Evolution, possibilities and prospects in the application of methods for the assessment of pyridine nucleotides pool for studying the mechanisms of brain plasticity in normal and pathological conditions

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Nicotinamide adenine dinucleotide and its derivatives – NAD+, NADP+, NADH, NADPH – play an important role in cell metabolism, act as substrates or cofactors for a large number of enzymes involved in the regulation of replication, DNA repair, maintenance of calcium homeostasis in cells, biosynthetic processes and energy production mechanisms. Changes in the ratio of oxidized and reduced forms of pyridine nucleotides accompanies the development of oxidative and reductive stress, that significantly contribute to cell damage and induction of adaptive response. Currently, huge number of protocols aimed at quantitative or qualitative assessment of the pyridine nucleotide pool are in use, but all of them have their limitations associated with sample preparation processes, difficulties in the metabolite spectrum assessment, and complexity of data interpretation. Measuring pyridine nucleotide levels is relevant in the study of (patho)physiological regulatory mechanisms of cell functional activity and intercellular communication. This is of particular relevance when studying the mechanisms of plasticity of the central nervous system in health and disease, since significant changes in the pools of pyridine nucleotides in cells are evident in neurodevelopmental disorders, neurodegeneration, and aging. Simple and reliable non-invasive methods for measuring the levels of NAD+ and NADH are necessary to assess the brain cells metabolism with diagnostic and research purposes. The goal of this review is to analyze in a comparative aspect the main methods for measuring the levels of oxidized and reduced pyridine nucleotides in cells and to identify the key principles of their application for the correct interpretation of the data obtained, including those used for the study of the central nervous system.

About the authors

A. V. Zubova

Research Center of Neurology

Author for correspondence.
Email: zubova.a.v@neurology.ru
Russian Federation, 125367 Moscow

A. A. Groshkov

Research Center of Neurology

Email: zubova.a.v@neurology.ru
Russian Federation, 125367 Moscow

A. K. Berdnikov

Research Center of Neurology

Email: zubova.a.v@neurology.ru
Russian Federation, 125367 Moscow

S. V. Novikova

Research Center of Neurology; Bauman Moscow State Technical University

Email: zubova.a.v@neurology.ru
Russian Federation, 125367 Moscow; 105005 Moscow

N. A. Rozanova

Research Center of Neurology; Bauman Moscow State Technical University

Email: zubova.a.v@neurology.ru
Russian Federation, 125367 Moscow; 105005 Moscow

L. V. Nikolaeva

Krasnoyarsk State Medical University

Email: zubova.a.v@neurology.ru
Russian Federation, 660022 Krasnoyarsk

V. V. Salmin

Bauman Moscow State Technical University; Moscow Institute of Physics and Technology

Email: zubova.a.v@neurology.ru
Russian Federation, 105005 Moscow; 141701 Dolgoprudny

N. A. Kolotyeva

Research Center of Neurology; Bauman Moscow State Technical University

Email: zubova.a.v@neurology.ru
Russian Federation, 125367 Moscow; 105005 Moscow

L. G. Khaspekov

Research Center of Neurology

Email: zubova.a.v@neurology.ru
Russian Federation, 125367 Moscow

A. B. Salmina

Research Center of Neurology; Bauman Moscow State Technical University; Krasnoyarsk State Medical University

Email: zubova.a.v@neurology.ru
Russian Federation, 125367 Moscow; 105005 Moscow; 660022 Krasnoyarsk

S. O. Yurchenko

Bauman Moscow State Technical University

Email: zubova.a.v@neurology.ru
Russian Federation, 105005 Moscow

S. N. Illarioshkin

Research Center of Neurology

Email: zubova.a.v@neurology.ru
Russian Federation, 125367 Moscow

References

  1. Yang, Y., and Sauve, A. A. (2021) Assays for determination of cellular and mitochondrial NAD+ and NADH content, Methods Mol. Biol., 2310, 271-285, https://doi.org/10.1007/978-1-0716-1433-4_15.
  2. Palmeira, C. M., and Rolo, A. P. (2021) Mitochondrial Regulation: Methods and Protocols, in Methods in Molecular Biology, 2310, Humana Press, https://doi.org/10.1007/978-1-0716-1433-4.
  3. Sharma, R., Reinstadler, B., Engelstad, K., Skinner, O. S., Stackowitz, E., Haller, R.G., Clish, C. B., Pierce, K., Walker, M. A., Fryer, R., Oglesbee, D., Mao, X., Shungu, D. C., Khatri, A., Hirano, M., De Vivo, D. C., and Mootha, V. K. (2021) Circulating markers of NADH-reductive stress correlate with mitochondrial disease severity, J. Clin. Invest., 131, e136055, https://doi.org/10.1172/JCI136055.
  4. Azouaoui, D., Choiniere, M. R., Khan, M., Sayfi, S., Jaffer, S., Yousef, S., Patten, D. A., Green, A. E., and Menzies, K. J. (2023) Meta-analysis of NAD(P)(H) quantification results exhibits variability across mammalian tissues, Sci. Rep., 13, 2464, https://doi.org/10.1038/s41598-023-29607-8.
  5. Kane, A. E., and Sinclair, D. A. (2018) Sirtuins and NAD+ in the development and treatment of metabolic and cardiovascular diseases, Circ. Res., 123, 868-885, https://doi.org/10.1161/CIRCRESAHA.118.312498.
  6. Yang, Y., and Sauve, A. A. (2016) NAD+ metabolism: bioenergetics, signaling and manipulation for therapy, Biochim. Biophys. Acta, 1864, 1787-1800, https://doi.org/10.1016/j.bbapap.2016.06.014.
  7. Guarente, L, Sinclair, D. A., and Kroemer, G. (2024) Human trials exploring anti-aging medicines, Cell Metab., 36, 354-376, https://doi.org/10.1016/j.cmet.2023.12.007.
  8. Schwarzmann, L., Pliquett, R. U., Simm, A., and Bartling, B. (2021) Sex-related differences in human plasma NAD+/NADH levels depend on age, Biosci. Rep., 41, BSR20200340, https://doi.org/10.1042/BSR20200340.
  9. Ferrero, E., and Malavasi, F. (2002) A Natural History of the Human CD38 Gene. Cyclic ADP Ribose and NAADP: Structures, Metabolism and Functions, Springer, pp. 65-79, https://doi.org/10.1007/978-1-4615-0269-2_4.
  10. Higashida, H., Hashi,i M., Tanaka, Y., Matsukawa, Sh., Higuchi, Y., Gabata, R., Tsubomoto, M., Seishima, N., Teramachi, M, Kamijima, T., Hattori, T., Hori, O., Tsuji, Ch., Cherepanov, S. M., Shabalova, A. A., Gerasimenko, M., Minami, K., Yokoyama, Sh., Munesue, S., Harashima, A., Harashima, A., Salmina, A. B., and Lopatina, O. (2019) CD38, CD157, and RAGE as molecular determinants for social behavior cells, Cells, 9, 62, https://doi.org/10.3390/cells9010062.
  11. Li, T., Zou, Y., Liu, S., Yang, Y., Zhang, Z., and Zhao, Y. (2022) Monitoring NAD(H) and NADP(H) dynamics during organismal development with genetically encoded fluorescent biosensors, Cell Regenerat., 11, 5, https://doi.org/10.1186/s13619-021-00105-4.
  12. Negelein, E., and Haas, E. (1935) On the mode of action of the intermediate ferment [in German], Biochem. J., 282, 206-220.
  13. Greengard, P. (1956) Determination of intermediary metabolites by enzymic fluorimetry, Nature, 178, 632-634, https://doi.org/10.1038/178632a0.
  14. Lowry, O. H., Roberts, N. R., and Kapphahn, J. I. (1957) The fluorometric measurement of pyridine nucleotides, J. Biol. Chem., 224, 1047-1064, https://doi.org/10.1016/S0021-9258(18)64996-8.
  15. Howse, D. C., and Duffy, T. E. (1975) Control of the redox state of the pyridine nucleotides in the rat cerebral cortex. Effect of electroshock-induced seizures, J. Neurochem., 24, 935-940, https://doi.org/10.1111/j.1471-4159.1975.tb03658.x.
  16. Duffy, T. E., Howse, D. C., and Plum, F. (1975) Cerebral energy metabolism during experimental status epilepticus 1, J. Neurochem., 24, 925-934, https://doi.org/10.1111/j.1471-4159.1975.tb03657.x.
  17. Williamson, J. R. and Corkey, B. E. (1969) Assays of intermediates of the citric acid cycle and related compounds by fluorometric enzyme methods, Methods Enzymol., 13, 466-468, https://doi.org/10.1016/0076-6879(69)13072-4.
  18. Tischler, M. E., Hecht, P., and Williamson, J. R. (1977) Effect of ammonia on mitochondrial and cytosolic NADH and NADPH systems in isolated rat liver cells, FEBS Lett., 76, 99-104, https://doi.org/10.1016/0014-5793(77)80129-4.
  19. LaNoue, K. F., Watts, J. A., and Koch, C. D. (1981) Adenine nucleotide transport during cardiac ischemia, Am. J. Physiol. Heart Circ. Physiol., 241, H663-H671, https://doi.org/10.1152/ajpheart.1981.241.5.H663.
  20. Kharechkina, E. S., Nikiforova, A. B., and Kruglov, A. G. (2023) Regulation of mitochondrial permeability transition pore opening by monovalent cations in liver mitochondria, Int. J. Mol. Sci., 24, 9237, https://doi.org/10.3390/ijms24119237.
  21. Karsanov, N. V., Sukoyan, G. V., Kavadze, I. K., Salibegashvili, N. V., and Golovach, I. V. (2003) Endothelial dysfunction, redox-potential systems of energy supply and aldosterone synthesis in chronic heart failure with and without atrial fibrillation, Russ. J. Cardiol., 4, 28-31.
  22. Potapova, E. V., Zherebtsov, E. A., Shupletsov, V. V., Dremin, V. V., Kandurova, K. Y., Mamoshin, A. V., and Dunaev, A. V. (2024) Detection of NADH and NADPH levels in vivo identifies shift of glucose metabolism in cancer to energy production, FEBS J., 291, 2674-2682. https://doi.org/10.1111/febs.17067.
  23. Гуревич М. М. (1950) Цвет и его измерение, изд-во Акад. наук СССР, Ленинград.
  24. Tsukatani, T., Suenaga, H., Shiga, M., Noguchi, K., Ishiyama, M., Ezoe, T., and Matsumoto, K. (2012) Comparison of the WST-8 colorimetric method and the CLSI broth microdilution method for susceptibility testing against drug-resistant bacteria, J. Microbiol. Methods, 90, 160-166, https://doi.org/10.1016/j.mimet.2012.05.001.
  25. Chamchoy, K., Pakotiprapha, D., Pumirat, P., Leartsakulpanich, U., and Boonyuen, U. (2019) Application of WST-8 based colorimetric NAD(P)H detection for quantitative dehydrogenase assays, BMC Biochem., 20, 4, https://doi.org/10.1186/s12858-019-0108-1.
  26. Veskoukis, A. S., Margaritelis, N. V., Kyparos, A., Paschalis, V., and Nikolaidis, M. G. (2018) Spectrophotometric assays for measuring redox biomarkers in blood and tissues: the NADPH network, Redox Rep., 23, 47-56, https://doi.org/10.1080/13510002.2017.1392695.
  27. Kaskova, Z. M., Tsarkova, A. S., and Yampolsky, I. V. (2016) 1001 lights: luciferins, luciferases, their mechanisms of action and applications in chemical analysis, biology and medicine, Chem. Soc. Rev., 45, 6048-6077, https://doi.org/10.1039/C6CS00296J.
  28. Nasdala, L., Götze, J., and Hanchar, J. M. (2013) Luminescence spectroscopy and imaging: analytical advances and perspectives in the Earth sciences and related disciplines, Miner. Petrol., 107, 349-351, https://doi.org/10.1007/s00710-013-0292-4.
  29. Li, Y., Liu, T., and Sun, J. (2023) Recent advances in N-heterocyclic small molecules for synthesis and application in direct fluorescence cell imaging, Molecules, 28, 733, https://doi.org/10.3390/molecules28020733.
  30. Weber, G. (1957) Intramolecular transfer of electronic energy in dihydro diphosphopyridine nucleotide, Nature, 180, 1409, https://doi.org/10.1038/1801409a0.
  31. Brunnbauer, P., Leder, A., Kamali, C., Kamali, K., Keshi, E., Splith, K., and Krenzien, F. (2018) The nanomolar sensing of nicotinamide adenine dinucleotide in human plasma using a cycling assay in albumin modified simulated body fluids, Sci. Rep., 8, 16110, https://doi.org/10.1038/s41598-018-34350-6.
  32. Kanamori, K. S., de Oliveira, G. C., Auxiliadora-Martins, M., Schoon, R. A., Reid, J. M., and Chini, E. N. (2018) Two different methods of quantification of oxidized nicotinamide adenine dinucleotide (NAD+) and reduced nicotinamide adenine dinucleotide (NADH) intracellular levels: enzymatic coupled cycling assay and ultra-performance liquid chromatography (UPLC)-mass spectrometry, BioProtocol., 8, e2937, https://doi.org/ 10.21769/BioProtoc.2937.
  33. Cirilli, I., Amici, A., Gilley, J., Coleman, M. P., and Orsomando, G. (2024) Adaptation of a commercial NAD+ quantification kit to assay the base-exchange activity and substrate preferences of SARM1, Molecules, 29, 847, https://doi.org/10.3390/molecules29040847.
  34. Schultz, M. B., Lu, Y., Braidy, N., and Sinclair, D. A. (2018) Assays for NAD+-dependent reactions and NAD+ metabolites, Methods Mol. Biol., 1813, 77-90, https://doi.org/10.1007/978-1-4939-8588-3_6.
  35. Krebs, C., Koestner, W., Nissen, M., Welge, V., Parusel, I., Malavasi, F., Leiter, E. H., Santella, R. M., Haag, F., and Koch-Nolte, F. (2003) Flow cytometric and immunoblot assays for cell surface ADP-ribosylation using a monoclonal antibody specific for ethenoadenosine, Anal. Biochem., 314, 108-115, https://doi.org/10.1016/ S0003-2697(02)00640-1.
  36. Cantó, C., and Auwerx, J. (2012) Targeting SIRT1 to improve metabolism: all you need is NAD+? Pharmacol. Rev., 64, 166-187, https://doi.org/10.1124/pr.110.003905.
  37. McReynolds, M. R., Chellappa, K., and Baur, J. A. (2021) Age-related NAD+ decline, Exp. Gerontol., 134, 110888, https://doi.org/10.1016/j.exger.2020.110888.
  38. Vidugiriene, J., Leippe, D., Sobol, M., Vidugiris, G., Zhou, W., Meisenheimer, P., Gautam, P., Wennerberg, K., and Cali J. J. (2014) Bioluminescent cell-based NAD(P)/NAD(P)H assays for rapid dinucleotide measurement and inhibitor screening, Assay Drug Dev. Technol., 12, 514-526, https://doi.org/10.1089/adt.2014.605.
  39. Sadikot, R. T., and Blackwell, T. S. (2008) Bioluminescence: imaging modality for in vitro and in vivo gene expression, Methods Mol. Biol., 477, 383-394, https://doi.org/10.1007/978-1-60327-517-0_29.
  40. Oba, Y., Konishi, K., Yano, D., Shibata, H., Kato, D., and Shirai, T. (2020) Resurrecting the ancient glow of the fireflies, Sci. Adv., 6, eabc5705, https://doi.org/10.1126/sciadv.abc5705.
  41. Есимбекова Э. Н., Торгашина И. Г., Кратасюк В. А. (2009) Сравнение иммобилизованной и растворимой биферментной системы НАДH:ФМН-оксидоредуктаза-люцифераза, Биохимия, 74, 853-859.
  42. Esimbekova, E. N., Torgashina, I. G., Nemtseva, E. V., and Kratasyuk, V. A. (2023) Enzymes immobilized into starch-and gelatin-based hydrogels: properties and application in inhibition assay, Micromachines, 14, 2217, https://doi.org/10.3390/mi14122217.
  43. Ohlendorf, R., Li, N., Phi, Van VD., Schwalm, M., Ke, Y., Dawson, M., Jiang, Y., Das, S., Stallings, B., Zheng, W. T., and Jasanoff, A. (2024) Imaging bioluminescence by detecting localized haemodynamic contrast from photosensitized vasculature, Nat. Biomed. Eng. Vol., 8, 775-786, https://doi.org/10.1038/s41551-024-01210-w.
  44. Wang, H. L., Zhang, J., Cao, S. Q., Lagartos-Donate, M. J., Zhang, S. Q., Lautrup, S., Hu, Z., Lyssiotis, C. A., Houtkooper, R.H., and Fang, E. F. (2024) A luminescent-based protocol for NAD+/NADH detection in C. elegans, mice, and human whole blood, STAR Protoc., 5, 103428, https://doi.org/10.1016/j.xpro.2024.103428.
  45. Xie, W., Xu, A., and Yeung, E. S. (2009) Determination of NAD+ and NADH in a single cell under hydrogen peroxide stress by capillary electrophoresis, Anal. Chem., 81, 1280-1284, https://doi.org/10.1021/ac802249m.
  46. Friedecký, D., Tomková, J., Maier, V., Janost’áková, A., Procházka, M., and Adam, T. (2007) Capillary electrophoretic method for nucleotide analysis in cells: application on inherited metabolic disorders, Electrophoresis, 28, 373-380, https://doi.org/10.1002/elps.200600262.
  47. Rossi, A., and Biancheri, R. (2013) Magnetic resonance spectroscopy in metabolic disorders, Neuroimaging Clin. N. Am., 23, 425-448, https://doi.org/10.1016/j.nic.2012.12.013.
  48. Lu, M., Zhu, X.H., Chen, W. (2016) In vivo (31) P MRS assessment of intracellular NAD metabolites and NAD+/NADH redox state in human brain at 4 T, NMR Biomed., 29, 1010-1017, https://doi.org/10.1002/nbm.3559.
  49. Zhu, X. H., Lu, M., Lee, B. Y., Ugurbil, K., and Chen, W. (2015) In vivo NAD assay reveals the intracellular NAD contents and redox state in healthy human brain and their age dependences, Proc. Natl. Acad. Sci. USA, 112, 2876-2881, https://doi.org/10.1073/pnas.1417921112.
  50. Skupienski, R., Do, K. Q., and Xin, L. (2020) In vivo 31P magnetic resonance spectroscopy study of mouse cerebral NAD content and redox state during neurodevelopment, Sci. Rep., 10, 15623, https://doi.org/10.1038/s41598-020-72492-8.
  51. Fanali, S., Haddad, P. R., Poole, C., and Riekkola, M. L. (2017) Liquid Chromatography: Applications, Elsevier.
  52. Yamada, K., Hara, N., Shibata, T., Osago, H., and Tsuchiya, M. (2006) The simultaneous measurement of nicotinamide adenine dinucleotide and related compounds by liquid chromatography/electrospray ionization tandem mass spectrometry, Anal. Biochem., 352, 282-285, https://doi.org/10.1016/j.ab.2006.02.017.
  53. Ishima, T., Kimura, N., Kobayashi, M., Nagai, R., Osaka, H., and Aizawa, K. (2024) A simple, fast, sensitive LC-MS/MS method to quantify NAD(H) in biological samples: plasma NAD(H) measurement to monitor brain pathophysiology, Int. J. Mol. Sci., 25, 2325, https://doi.org/10.3390/ijms25042325.
  54. Gallo, C. M., Smith, D. L., and Smith, J. S. (2004). Nicotinamide clearance by Pnc1 directly regulates Sir2-mediated silencing and longevity, Mol. Cell. Biol., 24, 1301-1312, https://doi.org/10.1128/MCB.24.3.1301-1312.2004.
  55. Hu, Q., Wu, D., Walker, M., Wang, P., Tian, R., and Wang, W. (2021) Genetically encoded biosensors for evaluating NAD+/NADH ratio in cytosolic and mitochondrial compartments, Cell Rep. Methods, 1, 100116, https://doi.org/10.1016/j.crmeth.2021.100116.
  56. Bilan, D. S., and Belousov, V. V. (2016) Genetically encoded probes for NAD+/NADH monitoring, Free Radic. Biol. Med., 100, 32-42, https://doi.org/10.1016/j.freeradbiomed.2016.06.018.
  57. Gaudino, F., Manfredonia, I., Managò, A., Audrito, V., Raffaelli, N., Vaisitti, T., and Deaglio, S. (2019) Subcellular characterization of nicotinamide adenine dinucleotide biosynthesis in metastatic melanoma by using organelle-specific biosensors, Antioxid. Redox Signal., 31, 1150-1165, https://doi.org/10.1089/ars.2019.7799.
  58. Bilan, D. S., Matlashov, M. E., Gorokhovatsky, A. Y., Schultz, C., Enikolopov, G., and Belousov, V. V. (2014) Genetically encoded fluorescent indicator for imaging NAD+/NADH ratio changes in different cellular compartments, Biochim. Biophys. Acta, 1840, 951-957, https://doi.org/10.1016/j.bbagen.2013.11.018.
  59. Lopatina, O., Inzhutova, A., Salmina, A. B., and Higashida, H. (2013) The roles of oxytocin and CD38 in social or parental behaviors, Front. Neurosci., 6, 182, https://doi.org/10.3389/fnins.2012.00182.
  60. Liu, S., Su, Y., Lin, M. Z., and Ronald, J. A. (2021) Brightening up biology: advances in luciferase systems for in vivo imaging, ACS Chem. Biol., 16, 2707-2718, https://doi.org/10.1021/acschembio.1c00549.
  61. Maric, T., Bazhin, A., Khodakivskyi, P., Mikhaylov, G., Solodnikova, E., Yevtodiyenko, A., Giordano Attianese, G. M. P., Coukos, G., Irving, M., Joffraud, M., Cantó, C., and Goun, E. (2023) A bioluminescent-based probe for in vivo non-invasive monitoring of nicotinamide riboside uptake reveals a link between metastasis and NAD+ metabolism, Biosens. Bioelectron., 220, 114826, https://doi.org/10.1016/j.bios.2022.114826.
  62. Blacker, T. S., Mann, Z. F., Gale, J. E., Ziegler, M., Bain, A. J., Szabadkai, G., and Duchen, M. R. (2014) Separating NADH and NADPH fluorescence in live cells and tissues using FLIM, Nat. Commun., 5, 3936, https://doi.org/10.1038/ncomms4936.
  63. Snyder, G. A., Kumar, S., Lewis, G. K., and Ray, K. (2023) Two-photon fluorescence lifetime imaging microscopy of NADH metabolism in HIV-1 infected cells and tissues, Front. Immunol., 14, 1213180, https://doi.org/10.3389/fimmu.2023.1213180.
  64. Song, A., Zhao, N., Hilpert, D. C., Perry, C., Baur, J. A., Wallace, D. C., and Schaefer, P. M. (2024) Visualizing subcellular changes in the NAD(H) pool size versus redox state using fluorescence lifetime imaging microscopy of NADH, Commun. Biol., 7, 428, https://doi.org/10.1038/s42003-024-06123-7.
  65. Yaseen, M. A., Sutin, J., Wu, W., Fu, B., Uhlirova, H., Devor, A., and Sakadžić, S. (2017) Fluorescence lifetime microscopy of NADH distinguishes alterations in cerebral metabolism in vivo, Biomed. Optics Expr., 8, 2368-2385, https://doi.org/10.1364/BOE.8.002368.
  66. Gómez, C. A., Sutin, J., Wu, W., Fu, B., Uhlirova, H., Devor, A., and Yaseen, M. A. (2018) Phasor analysis of NADH FLIM identifies pharmacological disruptions to mitochondrial metabolic processes in the rodent cerebral cortex, PLoS One, 13, e0194578, https://doi.org/10.1371/journal.pone.0194578.
  67. Erkkilä, M. T., Reichert, D., Gesperger, J., Kiesel, B., Roetzer, T., Mercea, P. A., and Widhalm, G. (2020) Macroscopic fluorescence-lifetime imaging of NADH and protoporphyrin IX improves the detection and grading of 5-aminolevulinic acid-stained brain tumors, Sci. Rep., 10, 20492, https://doi.org/10.1038/s41598-020-77268-8.
  68. Niederschweiberer, M. A., Schaefer, P. M., Singh, L. N., Lausser, L., Bhosale, D., Hesse, R., and von Arnim, C. A. (2021) NADH fluorescence lifetime imaging microscopy reveals selective mitochondrial dysfunction in neurons overexpressing Alzheimer’s disease-related proteins, Front. Mol. Biosci., 8, 671274, https://doi.org/10.3389/fmolb.2021.671274.
  69. Blacker, T. S., and Duchen, M. R. (2016) Investigating mitochondrial redox state using NADH and NADPH autofluorescence, Free Radic. Biol. Med., 100, 53-65, https://doi.org/10.1016/j.freeradbiomed.2016.08.010.
  70. Liu, L., Su, X., Quinn, W. J., Hui, S., Krukenberg, K., Frederick, D. W., and Rabinowitz, J. D. (2018) Quantitative analysis of NAD synthesis-breakdown fluxes, Cell Metab., 27, 1067-1080, https://doi.org/10.1016/j.cmet. 2018.03.018.
  71. Deshmukh, A., Arfuso, F., Newsholme, P., and Dharmarajan, A. (2018) Regulation of cancer stem cell metabolism by secreted frizzled-related protein 4 (sFRP4), Cancers, 10, 40, https://doi.org/10.3390/cancers10020040.
  72. Liu, Q., Zhang, L., Chen, Z., He, Y., Huang, Y., Qiu, C., and Wan, G. (2024) Metabolic profiling of cochlear organoids identifies α-ketoglutarate and NAD+ as limiting factors for hair cell reprogramming, Adv. Sci., 11, 2308032, https://doi.org/10.1002/advs.202308032.
  73. Hong, Y., Zhang, Z., Yangzom, T., Chen, A., Lundberg, B. C., Fang, E. F., and Liang, K. X. (2024) The NAD+ precursor nicotinamide riboside rescues mitochondrial defects and neuronal loss in iPSC derived cortical organoid of Alpers’ disease, Int. J. Biol. Sci., 20, 1194-1217, https://doi.org/10.7150/ijbs.91624.
  74. Yang, L., Ruan, Z., Lin, X., Wang, H., Xin, Y., Tang, H., and Liu, X. (2024) NAD+ dependent UPRmt activation underlies intestinal aging caused by mitochondrial DNA mutations, Nat. Commun., 15, 546, https://doi.org/10.1038/s41467-024-44808-z.
  75. Pérez, M. J., Ivanyuk, D., Panagiotakopoulou, V., Di Napoli, G., Kalb, S., Brunetti, D., and Deleidi, M. (2021) Loss of function of the mitochondrial peptidase PITRM1 induces proteotoxic stress and Alzheimer’s disease-like pathology in human cerebral organoids, Mol. Psychiatry, 26, 5733-5750, https://doi.org/10.1038/s41380-020-0807-4.
  76. Schöndorf, D. C., Ivanyuk, D., Baden, P., Sanchez-Martinez, A., De Cicco, S., Yu, C., and Deleidi, M. (2018) The NAD+ precursor nicotinamide riboside rescues mitochondrial defects and neuronal loss in iPSC and fly models of Parkinson’s disease, Cell Rep., 23, 2976-2988, https://doi.org/10.1016/j.celrep.2018.05.009.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».