Endocytosis features of GD2-specific antibodies of different formats in tumor cells
- Authors: Makarova A.O.1,2, Titov M.M.1,2, Kalinovsky D.V.1, Kholodenko I.V.3, Kibardin A.V.4, Larin S.S.4, Svirshchevskaya E.V.1, Deyev S.M.1,5,6, Kholodenko R.V.1,7
-
Affiliations:
- Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences
- Lomonosov Moscow State University
- Orekhovich Institute of Biomedical Chemistry
- Rogachev Federal Research Center of Pediatric Hematology, Oncology and Immunology
- Sechenov First Moscow State Medical University
- National Research Center “Kurchatov Institute”
- LLC “Real Target”
- Issue: Vol 90, No 3 (2025)
- Pages: 471-484
- Section: Articles
- URL: https://journals.rcsi.science/0320-9725/article/view/294708
- DOI: https://doi.org/10.31857/S0320972525030101
- EDN: https://elibrary.ru/BJBRKI
- ID: 294708
Cite item
Abstract
Antibody-drug conjugates (ADCs) have emerged as one of the most promising classes of monoclonal antibody-based (mAb) targeted cancer therapies. To date, 15 drugs of this class have been approved for clinical use, while many more are undergoing more than 100 clinical trials. Similarly to unconjugated antibodies, ADCs target various tumor markers including carbohydrate antigens in glycosphingolipids. Among them, ganglioside GD2 is considered the most promising marker, and recent studies have shown significant potential for the use of anti-GD2 ADCs. Receptor internalization after antigen-antibody complex formation and its transport to cell lysosomes are important characteristics of the marker, on which the effectiveness of ADCs largely depends. The ability of GD2-specific antibodies to internalize and the mechanisms of endocytosis of their complexes with GD2 have been poorly studied. The study investigated the mechanisms of internalization of ganglioside GD2 complexes and the most relevant GD2-specific antibodies of various formats, including full-length antibodies, minibodies, and scFv fragments. It was demonstrated that all the antibody variants used are capable of internalizing into GD2-positive tumor cells and entering their lysosomal compartments. Full-length antibodies and minibodies demonstrate high efficiency of endocytosis in GD2-positive cells, which occurs through several pathways, primarily macropinocytosis and caveolae-mediated endocytosis. The obtained data may be of interest for development of more effective targeted drugs for the treatment of GD2-positive tumors.
About the authors
A. O. Makarova
Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences; Lomonosov Moscow State University
Email: khol@mail.ru
Faculty of Biology
Russian Federation, 1117997 Moscow; 119991 MoscowM. M. Titov
Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences; Lomonosov Moscow State University
Email: khol@mail.ru
Faculty of Biology
Russian Federation, 1117997 Moscow; 119991 MoscowD. V. Kalinovsky
Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences
Email: khol@mail.ru
Russian Federation, 1117997 Moscow
I. V. Kholodenko
Orekhovich Institute of Biomedical Chemistry
Email: khol@mail.ru
Russian Federation, 119121 Moscow
A. V. Kibardin
Rogachev Federal Research Center of Pediatric Hematology, Oncology and Immunology
Email: khol@mail.ru
Russian Federation, 117997 Moscow
S. S. Larin
Rogachev Federal Research Center of Pediatric Hematology, Oncology and Immunology
Email: khol@mail.ru
Russian Federation, 117997 Moscow
E. V. Svirshchevskaya
Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences
Email: khol@mail.ru
Russian Federation, 1117997 Moscow
S. M. Deyev
Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences; Sechenov First Moscow State Medical University; National Research Center “Kurchatov Institute”
Email: khol@mail.ru
Russian Federation, 1117997 Moscow; 119991 Moscow; 123098 Moscow
R. V. Kholodenko
Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences; LLC “Real Target”
Author for correspondence.
Email: khol@mail.ru
Russian Federation, 1117997 Moscow; 108841 Moscow
References
- Crescioli, S., Kaplon, H., Wang, L., Visweswaraiah, J., and Kapoor, V. (2025) Antibodies to watch in 2025, mAbs, 17, 2443538, doi: 10.1080/19420862.2024.2443538.
- Carter, P. J., and Rajpal, A. (2022) Designing antibodies as therapeutics, Cell, 185, 2789-2805, doi: 10.1016/j.cell.2022.05.029.
- Dumontet, C., Reichert, J. M., Senter, P. D., Lambert, J. M., and Beck, A. (2023) Antibody-drug conjugates come of age in oncology, Nat. Rev. Drug Discov., 22, 641-661, doi: 10.1038/s41573-023-00709-2.
- Mihaylova, R., Momekova, D., Elincheva, V., and Momekov, G. (2024) Immunoconjugates as an efficient platform for drug delivery: a resurgence of natural products in targeted antitumor therapy, Pharmaceuticals, 17, 1701, doi: 10.3390/ph17121701.
- Li, J. H., Liu, L., and Zhao, X. H. (2024) Precision targeting in oncology: the future of conjugated drugs, Biomed. Pharmacother., 177, 117106, doi: 10.1016/j.biopha.2024.117106.
- Esapa, B., Jiang, J., Cheung, A., Chenoweth, A., Thurston, D. E., and Karagiannis, S. N. (2023) Target antigen attributes and their contributions to clinically approved antibody-drug conjugates (ADCs) in haematopoietic and solid cancers, Cancers, 15, 1845, doi: 10.3390/cancers15061845.
- Corrigan, P. A., Cicci, T. A., Auten, J. J., and Lowe, D. K. (2014) Ado-trastuzumab emtansine: a HER2-positive targeted antibody-drug conjugate, Ann. Pharmacother., 48, 1484-1493, doi: 10.1177/1060028014545354.
- Bardia, A., Mayer, I. A., Vahdat, L. T., Tolaney, S. M., Isakoff, S. J., Diamond, J. R., O'Shaughnessy, J., Moroose, R. L., Santin, A. D., Abramson, V. G., Shah, N. C., Rugo, H. S., Goldenberg, D. M., Sweidan, A. M., Iannone, R., Washkowitz, S., Sharkey, R. M., Wegener, W. A., and Kalinsky, K. (2019) Sacituzumab Govitecan-hziy in refractory metastatic triple-negative breast cancer, N. Engl. J. Med., 380, 741-751, doi: 10.1056/NEJMoa1814213.
- Rosenberg, J. E., O'Donnell, P. H., Balar, A. V., McGregor, B. A., Heath, E. I., Yu, E. Y., Galsky, M. D., Hahn, N. M., Gartner, E. M., Pinelli, J. M., Liang, S. Y., Melhem-Bertrandt, A., and Petrylak, D. P. (2019) Pivotal trial of Enfortumab Vedotin in urothelial carcinoma after platinum and anti-programmed death 1/programmed death ligand 1 therapy, J. Clin. Onco., 37, 2592-2600, doi: 10.1200/JCO.19.01140.
- Gilbert, L., Oaknin, A., Matulonis, U. A., Mantia-Smaldone, G. M., Lim, P. C., Castro, C. M., Provencher, D., Memarzadeh, S., Method, M., Wang, J., Moore, K. N., and O'Malley, D. M. (2023) Safety and efficacy of mirvetuximab soravtansine, a folate receptor alpha (FRα)-targeting antibody-drug conjugate (ADC), in combination with bevacizumab in patients with platinum-resistant ovarian cancer, Gynecol. Oncol., 170, 241-247, doi: 10.1016/j.ygyno.2023.01.020.
- Bogani, G., Coleman, R. L., Vergote, I., Raspagliesi, F., Lorusso, D., and Monk, B. J. (2023) Tisotumab vedotin in recurrent or metastatic cervical cancer, Curr. Probl. Cancer, 47, 100952, doi: 10.1016/j.currproblcancer.2023.100952.
- Yu, J., Fang, T., Yun, C., Liu, X., and Cai, X. (2022) Antibody-drug conjugates targeting the human epidermal growth factor receptor family in cancers, Front. Mol. Biosci., 9, 847835, doi: 10.3389/fmolb.2022.847835.
- Kalinovsky, D. V., Kibardin, A. V., Kholodenko, I. V., Svirshchevskaya, E. V., Doronin, I. I., Konovalova, M. V., Grechikhina, M. V., Rozov, F. N., Larin, S. S., Deyev, S. M., and Kholodenko, R. V. (2022) Therapeutic efficacy of antibody-drug conjugates targeting GD2-positive tumors, JITC, 10, e004646, doi: 10.1136/jitc-2022-004646.
- Philippova, J., Shevchenko, J., and Sennikov, S. (2024) GD2-targeting therapy: a comparative analysis of approaches and promising directions, Front. Immunol., 15, 1371345, doi: 10.3389/fimmu.2024.1371345.
- Hammood, M., Craig, A. W., and Leyton, J. V. (2021) Impact of endocytosis mechanisms for the receptors targeted by the currently approved antibody-drug conjugates (ADCs)-A necessity for future ADC research and development, Pharmaceuticals, 14, 674, doi: 10.3390/ph14070674.
- Aggarwal, D., Yang, J., Salam, M. A., Sengupta, S., Al-Amin, M. Y., Mustafa, S., Khan, M. A., Huang, X., and Pawar, J. S. (2023) Antibody-drug conjugates: the paradigm shifts in the targeted cancer therapy, Front. Immunol., 14, 1203073, doi: 10.3389/fimmu.2023.1203073.
- He, J., Zeng, X., Wang, C., Wang, E., and Li, Y. (2024) Antibody-drug conjugates in cancer therapy: mechanisms and clinical studies, MedComm, 5, e671, doi: 10.1002/mco2.671.
- Tibbetts, R., Yeo, K. K., Muthugounder, S., Lee, M. H., Jung, C., Porras-Corredor, T., Sheard, M. A, and Asgharzadeh, S. (2022) Anti-disialoganglioside antibody internalization by neuroblastoma cells as a mechanism of immunotherapy resistance, CII, 71, 153-164, doi: 10.1007/s00262-021-02963-y.
- Wargalla, U. C., and Reisfeld, R. A. (1989) Rate of internalization of an immunotoxin correlates with cytotoxic activity against human tumor cells, Proc. Natl. Acad. Sci. USA, 86, 5146-5150, doi: 10.1073/pnas.86.13.5146.
- Buhtoiarov, I. N., Neal, Z. C., Gan, J., Buhtoiarova, T. N., Patankar, M. S., Gubbels, J. A., Hank, J. A., Yamane, B., Rakhmilevich, A. L., Reisfeld, R. A., Gillies, S. D., and Sondel, P. M. (2011) Differential internalization of hu14.18-IL2 immunocytokine by NK and tumor cell: impact on conjugation, cytotoxicity, and targeting, J. Leukoc. Biol., 89, 625-638, doi: 10.1189/jlb.0710422.
- Kalinovsky, D. V., Kholodenko, I. V., Kibardin, A. V., Doronin, I. I., Svirshchevskaya, E. V., Ryazantsev, D. Y., Konovalova, M. V., Rozov, F. N., Larin, S. S., Deyev, S. M., and Kholodenko, R. V. (2023) Minibody-based and scFv-based antibody fragment-drug Conjugates selectively eliminate GD2-positive tumor cells, Int. J. Mol. Sci., 24, 1239, doi: 10.3390/ijms24021239.
- Kholodenko, I.V., Kalinovsky, D.V., Svirshchevskaya, E.V., Doronin, I. I., Konovalova, M. V., Kibardin, A. V., Shamanskaya, T. V., Larin, S. S., Deyev, S. M., and Kholodenko, R. V. (2019) Multimerization through pegylation improves pharmacokinetic properties of scFv fragments of GD2-specific antibodies, Molecules, 24, 3835, doi: 10.3390/molecules24213835.
- Haraguchi, M., Yamashiro, S., Yamamoto, A., Furukawa, K., Takamiya, K., Lloyd, K. O., Shiku, H., and Furukawa, K. (1994) Isolation of GD3 synthase gene by expression cloning of GM3 alpha-2,8-sialyltransferase cDNA using anti-GD2 monoclonal antibody, Proc. Natl. Acad. Sci. USA, 91, 10455-10459, doi: 10.1073/pnas.91.22.10455.
- Nath, N., Godat, B., Zimprich, C., Dwight, S. J., Corona, C., McDougall, M., and Urh, M. (2016) Homogeneous plate based antibody internalization assay using pH sensor fluorescent dye, J. Immunol. Methods, 431, 11-21, doi: 10.1016/j.jim.2016.02.001.
- Kalinovsky, D. V., Kholodenko, I. V., Svirshchevskaya, E. V., Kibardin, A. V., Ryazantsev, D. Y., Rozov, F. N., Larin, S. S., Deyev, S. M., and Kholodenko, R. V. (2023) Targeting GD2-positive tumor cells by pegylated scFv fragment-drug conjugates carrying maytansinoids DM1 and DM4, Curr. Issues Mol. Biol., 45, 8112-8125, doi: 10.3390/cimb45100512.
- Rennick, J. J., Johnston, A. P. R., and Parton, R. G. (2021) Key principles and methods for studying the endocytosis of biological and nanoparticle therapeutics, Nat. Nanotechnol., 16, 266-276, doi: 10.1038/s41565-021-00858-8.
- Sandvig, K., Kavaliauskiene, S., and Skotland, T. (2018) Clathrin-independent endocytosis: an increasing degree of complexity, Histochem. Cell Biol., 150, 107-118, doi: 10.1007/s00418-018-1678-5.
Supplementary files
