Mavacamten inhibits the effect of the N-terminal fragment of cardiac myosin-binding protein-C with the L352P mutation on actin-myosin interaction at low calcium concentrations

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Mutations in sarcomeric proteins associated with hypertrophic cardiomyopathy (HCM) lead to disruption of actin-myosin interaction, its calcium regulation, and myocardial hypercontractility. About half of such mutations are found in the MYBPC3 gene encoding cardiac myosin binding protein C (cMyBP-C). A new approach to normalize cardiac contractile function in HCM is the use of inhibitors of β-cardiac myosin function, one of which is mavacamten. We studied the effect of mavacamten on calcium regulation of actin-myosin interaction using isolated cardiac contractile proteins in an in vitro motility assay. The L352P mutation did not affect the maximum sliding velocity of regulated thin filaments on myosin in an in vitro motility assay and the calcium sensitivity of the velocity and led to underinhibition of actin-myosin interaction at low calcium concentrations. Mavacamten decreased the maximum sliding velocity of thin filaments with WT and L352P C0-C2 fragments, and in the presence of L352P C0-C2 fragment stopped their movement at low calcium concentrations. Slowing down the kinetics of cross-bridge and inhibition of actin-myosin interaction at low calcium concentrations in the presence of mavacamten may reduce hypercontractility in HCM and the degree of myocardial hypertrophy.

Sobre autores

A. Kochurova

Institute of Immunology and Physiology of the Russian Academy of Sciences

Email: dvshchepkin@gmail.com
Rússia, Yekaterinburg, 620049

E. Beldiia

Institute of Immunology and Physiology of the Russian Academy of Sciences

Email: dvshchepkin@gmail.com
Rússia, Yekaterinburg, 620049

J. Antonets

Institute of Immunology and Physiology of the Russian Academy of Sciences

Email: dvshchepkin@gmail.com
Rússia, Yekaterinburg, 620049

V. Nefedova

Research Center of Biotechnology, Russian Academy of Sciences

Email: dvshchepkin@gmail.com
Rússia, 119071 Moscow

N. Ryabkova

Lomonosov Moscow State University; HyTest Ltd.

Email: dvshchepkin@gmail.com

Department of Biochemistry, Faculty of Biology

Rússia, Moscow 119234; 20520 Turku, Finland

I. Katrukha

Lomonosov Moscow State University; HyTest Ltd.

Email: dvshchepkin@gmail.com

Department of Biochemistry, Faculty of Biology

Rússia, Moscow 119234; 20520 Turku, Finland

S. Bershitsky

Institute of Immunology and Physiology of the Russian Academy of Sciences

Email: dvshchepkin@gmail.com
Rússia, Yekaterinburg, 620049

A. Matyushenko

Research Center of Biotechnology, Russian Academy of Sciences

Email: dvshchepkin@gmail.com
Rússia, 119071 Moscow

G. Kopylova

Institute of Immunology and Physiology of the Russian Academy of Sciences

Email: dvshchepkin@gmail.com
Rússia, Yekaterinburg, 620049

D. Shchepkin

Institute of Immunology and Physiology of the Russian Academy of Sciences

Autor responsável pela correspondência
Email: dvshchepkin@gmail.com
Rússia, Yekaterinburg, 620049

Bibliografia

  1. Teerlink, J. R., Felker, G. M., McMurray, J. J. V., Solomon, S. D., Adams, K. F., Cleland, J. G. F., Ezekowitz, J. A., Goudev, A., Macdonald, P., Metra, M., Mitrovic, V., Ponikowski, P., Serpytis, P., Spinar, J., Tomcsányi, J., Vandekerckhove, H. J., Voors, A. A., Monsalvo, M. L., Johnston, J., Malik, F. I., and Honarpour, N. (2016) Chronic Oral Study of Myosin Activation to Increase Contractility in Heart Failure (COSMIC-HF): a phase 2, pharmacokinetic, randomised, placebo-controlled trial, Lancet, 388, 2895-2903, doi: 10.1016/S0140-6736(16)32049-9.
  2. Malik, F. I., Hartman, J. J., Elias, K. A., Morgan, B. P., Rodriguez, H., Brejc, K., Anderson, R. L., Sueoka, S. H., Lee, K. H., Finer, J. T., Sakowicz, R., Baliga, R., Cox, D. R., Garard, M., Godinez, G., Kawas, R., Kraynack, E., Lenzi, D., Lu, P. P., Muci, A., Niu, C., Qian, X., Pierce, D. W., Pokrovskii, M., Suehiro, I., Sylvester, S., Tochimoto, T., Valdez, C., Wang, W., Katori, T., Kass, D. A., Shen, Y. T., Vatner, S. F., and Morgans, D. J. (2011) Cardiac myosin activation: a potential therapeutic approach for systolic heart failure, Science, 331, 1439-1443, doi: 10.1126/science.1200113.
  3. Lehman, S. J., Crocini, C., and Leinwand, L. A. (2022) Targeting the sarcomere in inherited cardiomyopathies, Nat. Rev. Cardiol., 19, 353-363, doi: 10.1038/s41569-022-00682-0.
  4. Spudich, J. A. (2024) From amoeboid myosin to unique targeted medicines for a genetic cardiac disease, Front. Physiol., 15, 1496569, doi: 10.3389/fphys.2024.1496569.
  5. Yotti, R., Seidman, C. E., and Seidman, J. G. (2019) Advances in the genetic basis and pathogenesis of sarcomere cardiomyopathies, Annu. Rev. Genomics Hum. Genet., 20, 129-153, doi: 10.1146/annurev-genom-083118-015306.
  6. Alfares, A. A., Kelly, M. A., McDermott, G., Funke, B. H., Lebo, M. S., Baxter, S. B., Shen, J., McLaughlin, H. M., Clark, E. H., Babb, L. J., Cox, S. W., DePalma, S. R., Ho, C. Y., Seidman, J. G., Seidman, C. E., and Rehm, H. L. (2015) Results of clinical genetic testing of 2,912 probands with hypertrophic cardiomyopathy: expanded panels offer limited additional sensitivity, Genet. Med., 17, 880-888, doi: 10.1038/gim.2014.205.
  7. Liu, W., Liu, W., Hu, D., Zhu, T., Ma, Z., Yang, J., Xie, W., Li, C., Li, L., Yang, J., Li, T., Bian, H., and Tong, Q. (2013) Mutation spectrum in a large cohort of unrelated Chinese patients with hypertrophic cardiomyopathy, Am. J. Cardiol., 112, 585-589, doi: 10.1016/j.amjcard.2013.04.021.
  8. Gómez, J., Reguero, J. R. G., and Coto, E. (2016) The ups and downs of genetic diagnosis of hypertrophic cardiomyopathy, Rev. Esp. Cardiol. (Engl Ed), 69, 61-68, doi: 10.1016/j.rec.2015.10.001.
  9. Spudich, J. A. (2014) Hypertrophic and dilated cardiomyopathy: four decades of basic research on muscle lead to potential therapeutic approaches to these devastating genetic diseases, Biophys. J., 106, 1236-1249, doi: 10.1016/j.bpj.2014.02.011.
  10. Li, J., Gresham, K. S., Mamidi, R., Doh, C. Y., Wan, X., Deschenes, I., and Stelzer, J. E. (2018) Sarcomere-based genetic enhancement of systolic cardiac function in a murine model of dilated cardiomyopathy, Int. J. Cardiol., 273, 168-176, doi: 10.1016/j.ijcard.2018.09.073.
  11. Doh, C. Y., Li, J., Mamidi, R., and Stelzer, J. E. (2019) The HCM-causing Y235S cMyBPC mutation accelerates contractile function by altering C1 domain structure, Biochim. Biophys. Acta Mol. Basis Dis., 1865, 661-677, doi: 10.1016/j.bbadis.2019.01.007.
  12. Witjas-Paalberends, E. R., Ferrara, C., Scellini, B., Piroddi, N., Montag, J., Tesi, C., Stienen, G. J., Michels, M., Ho, C. Y., Kraft, T., Poggesi, C., and van der Velden, J. (2014) Faster cross-bridge detachment and increased tension cost in human hypertrophic cardiomyopathy with the R403Q MYH7 mutation, J. Physiol., 592, 3257-3272, doi: 10.1113/jphysiol.2014.274571.
  13. Ren, X., Hensley, N., Brady, M. B., and Gao, W. D. (2018) The genetic and molecular bases for hypertrophic cardiomyopathy: the role for calcium sensitization, J. Cardiothorac. Vasc. Anesth., 32, 478-487, doi: 10.1053/j.jvca.2017.05.035.
  14. Spudich, J. A. (2019) Three perspectives on the molecular basis of hypercontractility caused by hypertrophic cardiomyopathy mutations, Pflugers Arch., 471, 701-717, doi: 10.1007/s00424-019-02259-2.
  15. Nag, S., and Trivedi, D. V. (2021) To lie or not to lie: super-relaxing with myosins, eLife, 10, e63703, doi: 10.7554/eLife.63703.
  16. Davis, J., Davis, L. C., Correll, R. N., Makarewich, C. A., Schwanekamp, J. A., Moussavi-Harami, F., Wang, D., York, A. J., Wu, H., Houser, S. R., Seidman, C. E., Seidman, J. G., Regnier, M., Metzger, J. M., Wu, J. C., and Molkentin, J. D. (2016) A tension-based model distinguishes hypertrophic versus dilated cardiomyopathy, Cell, 165, 1147-1159, doi: 10.1016/j.cell.2016.04.002.
  17. Powers, J. D., Kooiker, K. B., Mason, A. B., Teitgen, A. E., Flint, G. V., Tardiff, J. C., Schwartz, S. D., McCulloch, A. D., Regnier, M., Davis, J., and Moussavi-Harami, F. (2020) Modulating the tension-time integral of the cardiac twitch prevents dilated cardiomyopathy in murine hearts, JCI Insight, 5, e142446, doi: 10.1172/jci.insight.142446.
  18. Green, E. M., Wakimoto, H., Anderson, R. L., Evanchik, M. J., Gorham, J. M., Harrison, B. C., Henze, M., Kawas, R., Oslob, J. D., Rodriguez, H. M., Song, Y., Wan, W., Leinwand, L. A., Spudich, J. A., McDowell, R. S., Seidman, J. G., and Seidman, C. E. (2016) A small-molecule inhibitor of sarcomere contractility suppresses hypertrophic cardiomyopathy in mice, Science, 351, 617-621, doi: 10.1126/science.aad3456.
  19. Anderson, R. L., Trivedi, D. V., Sarkar, S. S., Henze, M., Ma, W., Gong, H., Rogers, C. S., Gorham, J. M., Wong, F. L., Morck, M. M., Seidman, J. G., Ruppel, K. M., Irving, T. C., Cooke, R., Green, E. M., and Spudich, J. A. (2018) Deciphering the super relaxed state of human β-cardiac myosin and the mode of action of mavacamten from myosin molecules to muscle fibers, Proc. Natl. Acad. Sci. USA, 115, E8143-E8152, doi: 10.1073/pnas.1809540115.
  20. Kawas, R. F., Anderson, R. L., Ingle, S. R. B., Song, Y., Sran, A. S., and Rodriguez, H. M. (2017) A small-molecule modulator of cardiac myosin acts on multiple stages of the myosin chemomechanical cycle, J. Biol. Chem., 292, 16571-16577, doi: 10.1074/jbc.M117.776815.
  21. Rohde, J. A., Roopnarine, O., Thomas, D. D., and Muretta, J. M. (2018) Mavacamten stabilizes an autoinhibited state of two-headed cardiac myosin, Proc. Natl. Acad. Sci. USA, 115, E7486-E7494, doi: 10.1073/pnas.1720342115.
  22. Auguin, D., Robert-Paganin, J., Réty, S., Kikuti, C., David, A., Theumer, G., Schmidt, A. W., Knölker, H. J., and Houdusse, A. (2024) Omecamtiv mecarbil and Mavacamten target the same myosin pocket despite opposite effects in heart contraction, Nat Commun., 15, 4885, doi: 10.1038/s41467-024-47587-9.
  23. Mamidi, R., Li, J., Doh, C. Y., Verma, S., and Stelzer, J. E. (2018) Impact of the myosin modulator Mavacamten on force generation and cross-bridge behavior in a murine model of hypercontractility, J. Am. Heart Assoc., 7, e009627, doi: 10.1161/JAHA.118.009627.
  24. Awinda, P. O., Bishaw, Y., Watanabe, M., Guglin, M. A., Campbell, K. S., and Tanner, B. C. W. (2020) Effects of mavacamten on Ca2+ sensitivity of contraction as sarcomere length varied in human myocardium, Br. J. Pharmacol., 177, 5609-5621, doi: 10.1111/bph.15271.
  25. Scellini, B., Piroddi, N., Dente, M., Vitale, G., Pioner, J. M., Coppini, R., Ferrantini, C., Poggesi, C., and Tesi, C. (2021) Mavacamten has a differential impact on force generation in myofibrils from rabbit psoas and human cardiac muscle, J. Gen. Physiol., 153, e202012789, doi: 10.1085/jgp.202012789.
  26. Sparrow, A. J., Watkins, H., Daniels, M. J., Redwood, C., and Robinson, P. (2020) Mavacamten rescues increased myofilament calcium sensitivity and dysregulation of Ca2+ flux caused by thin filament hypertrophic cardiomyopathy mutations, Am. J. Physiol. Heart Circ. Physiol., 318, H715-H722, doi: 10.1152/ajpheart.00023.2020.
  27. Halder, S. S., Rynkiewicz, M. J., Kim, L., Barry, M., Zied, A. G. A., Sewanan, L. R., Kirk, J. A., Moore, J. R., Lehman, W. J., and Campbel, S. G. (2024) Distinct mechanisms drive divergent phenotypes in hypertrophic and dilated cardiomyopathy associated TPM1 variants, J. Clin. Invest., 134, e179135, doi: 10.1172/JCI179135.
  28. Sewanan, L. R., Park, J., Rynkiewicz, M. J., Racca, A. W., Papoutsidakis, N., Schwan, J., Jacoby, D. L., Moore, J. R., Lehman, W., Qyang, Y., and Campbell, S. G. (2021) Loss of crossbridge inhibition drives pathological cardiac hypertrophy in patients harboring the TPM1 E192K mutation, J. Gen. Physiol., 153, e202012640, doi: 10.1085/jgp.202012640.
  29. Saberi, S., Cardim, N., Yamani, M., Schulz-Menger, J., Li, W., Florea, V., Sehnert, A. J., Kwong, R. Y., Jerosch-Herold, M., Masri, A., Owens, A., Lakdawala, N. K., Kramer, C. M., Sherrid, M., Seidler, T., Wang, A., Sedaghat-Hamedani, F., Meder, B., Havakuk, O., and Jacoby, D. (2021) Mavacamten favorably impacts cardiac structure in obstructive hypertrophic cardiomyopathy: EXPLORER-HCM cardiac magnetic resonance substudy analysis, Circulation, 143, 606-608, doi: 10.1161/CIRCULATIONAHA.120.052359.
  30. Barefield, D., and Sadayappan, S. (2010) Phosphorylation and function of cardiac myosin binding protein-C in health and disease, J. Mol. Cell Cardiol., 48, 866-875, doi: 10.1016/j.yjmcc.2009.11.014.
  31. Previs, M. J., Mun, J. Y., Michalek, A. J., Previs, S. B., Gulick, J., Robbins, J., Warshaw, D. M., and Craig, R. (2016) Phosphorylation and calcium antagonistically tune myosin-binding protein C’s structure and function, Proc. Natl. Acad. Sci. USA, 113, 3239-3244, doi: 10.1073/pnas.1522236113.
  32. Kumar, M., Haghighi, K., Kranias, E. G., and Sadayappan, S. (2020) Phosphorylation of cardiac myosin-binding protein-C contributes to calcium homeostasis, J. Biol. Chem., 295, 11275-11291, doi: 10.1074/jbc.RA120.013296.
  33. Wijnker, P. J. M., Friedrich, F. W., Dutsch, A., Reischmann, S., Eder, A., Mannhardt, I., Mearini, G., Eschenhagen, T., van der Velden, J., and Carrier, L. (2016) Comparison of the effects of a truncating and a missense MYBPC3 mutation on contractile parameters of engineered heart tissue, J. Mol. Cell Cardiol., 97, 82-92, doi: 10.1016/j.yjmcc.2016.03.003.
  34. Kuster, D. W. D., Lynch, T. L., Barefield, D. Y., Sivaguru, M., Kuffel, G., Zilliox, M. J., Lee, K. H., Craig, R., Namakkal-Soorappan, R., and Sadayappan, S. (2019) Altered C10 domain in cardiac myosin binding protein-C results in hypertrophic cardiomyopathy, Cardiovasc. Res., 115, 1986-1997, doi: 10.1093/cvr/cvz111.
  35. Glazier, A. A., Thompson, A., Day, S. M. (2019) Allelic imbalance and haploinsufficiency in MYBPC3-linked hypertrophic cardiomyopathy, Pflugers Arch., 471, 781-793, doi: 10.1007/s00424-018-2226-9.
  36. Kinnear, C., Said, A., Meng, G., Zhao, Y., Wang, E. Y., Rafatian, N., Parmar, N., Wei, W., Billia, F., Simmons, C. A, Radisic, M., Ellis, J., and Mital, S. (2024) Myosin inhibitor reverses hypertrophic cardiomyopathy in genotypically diverse pediatric iPSC-cardiomyocytes to mirror variant correction, Cell Rep. Med., 5, 101520, doi: 10.1016/j.xcrm.2024.101520.
  37. Desai, D., Song, T., Singh, R. R., Baby, A., McNamara, J., Green, L., Nabavizadeh, P., Ericksen, M., Bazrafshan, S., Natesan, S., and Sadayappan, S. (2024) MYBPC3 D389V variant induces hypercontractility in cardiac organoids, bioRxiv., 2024.05.29.596463, doi: 10.1101/2024.05.29.596463.
  38. Sen-Martín, L., Fernández-Trasancos, Á., López-Unzu, M. Á., Pathak, D., Ferrarini, A., Labrador-Cantarero, V., Sánchez-Ortiz, D., Pricolo, M. R., Vicente, V., Velázquez-Carreras, D., Sánchez-García, L., Nicolás-Ávila, J. Á, Sánchez-Díaz, M., Schlossarek, S., Cussó, L, Desco, M., Villalba-Orero, M., Guzmán-Martínez, G., Calvo, E., Barriales-Villa, R., Vázquez, J., Sánchez-Cabo, F., Hidalgo, A., Carrier, L., Spudich, J. A., Ruppel, K. M., and Alegre-Cebollada, J. (2024) Broad therapeutic benefit of myosin inhibition in hypertrophic cardiomyopathy, bioRxiv, doi: 10.1101/2024.03.22.584986.
  39. Kochurova, A. M., Beldiia, E. A., Nefedova, V. V., Ryabkova, N. S., Yampolskaya, D. S., Matyushenko, A. M., Bershitsky, S. Y., Kopylova, G. V., and Shchepkin, D. V. (2024) N-terminal fragment of cardiac myosin binding protein C modulates cooperative mechanisms of thin filament activation in atria and ventricles, Biochemistry (Moscow), 89, 116-129, doi: 10.1134/S0006297924010073.
  40. Margossian, S. S., and Lowey, S. (1982) Preparation of myosin and its subfragments from rabbit skeletal muscle, Methods Enzymol., 85 Pt B, 55-71, doi: 10.1016/0076-6879(82)85009-x.
  41. Bershitsky, S. Y., Logvinova, D. S., Shchepkin, D. V., Kopylova, G. V., and Matyushenko, A. M. (2019) Myopathic mutations in the β-chain of tropomyosin differently affect the structural and functional properties of ββ- and αβ-dimers, FASEB J., 33, 1963-1971, doi: 10.1096/fj.201800755R.
  42. Pardee, J. D., and Aspudich, J. (1982) Methods in Enzymology, Elsevier, pp. 164-181, doi: 10.1016/0076-6879(82)85020-9.
  43. Mashanov, G. I., and Molloy, J. E. (2007) Automatic detection of single fluorophores in live cells, Biophys. J., 92, 2199-2211, doi: 10.1529/biophysj.106.081117.
  44. Razumova, M. V., Shaffer, J. F., Tu, A.-Y., Flint, G. V., Regnier, M., and Harris, S. P. (2006) Effects of the N-terminal domains of myosin binding protein-C in an in vitro motility assay: Evidence for long-lived cross-bridges, J. Biol. Chem., 281, 35846-35854, doi: 10.1074/jbc.M606949200.
  45. Razumova, M. V., Bezold, K. L., Tu, A.-Y., Regnier, M., and Harris, S. P. (2008) Contribution of the myosin binding protein C motif to functional effects in permeabilized rat trabeculae, J. Gen. Physiol., 132, 575-585, doi: 10.1085/jgp.200810013.
  46. Shchepkin, D. V., Kopylova, G. V., Nikitina, L. V., Katsnelson, L. B., Bershitsky, S. Y. (2010) Effects of cardiac myosin binding protein-C on the regulation of interaction of cardiac myosin with thin filament in an in vitro motility assay, Biochem. Biophys. Res. Commun., 401, 159-163, doi: 10.1016/j.bbrc.2010.09.040.
  47. Saber, W., Begin, K. J., Warshaw, D. M., and VanBuren, P. (2008) Cardiac myosin binding protein-C modulates actomyosin binding and kinetics in the in vitro motility assay, J. Mol. Cell. Cardiol., 44, 1053-1061, doi: 10.1016/j.yjmcc.2008.03.012.
  48. Mun, J. Y., Previs, M. J., Yu, H. Y., Gulick, J., Tobacman, L. S., Previs, S. B., Robbins, J., Warshaw, D. M., and Craig, R. (2014) Myosin-binding protein C displaces tropomyosin to activate cardiac thin filaments and governs their speed by an independent mechanism, Proc. Natl. Acad. Sci. USA, 111, 2170-2175, doi: 10.1073/pnas.1316001111.
  49. Inchingolo, A. V., Previs, S. B., Previs, M. J., Warshaw, D. M., and Kad, N. M. (2019) Revealing the mechanism of how cardiac myosin-binding protein C N-terminal fragments sensitize thin filaments for myosin binding, Proc. Natl. Acad. Sci. USA, 116, 6828-6835, doi: 10.1073/pnas.1816480116.
  50. Kochurova, A. M., Beldiia, E. A., Nefedova, V. V., Yampolskaya, D. S., Koubassova, N. A., Kleymenov, S. Y., Antonets, J. Y., Ryabkova, N. S., Katrukha, I. A., Bershitsky, S. Y., Matyushenko, A. M., Kopylova, G. V., and Shchepkin, D. V. (2024) The D75N and P161S Mutations in the C0-C2 fragment of cMyBP-C associated with hypertrophic cardiomyopathy disturb the thin filament activation, nucleotide exchange in myosin, and actin-myosin interaction, Int. J. Mol. Sci., 25, 11195, doi: 10.3390/ijms252011195.
  51. Nag, S., Gollapudi, S. K., Del Rio, C. L., Spudich, J. A., and McDowell, R. (2023) Mavacamten, a precision medicine for hypertrophic cardiomyopathy: from a motor protein to patients, Sci. Adv., 9, eabo7622, doi: 10.1126/sciadv.abo7622.
  52. Sevrieva, I. R., Ponnam, S., Yan, Z., Irving, M., Kampourakis, T., and Sun, Y.-B. (2023) Phosphorylation-dependent interactions of myosin-binding protein C and troponin coordinate the myofilament response to protein kinase A, J. Biol. Chem., 299, 102767, doi: 10.1016/j.jbc.2022.102767.
  53. Wong, F. L., Bunch, T. A., Lepak, V. C., Steedman, A. L., and Colson, B. A. (2024) Cardiac myosin-binding protein C N-terminal interactions with myosin and actin filaments: Opposite effects of phosphorylation and M-domain mutations, J. Mol. Cell. Cardiol., 186, 125-137, doi: 10.1016/j.yjmcc.2023.11.010.
  54. Lin, B. L., Li, A., Mun, J. Y., Previs, M. J., Previs, S. B., Campbell, S. G., Dos Remedios, C. G., Tombe, P. P., Craig, R., Warshaw, D. M., and Sadayappan, S. (2018) Skeletal myosin binding protein-C isoforms regulate thin filament activity in a Ca2+-dependent manner, Sci. Rep., 8, 2604, doi: 10.1038/s41598-018-21053-1.
  55. Bunch, T. A., Lepak, V. C., Kanassatega, R.-S., and Colson, B. A. (2018) N-terminal extension in cardiac myosin-binding protein C regulates myofilament binding, J. Mol. Cell. Cardiol., 125, 140-148, doi: 10.1016/j.yjmcc.2018.10.009.
  56. Bunch, T. A., Lepak, V. C., Bortz, K. M., and Colson, B. A. (2021) A high-throughput fluorescence lifetime-based assay to detect binding of myosin-binding protein C to F-actin, J. Gen. Physiol., 153, e202012707, doi: 10.1085/jgp.202012707.
  57. Harris, S. P., Belknap, B., Van Sciver, R. E., White, H. D., and Galkin, V. E. (2016) C0 and C1 N-terminal Ig domains of myosin binding protein C exert different effects on thin filament activation, Proc. Natl. Acad. Sci. USA, 113, 1558-1563, doi: 10.1073/pnas.1518891113.
  58. Risi, C., Belknap, B., Forgacs-Lonart, E., Harris, S. P., Schröder, G. F., White, H. D., and Galkin, V. E. (2018) N-terminal domains of cardiac myosin binding protein C cooperatively activate the thin filament, Structure, 26, 1604-1611.e4, doi: 10.1016/j.str.2018.08.007.
  59. Mun, J. Y., Kensler, R. W., Harris, S. P., and Craig, R. (2016) The cMyBP-C HCM variant L348P enhances thin filament activation through an increased shift in tropomyosin position, J. Mol. Cell. Cardiol., 91, 141-147, doi: 10.1016/j.yjmcc.2015.12.014.
  60. Bezold, K. L., Shaffer, J. F., Khosa, J. K., Hoye, E. R., and Harris, S. P. (2013) A gain-of-function mutation in the M-domain of cardiac myosin-binding protein-C increases binding to actin, J. Biol. Chem., 288, 21496-21505, doi: 10.1074/jbc.M113.474346.
  61. Bezold, K. L., Khosa, J. K., and Harris, S. P. (2014) A gain-of-function mutation in cardiac myosin binding protein-C increases viscoelastic load and slows shortening velocity in myocytes from transgenic mice, Biophys. J., 106, 346a, doi: 10.1016/j.bpj.2013.11.1973.
  62. Toepfer, C. N., Wakimoto, H., Garfinkel, A. C., McDonough, B., Liao, D., Jiang, J., Tai, A. C., Gorham, J. M., Lunde, I. G., Lun, M., Lynch, T. L. 4th, McNamara, J. W., Sadayappan, S., Redwood, C. S., Watkins, H. C., Seidman, J. G., and Seidman, C. E. (2019) Hypertrophic cardiomyopathy mutations in MYBPC3 dysregulate myosin, Sci. Transl. Med., 11, eaat1199, doi: 10.1126/scitranslmed.aat1199.
  63. Toepfer, C. N., Garfinkel, A. C., Venturini, G., Wakimoto, H., Repetti, G., Alamo, L., Sharma, A., Agarwal, R., Ewoldt, J. K., Cloonan, P., Letendre, J., Lun, M., Olivotto, I., Colan, S., Ashley, E., Jacoby, D., Michels, M., Redwood, C. S., Watkins, H. C., Day, S. M., Staples, J. F., Padrón, R., Chopra, A., Ho, C. Y., Chen, C. S., Pereira, A. C., Seidman, J. G., and Seidman, C. E. (2020) Myosin sequestration regulates sarcomere function, cardiomyocyte energetics, and metabolism, informing the pathogenesis of hypertrophic cardiomyopathy, Circulation, 141, 828-842, doi: 10.1161/CIRCULATIONAHA.119.042339.
  64. Spudich, J. A. (2015) The myosin mesa and a possible unifying hypothesis for the molecular basis of human hypertrophic cardiomyopathy, Biochem. Soc. Trans., 43, 64-72, doi: 10.1042/BST20140324.
  65. Nelson, S., Beck-Previs, S., Sadayappan, S., Tong, C., and Warshaw, D. M. (2023) Myosin-binding protein C stabilizes, but is not the sole determinant of SRX myosin in cardiac muscle, J. Gen. Physiol., 155, e202213276, doi: 10.1085/jgp.202213276
  66. Awinda, P. O., Watanabe, M., Bishaw, Y., Huckabee, A. M., Agonias, K. B., Kazmierczak K., Szczesna-Cordary, D., and Tanner, B. C. W. (2021) Mavacamten decreases maximal force and Ca2+ sensitivity in the N47K myosin regulatory light chain mouse model of hypertrophic cardiomyopathy, Am. J. Physiol. Heart Circ. Physiol., 320, H881-H890, doi: 10.1152/ajpheart.00345.2020.
  67. Desai, D. A., Baby, A., Ananthamohan, K., Green, L. C., Arif, M., Duncan, B. C., Kumar, M, Singh, R. R., Koch, S. E., Natesan, S., Rubinstein, J., Jegga, A. G., and Sadayappan, S. (2024) Roles of cMyBP-C phosphorylation on cardiac contractile dysfunction in db/db mice, J. Mol. Cell. Cardiol. Plus, 8, 100075, doi: 10.1016/j.jmccpl.2024.100075.
  68. McNamara, J. W., Li, A., Smith, N. J., Lal, S., Graham, R. M., Kooiker, K. B., van Dijk, S. J., Remedios, C. G. D., Harris, S. P., and Cooke R. (2016) Ablation of cardiac myosin binding protein-C disrupts the super-relaxed state of myosin in murine cardiomyocytes, J. Mol. Cell. Cardiol., 94, 65-71, doi: 10.1016/j.yjmcc.2016.03.009.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Russian Academy of Sciences, 2025

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».