J., Yang, C., Fan, Z., Li, Q., Zhai, Y., Liu, H., and Yang, J. (2021) Downregulated microRNA-327 attenuates oxidative stress-mediated myocardial ischemia reperfusion injury through regulating the FGF10/Akt/Nrf2 signaling pathway, Front. Pharmacol., 12, 669146, https://doi.org/10.3389/FPHAR.2021.669146.
  60. Alsbrook, D. L., Di Napoli, M., Bhatia, K., Biller, J., Andalib, S., Hinduja, A., Rodrigues, R., Rodriguez, M., Sabbagh, S. Y., and Selim, M. (2023) Neuroinflammation in acute ischemic and hemorrhagic stroke, Curr. Neurol. Neurosci. Rep., 23, 407-431, https://doi.org/10.1007/S11910-023-01282-2.
  61. Gugliandolo, A., Silvestro, S., Sindona, C., Bramanti, P., and Mazzon, E. (2021) MiRNA: involvement of the MAPK pathway in ischemic stroke. A promising therapeutic target, Medicina, 57, 1053, https://doi.org/10.3390/MEDICINA57101053.
  62. Ye, J., Shan, Y., Zhou, X., Tian, T., and Gao, W. (2023) Identification of novel circular RNA targets in key penumbra region of rats after cerebral ischemia-reperfusion injury, J. Mol. Neurosci., 73, 751, https://doi.org/10.1007/S12031-023-02153-8.
  63. Nikbakhtzadeh, M., Bordbar, S., Seyedi, S., Ranjbaran, M., Ashabi, G., and Kheradmand, A. (2024) Significance of neurotransmitters in cerebral ischemia: understanding the role of serotonin, dopamine, glutamate, and GABA in stroke recovery and treatment, Cent. Nerv. Syst. Agents Med. Chem., 24, https://doi.org/10.2174/0118715249302594240801171612.
  64. Shen, Z., Xiang, M., Chen, C., Ding, F., Wang, Y., Shang, C., Xin, L., Zhang, Y., and Cui, X. (2022) Glutamate excitotoxicity: potential therapeutic target for ischemic stroke, Biomed. Pharmacother., 151, 113125, https://doi.org/10.1016/J.BIOPHA.2022.113125.
  65. Lai, T. W., Zhang, S., and Wang, Y. T. (2014) Excitotoxicity and stroke: identifying novel targets for neuroprotection, Prog. Neurobiol., 115, 157-188, https://doi.org/10.1016/J.PNEUROBIO.2013.11.006.
  66. Wang, F., Xie, X., Xing, X., and Sun, X. (2022) Excitatory synaptic transmission in ischemic stroke: a new outlet for classical neuroprotective strategies, Int. J. Mol. Sci., 23, 9381, https://doi.org/10.3390/IJMS23169381.
  67. Lv, W., Zhang, Q., Li, Y., Liu, D., Wu, X., He, X., Han, Y., Fei, X., Zhang, L., and Fei, Z. (2024) Homer1 ameliorates ischemic stroke by inhibiting necroptosis-induced neuronal damage and neuroinflammation, Inflamm. Res., 73, 131-144, https://doi.org/10.1007/S00011-023-01824-X.
  68. Gray, M., Nash, K. R., and Yao, Y. (2024) Adenylyl cyclase 2 expression and function in neurological diseases, CNS Neurosci. Ther., 30, e14880, https://doi.org/10.1111/CNS.14880.
  69. Dohovics, R., Janáky, R., Varga, V., Hermann, A., Saransaari, P., and Oja, S. S. (2003) Regulation of glutamatergic neurotransmission in the striatum by presynaptic adenylyl cyclase-dependent processes, Neurochem. Int., 42, 1-7, https://doi.org/10.1016/S0197-0186(02)00066-9.
  70. Allegra, A., Cicero, N., Tonacci, A., Musolino, C., and Gangemi, S. (2022) Circular RNA as a novel biomarker for diagnosis and prognosis and potential therapeutic targets in multiple myeloma, Cancers (Basel), 14, 1700, https://doi.org/10.3390/CANCERS14071700.
  71. Chen, L., and Shan, G. (2021) CircRNA in cancer: fundamental mechanism and clinical potential, Cancer Lett., 505, 49-57, https://doi.org/10.1016/J.CANLET.2021.02.004.
  72. Xu, Z., Yan, Y., Zeng, S., Dai, S., Chen, X., Wei, J., and Gong, Z. (2017) Circular RNAs: clinical relevance in cancer, Oncotarget, 9, 1444, https://doi.org/10.18632/ONCOTARGET.22846.
  73. Rybina, O. Y., and Pasyukova, E. G. (2004) Aging biomarkers in assessing the efficacy of geroprotective therapy: problems and prospects, Nanobiotechnol. Rep., 19, 318-328, https://doi.org/10.1134/S2635167624601104.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».