Interrelationship between non-vesicular transport of sterols and their distribution between rafts and the non-raft phase of the plasma membrane
- Authors: Sokolov S.S.1, Zyrina A.N.2, Akimov S.A.3, Severin F.F.1
-
Affiliations:
- Lomonosov Moscow State University
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences
- Issue: Vol 90, No 3 (2025)
- Pages: 355-369
- Section: Articles
- URL: https://journals.rcsi.science/0320-9725/article/view/294697
- DOI: https://doi.org/10.31857/S0320972525030028
- EDN: https://elibrary.ru/BKLEVX
- ID: 294697
Cite item
Abstract
Sterols significantly affect the barrier properties of the membrane. This probably explains the fact that their concentration is maximal in the PM (plasma membrane). In combination with sphingolipids, sterols form rafts - bilayer regions whose physicochemical properties differ from those in the surrounding membrane. Thus, in the presence of rafts in the membrane, membrane proteins can choose the lipid environment optimal for their functioning, best suited in terms of thickness and rigidity of the bilayer, spontaneous curvature and lateral pressure profile. Sterols and sphingolipids in rafts are in ratios close to stoichiometric. Theoretically, excess sterol outside rafts can critically reduce the degree of ordering of phospholipid ordering. Sterols are synthesized in the endoplasmic reticulum (ER). An active, against the concentration gradient, transport of sterols from the ER to the PM is carried out by proteins of the Osh family. Lam proteins carry out passive reverse transport of sterols from the PM to the ER. Inactivation of Osh proteins does not reduce the total level of sterols in the PM, but, in an unclear way, reduces the rate of their movement inside the PM. Therefore, the vesicular transport of sterols from the ER to the PM is probably more active than the non-vesicular one carried out by Osh proteins. Since sterols are more firmly anchored in rafts than outside them, and are also sterically less accessible, we suggest that Lam proteins transport excess sterols from the non-raft phase of the PM to the ER, and Osh proteins return them to the PM. In this way, the rotation of sterols between the non-raft part of the PM and rafts can be driven, with the enrichment of the latter. It is possible that with a decrease in the concentration of sterol in the non-raft part of the membrane, the speed of the Lam proteins decreases since the degree of ordering of phospholipids and, consequently, the strength of retention of the sterol molecule in the membrane increases. It is possible that homeostasis of the concentration and distribution of sterol in the PM is maintained in this way.
Keywords
About the authors
S. S. Sokolov
Lomonosov Moscow State University
Author for correspondence.
Email: sviatoslav.sokolov@gmail.com
Belozersky Institute of Physico-Chemical Biology
Russian Federation, 119991 MoscowA. N. Zyrina
Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences
Email: sviatoslav.sokolov@gmail.com
Russian Federation, 108819 Moscow
S. A. Akimov
Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences
Email: sviatoslav.sokolov@gmail.com
Russian Federation, 119071 Moscow
F. F. Severin
Lomonosov Moscow State University
Email: sviatoslav.sokolov@gmail.com
Belozersky Institute of Physico-Chemical Biology
Russian Federation, 119991 MoscowReferences
- Desmond, E., and Gribaldo, S. (2009) Phylogenomics of sterol synthesis: insights into the origin, evolution, and diversity of a key eukaryotic feature, Genome Biol. Evol., 1, 364-381, https://doi.org/10.1093/gbe/evp036.
- Weete, J. D., Abril, M., and Blackwell, M. (2010) Phylogenetic distribution of fungal sterols, PLoS One, 5, e10899, https://doi.org/10.1371/journal.pone.0010899.
- Gimpl, G., Burger, K., and Fahrenholz, F. (1997) Cholesterol as modulator of receptor function, Biochemistry, 36, 10959-10974, https://doi.org/10.1021/bi963138w.
- Souza, C. M., and Pichler, H. (2007) Lipid requirements for endocytosis in yeast, Biochim. Biophys. Acta, 1771, 442-454, https://doi.org/10.1016/j.bbalip.2006.08.006
- Heese-Peck, A., Pichler, H., Zanolari, B., Watanabe, R., Daum, G., and Riezman, H. (2002) Multiple functions of sterols in yeast endocytosis, Mol. Biol. Cell, 13, 2664-2680, https://doi.org/10.1091/mbc.e02-04-0186.
- Daum, G., Wagner, A., Czabany, T., and Athenstaedt, K. (2007) Dynamics of neutral lipid storage and mobilization in yeast, Biochimie, 89, 243-248, https://doi.org/10.1016/j.biochi.2006.06.018.
- Mayor, S., Sabharanjak, S., and Maxfield, F. R. (1998) Cholesterol-dependent retention of GPI-anchored proteins in endosomes, EMBO J., 17, 4626-4638, https://doi.org/10.1093/emboj/17.16.4626.
- Umebayashi, K., and Nakano, A. (2003) Ergosterol is required for targeting of tryptophan permease to the yeast plasma membrane, J. Cell Biol., 161, 1117-1131, https://doi.org/10.1083/jcb.200303088.
- Gimpl, G., and Fahrenholz, F. (2002) Cholesterol as stabilizer of the oxytocin receptor, Biochim. Biophys. Acta, 1564, 384-392, https://doi.org/10.1016/s0005-2736(02)00475-3.
- Levental, I., Levental, K. R., and Heberle, F. A. (2020) Lipid rafts: controversies resolved, mysteries remain, Trends Cell Biol., 30, 341-353, https://doi.org/10.1016/j.tcb.2020.01.009.
- Lucero, H. A., and Robbins, P. W. (2004) Lipid rafts-protein association and the regulation of protein activity, Arch. Biochem. Biophys., 426, 208-224, https://doi.org/10.1016/j.abb.2004.03.020.
- Pichler, H., and Riezman, H. (2004) Where sterols are required for endocytosis, Biochim. Biophys. Acta, 1666, 51-61, https://doi.org/10.1016/j.bbamem.2004.05.011.
- Sokolov, S. S., Akimov, S. A., and Severin, F. F. (2024) Evolutionary choice between cholesterol and ergosterol, Biol. Membrany, 41, 448-453, https://doi.org/10.31857/s0233475524050071.
- Souza, C. M., Schwabe, T. M. E., Pichler, H., Ploier, B., Leitner, E., Guan, X. L., Wenk, M. R., Riezman, I., and Riezman, H. (2011) A stable yeast strain efficiently producing cholesterol instead of ergosterol is functional for tryptophan uptake, but not weak organic acid resistance, Metab. Eng., 13, 555-569, https://doi.org/10.1016/j.ymben.2011.06.006.
- Rietveld, A., Neutz, S., Simons, K., and Eaton, S. (1999) Association of sterol- and glycosylphosphatidylinositol-linked proteins with Drosophila raft lipid microdomains, J. Biol. Chem., 274, 12049-12054, https://doi.org/10.1074/jbc.274.17.12049.
- C. elegans Sequencing Consortium (1998) Genome sequence of the nematode C. elegans: a platform for investigating biology, Science, 282, 2012-2018, https://doi.org/10.1126/science.282.5396.2012.
- Silvius, J. R. (2003) Role of cholesterol in lipid raft formation: lessons from lipid model systems, Biochim. Biophys. Acta, 1610, 174-183, https://doi.org/10.1016/s0005-2736(03)00016-6.
- Simons, K., and Vaz, W. L. C. (2004) Model systems, lipid rafts, and cell membranes, Annu. Rev. Biophys. Biomol. Struct., 33, 269-295, https://doi.org/10.1146/annurev.biophys.32.110601.141803.
- McConnell, H. M., and Radhakrishnan, A. (2003) Condensed complexes of cholesterol and phospholipids, Biochim. Biophys. Acta, 1610, 159-173, https://doi.org/10.1016/s0005-2736(03)00015-4.
- McConnell, H. M., and Vrljic, M. (2003) Liquid-liquid immiscibility in membranes, Annu. Rev. Biophys. Biomol. Struct., 32, 469-492, https://doi.org/10.1146/annurev.biophys.32.110601.141704.
- Ipsen, J. H., Mouritsen, O. G., and Zuckermann, M. J. (1989) Theory of thermal anomalies in the specific heat of lipid bilayers containing cholesterol, Biophys. J., 56, 661-667, https://doi.org/10.1016/s0006-3495(89)82713-4.
- Sankaram, M. B., and Thompson, T. E. (1990) Interaction of cholesterol with various glycerophospholipids and sphingomyelin, Biochemistry, 29, 10670-10675, https://doi.org/10.1021/bi00499a014.
- Ipsen, J. H., Karlström, G., Mouritsen, O. G., Wennerström, H., and Zuckermann, M. J. (1987) Phase equilibria in the phosphatidylcholine-cholesterol system, Biochim. Biophys. Acta, 905, 162-172, https://doi.org/10.1016/0005-2736(87)90020-4.
- Flanagan, J. J., Tweten, R. K., Johnson, A. E., and Heuck, A. P. (2009) Cholesterol exposure at the membrane surface is necessary and sufficient to trigger perfringolysin O binding, Biochemistry, 48, 3977-3987, https://doi.org/10.1021/bi9002309.
- Das, A., Goldstein, J. L., Anderson, D. D., Brown, M. S., and Radhakrishnan, A. (2013) Use of mutant 125I-perfringolysin O to probe transport and organization of cholesterol in membranes of animal cells, Proc. Natl. Acad. Sci. USA, 110, 10580-10585, https://doi.org/10.1073/pnas.1309273110.
- Pike, L. J. (2006) Rafts defined: a report on the keystone symposium on lipid rafts and cell function, J. Lipid Res., 47, 1597-1598, https://doi.org/10.1194/jlr.E600002-JLR200.
- Edidin, M. (2001) Shrinking patches and slippery rafts: scales of domains in the plasma membrane, Trends Cell Biol., 11, 492-496, https://doi.org/10.1016/s0962-8924(01)02139-0.
- Veatch, S. L., Polozov, I. V., Gawrisch, K., and Keller, S. L. (2004) Liquid domains in vesicles investigated by NMR and fluorescence microscopy, Biophys. J., 86, 2910-2922, https://doi.org/10.1016/s0006-3495(04)74342-8.
- Veatch, S. L., and Keller, S. L. (2003) Separation of liquid phases in giant vesicles of ternary mixtures of phospholipids and cholesterol, Biophys. J., 85, 3074-3083, https://doi.org/10.1016/s0006-3495(03)74726-2.
- Ayuyan, A. G., and Cohen, F. S. (2008) Raft composition at physiological temperature and pH in the absence of detergents, Biophys. J., 94, 2654-2666, https://doi.org/10.1529/biophysj.107.118596.
- Frisz, J. F., Lou, K., Klitzing, H. A., Hanafin, W. P., Lizunov, V., Wilson, R. L., Carpenter, K. J., Kim, R., Hutcheon, I. D., Zimmerberg, J., Weber, P. K., and Kraft, M. L. (2013) Direct chemical evidence for sphingolipid domains in the plasma membranes of fibroblasts, Proc. Natl. Acad. Sci. USA, 110, E613-E622, https://doi.org/10.1073/pnas.1216585110.
- Frisz, J. F., Klitzing, H. A., Lou, K., Hutcheon, I. D., Weber, P. K., Zimmerberg, J., and Kraft, M. L. (2013) Sphingolipid domains in the plasma membranes of fibroblasts are not enriched with cholesterol, J. Biol. Chem., 288, 16855-16861, https://doi.org/10.1074/jbc.M113.473207.
- Mollinedo, F. (2022) Raft platforms highly enriched in cholesterol: major scaffolds for IL-6 signalling assembly with implications in inflammation and cancer, FEBS J., 289, 5891-5894, https://doi.org/10.1111/febs.16547.
- Cho, Y. Y., Kwon, O.-H., and Chung, S. (2020) Preferred endocytosis of amyloid precursor protein from cholesterol-enriched lipid raft microdomains, Molecules, 25, 5490, https://doi.org/10.3390/molecules25235490.
- Codini, M., Garcia-Gil, M., and Albi, E. (2021) Cholesterol and sphingolipid enriched lipid rafts as therapeutic targets in cancer, Int. J. Mol. Sci., 22, 726, https://doi.org/10.3390/ijms22020726.
- Zachowski, A. (1993) Phospholipids in animal eukaryotic membranes: transverse asymmetry and movement, Biochem. J., 294 (Pt 1), 1-14, https://doi.org/10.1042/bj2940001.
- Nickels, J. D., Smith, J. C., and Cheng, X. (2015) Lateral organization, bilayer asymmetry, and inter-leaflet coupling of biological membranes, Chem. Phys. Lipids, 192, 87-99, https://doi.org/10.1016/j.chemphyslip.2015.07.012.
- Ingólfsson, H. I., Carpenter, T. S., Bhatia, H., Bremer, P.-T., Marrink, S. J., and Lightstone, F. C. (2017) Computational lipidomics of the neuronal plasma membrane, Biophys. J., 113, 2271-2280, https://doi.org/10.1016/j.bpj.2017.10.017.
- Ingólfsson, H. I., Melo, M. N., van Eerden, F. J., Arnarez, C., Lopez, C. A., Wassenaar, T. A., Periole, X., de Vries, A. H., Tieleman, D. P., and Marrink, S. J. (2014) Lipid organization of the plasma membrane, J. Am. Chem. Soc., 136, 14554-14559, https://doi.org/10.1021/ja507832e.
- Engberg, O., Hautala, V., Yasuda, T., Dehio, H., Murata, M., Slotte, J. P., and Nyholm, T. K. M. (2016) The affinity of cholesterol for different phospholipids affects lateral segregation in bilayers, Biophys. J., 111, 546-556, https://doi.org/10.1016/j.bpj.2016.06.036.
- Contreras, F.-X., Sánchez-Magraner, L., Alonso, A., and Goñi, F. M. (2010) Transbilayer (flip-flop) lipid motion and lipid scrambling in membranes, FEBS Lett., 584, 1779-1786, https://doi.org/10.1016/j.febslet.2009.12.049.
- Bevers, E. M., and Williamson, P. L. (2016) Getting to the outer leaflet: physiology of phosphatidylserine exposure at the plasma membrane, Physiol. Rev., 96, 605-645, https://doi.org/10.1152/physrev.00020.2015.
- Lorent, J. H., Levental, K. R., Ganesan, L., Rivera-Longsworth, G., Sezgin, E., Doktorova, M. D., Lyman, E., and Levental, I. (2019) The mammalian plasma membrane is defined by transmembrane asymmetries in lipid unsaturation, leaflet packing, and protein shape, bioRxiv, https://doi.org/10.1101/698837.
- Schroeder, F., Nemecz, G., Wood, W. G., Joiner, C., Morrot, G., Ayraut-Jarrier, M., and Devaux, P. F. (1991) Transmembrane distribution of sterol in the human erythrocyte, Biochim. Biophys. Acta, 1066, 183-192, https://doi.org/10.1016/0005-2736(91)90185-b.
- Solanko, L. M., Sullivan, D. P., Sere, Y. Y., Szomek, M., Lunding, A., Solanko, K. A., Pizovic, A., Stanchev, L. D., Pomorski, T. G., Menon, A. K., and Wüstner, D. (2018) Ergosterol is mainly located in the cytoplasmic leaflet of the yeast plasma membrane, Traffic, 19, 198-214, https://doi.org/10.1111/tra.12545.
- Kucerka, N., Perlmutter, J. D., Pan, J., Tristram-Nagle, S., Katsaras, J., and Sachs, J. N. (2008) The effect of cholesterol on short- and long-chain monounsaturated lipid bilayers as determined by molecular dynamics simulations and X-ray scattering, Biophys. J., 95, 2792-2805, https://doi.org/10.1529/biophysj.107.122465.
- Bennett, W. F. D., MacCallum, J. L., Hinner, M. J., Marrink, S. J., and Tieleman, D. P. (2009) Molecular view of cholesterol flip-flop and chemical potential in different membrane environments, J. Am. Chem. Soc., 131, 12714-12720, https://doi.org/10.1021/ja903529f.
- Steck, T. L., and Lange, Y. (2018) Transverse distribution of plasma membrane bilayer cholesterol: picking sides, Traffic, 19, 750-760, https://doi.org/10.1111/tra.12586
- Staneva, G., Osipenko, D. S., Galimzyanov, T. R., Pavlov, K. V., and Akimov, S. A. (2016) Metabolic precursor of cholesterol causes formation of chained aggregates of liquid-ordered domains, Langmuir, 32, 1591-1600, https://doi.org/10.1021/acs.langmuir.5b03990.
- Saitov, A., Kalutsky, M. A., Galimzyanov, T. R., Glasnov, T., Horner, A., Akimov, S. A., and Pohl, P. (2022) Determinants of lipid domain size, Int. J. Mol. Sci., 23, 3502, https://doi.org/10.3390/ijms23073502.
- Kuzmin, P. I., Akimov, S. A., Chizmadzhev, Y. A., Zimmerberg, J., and Cohen, F. S. (2005) Line tension and interaction energies of membrane rafts calculated from lipid splay and tilt, Biophys. J., 88, 1120-1133, https://doi.org/10.1529/biophysj.104.048223.
- Almeida, P.F., Vaz, W.L., and Thompson, T.E. (1993) Percolation and diffusion in three-component lipid bilayers: effect of cholesterol on an equimolar mixture of two phosphatidylcholines, Biophys. J., 64, 399-412, https://doi.org/10.1016/s0006-3495(93)81381-x.
- Castello-Serrano, I., Heberle, F. A., Diaz-Rohrer, B., Ippolito, R., Shurer, C. R., Lujan, P., Campelo, F., Levental, K. R., and Levental, I. (2024) Partitioning to ordered membrane domains regulates the kinetics of secretory traffic, Elife, 12, https://doi.org/10.7554/elife.89306.3.
- Dupuy, A. D., and Engelman, D. M. (2008) Protein area occupancy at the center of the red blood cell membrane, Proc. Natl. Acad. Sci. USA, 105, 2848-2852, https://doi.org/10.1073/pnas.0712379105.
- Corradi, V., Mendez-Villuendas, E., Ingólfsson, H. I., Gu, R.-X., Siuda, I., Melo, M. N., Moussatova, A., DeGagné, L. J., Sejdiu, B. I., Singh, G., Wassenaar, T. A., Delgado Magnero, K., Marrink, S. J., and Tieleman, D. P. (2018) Lipid-protein interactions are unique fingerprints for membrane proteins, ACS Cent. Sci., 4, 709-717, https://doi.org/10.1021/acscentsci.8b00143.
- Saitov, A., Akimov, S. A., Galimzyanov, T. R., Glasnov, T., and Pohl, P. (2020) Ordered lipid domains assemble via concerted recruitment of constituents from both membrane leaflets, Phys. Rev. Lett., 124, 108102, https://doi.org/10.1103/PhysRevLett.124.108102.
- Bocharov, E. V., Mineev, K. S., Pavlov, K. V., Akimov, S. A., Kuznetsov, A. S., Efremov, R. G., and Arseniev, A. S. (2017) Helix-helix interactions in membrane domains of bitopic proteins: specificity and role of lipid environment, Biochim. Biophys. Acta, 1859, 561-576, https://doi.org/10.1016/j.bbamem.2016.10.024.
- Wang, H.-Y., Chan, S. H., Dey, S., Castello-Serrano, I., Rosen, M. K., Ditlev, J. A., Levental, K. R., and Levental, I. (2023) Coupling of protein condensates to ordered lipid domains determines functional membrane organization, Sci. Adv., 9, eadf6205, https://doi.org/10.1126/sciadv.adf6205.
- Shelby, S. A., Castello-Serrano, I., Wisser, K. C., Levental, I., and Veatch, S. L. (2023) Membrane phase separation drives responsive assembly of receptor signaling domains, Nat. Chem. Biol., 19, 750-758, https://doi.org/10.1038/s41589-023-01268-8.
- Steck, T. L., Ali Tabei, S. M., and Lange, Y. (2024) Estimating the cholesterol affinity of integral membrane proteins from experimental data, Biochemistry, 63, 19-26, https://doi.org/10.1021/acs.biochem.3c00567.
- Levitan, I., Fang, Y., Rosenhouse-Dantsker, A., and Romanenko, V. (2010) Cholesterol and ion channels, Subcell. Biochem., 51, 509-549, https://doi.org/10.1007/978-90-481-8622-8_19.
- Thompson, M. J., and Baenziger, J. E. (2020) Ion channels as lipid sensors: from structures to mechanisms, Nat. Chem. Biol., 16, 1331-1342, https://doi.org/10.1038/s41589-020-00693-3.
- Bukiya, A. N., Durdagi, S., Noskov, S., and Rosenhouse-Dantsker, A. (2017) Cholesterol up-regulates neuronal G protein-gated inwardly rectifying potassium (GIRK) channel activity in the hippocampus, J. Biol. Chem., 292, 6135-6147, https://doi.org/10.1074/jbc.M116.753350.
- Poveda, J. A., Giudici, A. M., Renart, M. L., Molina, M. L., Montoya, E., Fernández-Carvajal, A., Fernández-Ballester, G., Encinar, J. A., and González-Ros, J. M. (2014) Lipid modulation of ion channels through specific binding sites, Biochim. Biophys. Acta, 1838, 1560-1567, https://doi.org/10.1016/j.bbamem.2013.10.023.
- Müllner, H., Zweytick, D., Leber, R., Turnowsky, F., and Daum, G. (2004) Targeting of proteins involved in sterol biosynthesis to lipid particles of the yeast Saccharomyces cerevisiae, Biochim. Biophys. Acta, 1663, 9-13, https://doi.org/10.1016/j.bbamem.2004.03.001.
- Korber, M., Klein, I., and Daum, G. (2017) Steryl ester synthesis, storage and hydrolysis: A contribution to sterol homeostasis, Biochim. Biophys. Acta Mol. Cell Biol. Lipids, 1862, 1534-1545, https://doi.org/10.1016/j.bbalip.2017.09.002.
- Mesmin, B., and Maxfield, F. R. (2009) Intracellular sterol dynamics, Biochim. Biophys. Acta, 1791, 636-645, https://doi.org/10.1016/j.bbalip.2009.03.002.
- Klemm, R. W., Ejsing, C. S., Surma, M. A., Kaiser, H.-J., Gerl, M. J., Sampaio, J. L., de Robillard, Q., Ferguson, C., Proszynski, T. J., Shevchenko, A., and Simons, K. (2009) Segregation of sphingolipids and sterols during formation of secretory vesicles at the trans-Golgi network, J. Cell Biol., 185, 601-612, https://doi.org/10.1083/jcb.200901145.
- Lange, Y., Swaisgood, M. H., Ramos, B. V., and Steck, T. L. (1989) Plasma membranes contain half the phospholipid and 90% of the cholesterol and sphingomyelin in cultured human fibroblasts, J. Biol. Chem., 264, 3786-3793.
- Schneiter, R., Brügger, B., Sandhoff, R., Zellnig, G., Leber, A., Lampl, M., Athenstaedt, K., Hrastnik, C., Eder, S., Daum, G., Paltauf, F., Wieland, F. T., and Kohlwein, S. D. (1999) Electrospray ionization tandem mass spectrometry (ESI-MS/MS) analysis of the lipid molecular species composition of yeast subcellular membranes reveals acyl chain-based sorting/remodeling of distinct molecular species en route to the plasma membrane, J. Cell Biol., 146, 741-754, https://doi.org/10.1083/jcb.146.4.741.
- Sullivan, D. P., Ohvo-Rekilä, H., Baumann, N. A., Beh, C. T., and Menon, A. K. (2006) Sterol trafficking between the endoplasmic reticulum and plasma membrane in yeast, Biochem. Soc. Trans., 34, 356-358, https://doi.org/10.1042/BST0340356.
- Georgiev, A. G., Sullivan, D. P., Kersting, M. C., Dittman, J. S., Beh, C. T., and Menon, A. K. (2011) Osh proteins regulate membrane sterol organization but are not required for sterol movement between the ER and PM, Traffic, 12, 1341-1355, https://doi.org/10.1111/j.1600-0854.2011.01234.x.
- Baumann, N. A., Sullivan, D. P., Ohvo-Rekilä, H., Simonot, C., Pottekat, A., Klaassen, Z., Beh, C. T., and Menon, A. K. (2005) Transport of newly synthesized sterol to the sterol-enriched plasma membrane occurs via nonvesicular equilibration, Biochemistry, 44, 5816-5826, https://doi.org/10.1021/bi048296z.
- Sokolov, S. S., Trushina, N. I., Severin, F. F., and Knorre, D. A. (2019) Ergosterol turnover in yeast: an interplay between biosynthesis and transport, Biochemistry (Moscow), 84, 346-357, https://doi.org/10.1134/S0006297919040023.
- Kentala, H., Weber-Boyvat, M., and Olkkonen, V. M. (2016) OSBP-related protein family: mediators of lipid transport and signaling at membrane contact sites, Int. Rev. Cell Mol. Biol., 321, 299-340, https://doi.org/10.1016/bs.ircmb.2015.09.006.
- De Saint-Jean, M., Delfosse, V., Douguet, D., Chicanne, G., Payrastre, B., Bourguet, W., Antonny, B., and Drin, G. (2011) Osh4p exchanges sterols for phosphatidylinositol 4-phosphate between lipid bilayers, J. Cell Biol., 195, 965-978, https://doi.org/10.1083/jcb.201104062.
- Im, Y. J., Raychaudhuri, S., Prinz, W. A., and Hurley, J. H. (2005) Structural mechanism for sterol sensing and transport by OSBP-related proteins, Nature, 437, 154-158, https://doi.org/10.1038/nature03923.
- Tong, J., Manik, M. K., Yang, H., and Im, Y. J. (2016) Structural insights into nonvesicular lipid transport by the oxysterol binding protein homologue family, Biochim. Biophys. Acta, 1861, 928-939, https://doi.org/10.1016/j.bbalip.2016.01.008.
- Prinz, W. A., Toulmay, A., and Balla, T. (2020) The functional universe of membrane contact sites, Nat. Rev. Mol. Cell Biol., 21, 7-24, https://doi.org/10.1038/s41580-019-0180-9.
- Bohnert, M. (2020) Tether me, tether me not-dynamic organelle contact sites in metabolic rewiring, Dev. Cell, 54, 212-225, https://doi.org/10.1016/j.devcel.2020.06.026.
- West, M., Zurek, N., Hoenger, A., and Voeltz, G. K. (2011) A 3D analysis of yeast ER structure reveals how ER domains are organized by membrane curvature, J. Cell Biol., 193, 333-346, https://doi.org/10.1083/jcb.201011039.
- Quon, E., Sere, Y. Y., Chauhan, N., Johansen, J., Sullivan, D. P., Dittman, J. S., Rice, W. J., Chan, R. B., Di Paolo, G., Beh, C. T., and Menon, A. K. (2018) Endoplasmic reticulum-plasma membrane contact sites integrate sterol and phospholipid regulation, PLoS Biol., 16, e2003864, https://doi.org/10.1371/journal.pbio.2003864.
- Levine, T. P., and Munro, S. (2002) Targeting of Golgi-specific pleckstrin homology domains involves both PtdIns 4-kinase-dependent and -independent components, Curr. Biol., 12, 695-704, https://doi.org/10.1016/s0960-9822(02)00779-0.
- Drin, G., Moser von Filseck, J., and Čopič, A. (2016) New molecular mechanisms of inter-organelle lipid transport, Biochem. Soc. Trans., 44, 486-492, https://doi.org/10.1042/BST20150265.
- Loewen, C. J. R., Roy, A., and Levine, T. P. (2003) A conserved ER targeting motif in three families of lipid binding proteins and in Opi1p binds VAP, EMBO J., 22, 2025-2035, https://doi.org/10.1093/emboj/cdg201.
- Beh, C. T., Cool, L., Phillips, J., and Rine, J. (2001) Overlapping functions of the yeast oxysterol-binding protein homologues, Genetics, 157, 1117-1140, https://doi.org/10.1093/genetics/157.3.1117.
- Woods, R. A. (1971) Nystatin-resistant mutants of yeast: alterations in sterol content, J. Bacteriol., 108, 69-73, https://doi.org/10.1128/jb.108.1.69-73.1971.
- Gatta, A. T., Sauerwein, A. C., Zhuravleva, A., Levine, T. P., and Matthews, S. (2018) Structural insights into a StART-like domain in Lam4 and its interaction with sterol ligands, Biochem. Biophys. Res. Commun., 495, 2270-2274, https://doi.org/10.1016/j.bbrc.2017.12.109.
- Jentsch, J.-A., Kiburu, I., Pandey, K., Timme, M., Ramlall, T., Levkau, B., Wu, J., Eliezer, D., Boudker, O., and Menon, A. K. (2018) Structural basis of sterol binding and transport by a yeast StARkin domain, J. Biol. Chem., 293, 5522-5531, https://doi.org/10.1074/jbc.RA118.001881.
- Tong, J., Manik, M. K., and Im, Y. J. (2018) Structural basis of sterol recognition and nonvesicular transport by lipid transfer proteins anchored at membrane contact sites, Proc. Natl. Acad. Sci. USA, 115, E856-E865, https://doi.org/10.1073/pnas.1719709115.
- Horenkamp, F. A., Valverde, D. P., Nunnari, J., and Reinisch, K. M. (2018) Molecular basis for sterol transport by StART-like lipid transfer domains, EMBO J., 37, https://doi.org/10.15252/embj.201798002.
- Khelashvili, G., Chauhan, N., Pandey, K., Eliezer, D., and Menon, A. K. (2019) Exchange of water for sterol underlies sterol egress from a StARkin domain, Elife, 8, https://doi.org/10.7554/eLife.53444.
- Gatta, A. T., Wong, L. H., Sere, Y. Y., Calderón-Noreña, D. M., Cockcroft, S., Menon, A. K., and Levine, T. P. (2015) A new family of StART domain proteins at membrane contact sites has a role in ER-PM sterol transport, Elife, 4, https://doi.org/10.7554/eLife.07253.
- Wong, L. H., and Levine, T. P. (2016) Lipid transfer proteins do their thing anchored at membrane contact sites… but what is their thing? Biochem. Soc. Trans., 44, 517-527, https://doi.org/10.1042/BST20150275.
- Murley, A., Sarsam, R. D., Toulmay, A., Yamada, J., Prinz, W. A., and Nunnari, J. (2015) Ltc1 is an ER-localized sterol transporter and a component of ER-mitochondria and ER-vacuole contacts, J. Cell Biol., 209, 539-548, https://doi.org/10.1083/jcb.201502033.
- Roelants, F. M., Chauhan, N., Muir, A., Davis, J. C., Menon, A. K., Levine, T. P., and Thorner, J. (2018) TOR complex 2-regulated protein kinase Ypk1 controls sterol distribution by inhibiting StARkin domain-containing proteins located at plasma membrane-endoplasmic reticulum contact sites, Mol. Biol. Cell, 29, 2128-2136, https://doi.org/10.1091/mbc.E18-04-0229.
- Naito, T., Ercan, B., Krshnan, L., Triebl, A., Koh, D. H. Z., Wei, F.-Y., Tomizawa, K., Torta, F. T., Wenk, M. R., and Saheki, Y. (2019) Movement of accessible plasma membrane cholesterol by the GRAMD1 lipid transfer protein complex, Elife, 8, https://doi.org/10.7554/eLife.51401.
- Hoepfner, D., Helliwell, S. B., Sadlish, H., Schuierer, S., Filipuzzi, I., Brachat, S., Bhullar, B., Plikat, U., Abraham, Y., Altorfer, M., Aust, T., Baeriswyl, L., Cerino, R., Chang, L., Estoppey, D., Eichenberger, J., Frederiksen, M., Hartmann, N., Hohendahl, A., Knapp, B., Krastel, P., Melin, N., Nigsch, F., Oakeley, E. J., Petitjean, V., Petersen, F., Riedl, R., Schmitt, E. K., Staedtler, F., Studer, C., Tallarico, J. A., Wetzel, S., Fishman, M. C., Porter, J. A., and Movva, N. R. (2014) High-resolution chemical dissection of a model eukaryote reveals targets, pathways and gene functions, Microbiol. Res., 169, 107-120, https://doi.org/10.1016/j.micres.2013.11.004.
- Ovchinnikov, Y. A., Ivanov, V. T., Evstratov, A. V., Mikhaleva, I. I., Bystrov, V. F., Portnova, S. L., Balashova, T. A., Meshcheryakova, E. N., and Tulchinsky, V. M. (1974) The enniatin ionophores. Conformation and ion binding properties, Int. J. Pept. Protein Res., 6, 465-498, https://doi.org/10.1111/j.1399-3011.1974.tb02407.x.
- Starkus, J. G., Poerzgen, P., Layugan, K., Kawabata, K. G., Goto, J.-I., Suzuki, S., Myers, G., Kelly, M., Penner, R., Fleig, A., and Horgen, F. D. (2017) Scalaradial is a potent inhibitor of transient receptor potential melastatin 2 (TRPM2) ion channels, J. Nat. Prod., 80, 2741-2750, https://doi.org/10.1021/acs.jnatprod.7b00515.
- Rose, L., and Jenkins, A. T. A. (2007) The effect of the ionophore valinomycin on biomimetic solid supported lipid DPPTE/EPC membranes, Bioelectrochemistry, 70, 387-393, https://doi.org/10.1016/j.bioelechem.2006.05.009.
- Cammann, K. (1985) Ion-selective bulk membranes as models for biomembranes, Topics in Current Chemistry, Springer Berlin Heidelberg, Berlin, Heidelberg, p. 219-259, https://doi.org/10.1007/3-540-15136-2_8.
- Pozniakovsky, A. I., Knorre, D. A., Markova, O. V., Hyman, A. A., Skulachev, V. P., and Severin, F. F. (2005) Role of mitochondria in the pheromone- and amiodarone-induced programmed death of yeast, J. Cell Biol., 168, 257-269, https://doi.org/10.1083/jcb.200408145.
- Sokolov, S., Knorre, D., Smirnova, E., Markova, O., Pozniakovsky, A., Skulachev, V., and Severin, F. (2006) Ysp2 mediates death of yeast induced by amiodarone or intracellular acidification, Biochim. Biophys. Acta, 1757, 1366-1370, https://doi.org/10.1016/j.bbabio.2006.07.005.
- Sokolov, S. S., Galkina, K. V., Litvinova, E. A., Knorre, D. A., and Severin, F. F. (2020) The role of LAM genes in the pheromone-induced cell death of S. cerevisiae yeast, Biochemistry (Moscow), 85, 300-309, https://doi.org/10.1134/S0006297920030050.
- Gupta, S. S., Ton, V.-K., Beaudry, V., Rulli, S., Cunningham, K., and Rao, R. (2003) Antifungal activity of amiodarone is mediated by disruption of calcium homeostasis, J. Biol. Chem., 278, 28831-28839, https://doi.org/10.1074/jbc.M303300200.
- Ayer, A., Fellermeier, S., Fife, C., Li, S. S., Smits, G., Meyer, A. J., Dawes, I. W., and Perrone, G. G. (2012) A genome-wide screen in yeast identifies specific oxidative stress genes required for the maintenance of sub-cellular redox homeostasis, PLoS One, 7, e44278, https://doi.org/10.1371/journal.pone.0044278.
- Sokolov, S. S., Vorobeva, M. A., Smirnova, A. I., Smirnova, E. A., Trushina, N. I., Galkina, K. V., Severin, F. F., and Knorre, D. A. (2020) LAM genes contribute to environmental stress tolerance but sensibilize yeast cells to azoles, Front. Microbiol., 11, 38, https://doi.org/10.3389/fmicb.2020.00038.
- Jiménez-Munguía, I., Volynsky, P. E., Batishchev, O. V., Akimov, S. A., Korshunova, G.A., Smirnova, E. A., Knorre, D. A., Sokolov, S. S., and Severin, F. F. (2019) Effects of sterols on the interaction of SDS, benzalkonium chloride, and a novel compound, Kor105, with membranes, Biomolecules, 9, 627, https://doi.org/10.3390/biom9100627.
- Sokolov, S. S., Volynsky, P. E., Zangieva, O. T., Severin, F. F., Glagoleva, E. S., and Knorre, D. A. (2022) Cytostatic effects of structurally different ginsenosides on yeast cells with altered sterol biosynthesis and transport, Biochim. Biophys. Acta Biomembr., 1864, 183993, https://doi.org/10.1016/j.bbamem.2022.183993.
- Sokolov, S. S., Popova, M. M., Pohl, P., Horner, A., Akimov, S. A., Kireeva, N. A., Knorre, D. A., Batishchev, O. V., and Severin, F. F. (2022) Structural role of plasma membrane sterols in osmotic stress tolerance of yeast Saccharomyces cerevisiae, Membranes (Basel), 12, 1278, https://doi.org/10.3390/membranes12121278.
- Janschitz, M., Romanov, N., Varnavides, G., Hollenstein, D. M., Gérecová, G., Ammerer, G., Hartl, M., and Reiter, W. (2019) Novel interconnections of HOG signaling revealed by combined use of two proteomic software packages, Cell Commun. Signal., 17, 66, https://doi.org/10.1186/s12964-019-0381-z.
- Fuller, N., and Rand, R. P. (2001) The influence of lysolipids on the spontaneous curvature and bending elasticity of phospholipid membranes, Biophys. J., 81, 243-254, https://doi.org/10.1016/S0006-3495(01)75695-0.
- Smith, P., Quinn, P. J., and Lorenz, C. D. (2020) Two coexisting membrane structures are defined by lateral and transbilayer interactions between sphingomyelin and cholesterol, Langmuir, 36, 9786-9799, https://doi.org/10.1021/acs.langmuir.0c01237.
Supplementary files
