Direct neural reprogramming in situ: effectiveness of existing approaches and their possible optimizations

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Direct neuronal reprogramming (transdifferentiation) in situ of glial cells-astrocytes and microglia-has attracted a substantial interest as a potential approach for the treatment of a wide range of neurodegenerative diseases and injuries of the central nervous system (CNS). The nervous system of higher mammals has a very limited capacity for repair. Disruption of CNS functions due to traumatic injuries or neurodegenerative processes can significantly affect quality of life of patients, leading to mobility- and cognitive impairments, resulting in disability and in some cases death. Restoration of lost neurons in situ, based on direct reprogramming of glial cells without an intermediate stage of pluripotency, appears to be the most attractive approach from the point of view of translational biomedicine. The ability of astroglia to highly proliferate in response to the damage of neural tissue supports the view that these cells, already present at the lesion site and neuronal-like, are good candidates for transdifferentiation into neurons, especially because many independent authors have already shown the possibility of direct neuronal reprogramming of astrocytes in vitro and in vivo. Overexpression of proneuronal transcription factors (TFs), such as NeuroD1-4, NeuroG2, Ascl1, Dlx2, including pioneer factors capable of recognizing target sequences in “closed” chromatin and activating transcription of “silent” genes, has already proven to be a potential therapeutic strategy. Furthermore, blocking the action of PTB and REST TFs via microRNAs, using small molecules or various biomaterials are also utilized for neuronal reprogramming. However, the efficiency of direct in situ reprogramming is limited by a number of factors, including the cell-specificity of the transgene delivery systems, the cell-specificity of promoters in the genetically engineered constructs used for transgene delivery, the brain region in which transdifferentiation occurs, factors affecting the changes of cell metabolism, the influence of microenvironment, etc. Reprogramming in situ, where a large number of cell types are present, requires monitoring and precise phenotypic characterization of subpopulations of cells undergoing transdifferentiation, confirming the fact of reprogramming of astroglia into neurons and their subsequent integration into the CNS. Here, we review and summarize the most effective strategies of neuronal reprogramming, ways to visualize the transdifferentiation process, and also focus on the existing obstacles to effective neuronal conversion and possible approaches to overcome them.

About the authors

N. V. Dokukin

Federal Center for Brain and Neurotechnology FMBA of Russia

Email: baklaushev@fccps.ru
Russian Federation, 117513 Moscow

D. A. Chudakova

Federal Center for Brain and Neurotechnology FMBA of Russia; National Medical Research Center of Children’s Health of the Ministry of Health of the Russian Federation

Email: baklaushev@fccps.ru
Russian Federation, 117513 Moscow; 119991 Moscow

M. O. Shkap

Federal Center for Brain and Neurotechnology FMBA of Russia

Email: baklaushev@fccps.ru
Russian Federation, 117513 Moscow

A. M. Kovalchuk

Federal Center for Brain and Neurotechnology FMBA of Russia

Email: baklaushev@fccps.ru
Russian Federation, 117513 Moscow

P. D. Kibirsky

Federal Center for Brain and Neurotechnology FMBA of Russia

Email: baklaushev@fccps.ru
Russian Federation, 117513 Moscow

V. P. Baklaushev

Federal Center for Brain and Neurotechnology FMBA of Russia; Federal Scientific and Clinical Center for Specialized Types of Medical Care and Medical Technologies of the Federal Medical and Biological Agency of Russia; Research Institute of Pulmonology FMBA of Russia; Institute of Molecular Biology named after. V. A. Engelhardt, Russian Academy of Sciences

Author for correspondence.
Email: baklaushev@fccps.ru
Russian Federation, 117513 Moscow; 115682 Moscow; 115682 Moscow; 119991 Moscow

References

  1. Vasan, L., Park, E., David, L. A., Fleming, T., and Schuurmans, C. (2021) Direct neuronal reprogramming: Bridging the gap between basic science and clinical application, Front. Cell Dev. Biol., 9, 681087, https://doi.org/10.3389/fcell.2021.681087.
  2. Pavlinkova, G., and Smolik, O. (2024) NEUROD1: Transcriptional and epigenetic regulator of human and mouse neuronal and endocrine cell lineage programs, Front. Cell Dev. Biol., 12, 1435546, https://doi.org/10.3389/fcell.2024.1435546.
  3. Chen, X. D., Liu, H. L., Li, S., Hu, K. B., Wu, Q. Y., Liao, P., Wang, H. Y., Long, Z. Y., Lu, X. M., and Wang, Y. T. (2023) The latest role of nerve-specific splicing factor PTBP1 in the transdifferentiation of glial cells into neurons, Wiley Interdiscip. Rev. RNA, 14, e1740, https://doi.org/10.1002/wrna.1740.
  4. Liang, S., Zhou, J., Yu, X., Lu, S., and Liu, R. (2024) Neuronal conversion from glia to replenish the lost neurons, Neural Regen. Res., 19, 1446-1453, https://doi.org/10.4103/1673-5374.386400.
  5. Liddelow, S. A., and Barres, B. A. (2017) Reactive astrocytes: Production, function, and therapeutic potential, Immunity, 46, 957-967, https://doi.org/10.1016/j.immuni.2017.06.006.
  6. Bocchi, R., Masserdotti, G., and Götz, M. (2022) Direct neuronal reprogramming: Fast forward from new concepts toward therapeutic approaches, Neuron, 110, 366-393, https://doi.org/10.1016/j.neuron.2021.11.023.
  7. Denoth-Lippuner, A., and Jessberger, S. (2021) Formation and integration of new neurons in the adult hippocampus, Nat. Rev. Neurosci., 22, 223-236, https://doi.org/10.1038/s41583-021-00433-z.
  8. Lentini, C., d’Orange, M., Marichal, N., Trottmann, M. M., Vignoles, R., Foucault, L., Verrier, C., Massera, C., Raineteau, O., Conzelmann, K. K., Rival-Gervier, S., Depaulis, A., Berninger, B., and Heinrich, C. (2021) Reprogramming reactive glia into interneurons reduces chronic seizure activity in a mouse model of mesial temporal lobe epilepsy, Cell Stem Cell, 28, 2104-2121, https://doi.org/10.1016/j.stem.2021.09.002.
  9. Tai, W., Wu, W., Wang, L. L., Ni, H., Chen, C., Yang, J., Zang, T., Zou, Y., Xu, X. M., and Zhang, C. L. (2021) In vivo reprogramming of NG2 glia enables adult neurogenesis and functional recovery following spinal cord injury, Cell Stem Cell, 28, 923-937, https://doi.org/10.1016/j.stem.2021.02.009.
  10. Leaman, S., Marichal, N., and Berninger, B. (2022) Reprogramming cellular identity in vivo, Development, 149, dev200433, https://doi.org/10.1242/dev.200433.
  11. Jiang, M. Q., Yu, S. P., Wei, Z. Z., Zhong, W., Cao, W., Gu, X., Wu, A., McCrary, M. R., Berglund, K., and Wei, L. (2021) Conversion of reactive astrocytes to induced neurons enhances neuronal repair and functional recovery after ischemic stroke, Front. Aging Neurosci., 13, 612856, https://doi.org/10.3389/fnagi.2021.612856.
  12. Matsuda, T., Irie, T., Katsurabayashi, S., Hayashi, Y., Nagai, T., Hamazaki, N., Adefuin, A. M. D., Miura, F., Ito, T., Kimura, H., Shirahige, K., Takeda, T., Iwasaki, K., Imamura, T., and Nakashima, K. (2019) Pioneer factor NeuroD1 rearranges transcriptional and epigenetic profiles to execute microglia-neuron conversion, Neuron, 101, 472-485, https://doi.org/10.1016/j.neuron.2018.12.010.
  13. Guo, Z., Zhang, L., Wu, Z., Chen, Y., Wang, F., and Chen, G. (2014) In vivo direct reprogramming of reactive glial cells into functional neurons after brain injury and in an Alzheimer’s disease model, Cell Stem Cell, 14, 188-202, https://doi.org/10.1016/j.stem.2013.12.001.
  14. Puls, B., Ding, Y., Zhang, F., Pan, M., Lei, Z., Pei, Z., Jiang, M., Bai, Y., Forsyth, C., Metzger, M., Rana, T., Zhang, L., Ding, X., Keefe, M., Cai, A., Redilla, A., Lai, M., He, K., Li, H., and Chen, G. (2020) Regeneration of functional neurons after spinal cord injury via in situ NeuroD1-mediated astrocyte-to-neuron conversion, Front. Cell Dev. Biol., 8, 591883, https://doi.org/10.3389/fcell.2020.591883.
  15. Ge, L. J., Yang, F. H., Li, W., Wang, T., Lin, Y., Feng, J., Chen, N. H., Jiang, M., Wang, J. H., Hu, X. T., and Chen, G. (2020) In vivo neuroregeneration to treat ischemic stroke through NeuroD1 AAV-based gene therapy in adult non-human primates, Front. Cell Dev. Biol., 8, 590008, https://doi.org/10.3389/fcell.2020.590008.
  16. Liu, M. H., Xu, Y. G., Bai, X. N., Lin, J. H., Xiang, Z. Q., Wang, T., Xu, L., ans Chen, G. (2024) Efficient Dlx2-mediated astrocyte-to-neuron conversion and inhibition of neuroinflammation by NeuroD1, Dev. Neurobiol., 84, 274-290, https://doi.org/10.1002/dneu.22951.
  17. Mattugini, N., Bocchi, R., Scheuss, V., Russo, G. L., Torper, O., Lao, C. L., and Götz, M. (2019) Inducing different neuronal subtypes from astrocytes in the injured mouse cerebral cortex, Neuron, 103, 1086-1095, https://doi.org/10.1016/j.neuron.2019.08.009.
  18. Liu, F., Zhang, Y., Chen, F., Yuan, J., Li, S., Han, S., Lu, D., Geng, J., Rao, Z., Sun, L., Xu, J., Shi, Y., Wang, X., and Liu, Y. (2021) Neurog2 directly converts astrocytes into functional neurons in midbrain and spinal cord, Cell Death Dis., 12, 225, https://doi.org/10.1038/s41419-021-03498-x.
  19. Chen, J., Li, Z., and Chen, L. (2022) Reactive glia-to-GABAergic neuron reprogramming: a “golden touch” strategy to alleviate intractable seizures, Acta Epileptol., 4, https://doi.org/10.1186/s42494-022-00104-1.
  20. Liu, Y., Miao, Q., Yuan, J., Han, S., Zhang, P., Li, S., Rao, Z., Zhao, W., Ye, Q., Geng, J., Zhang, X., and Cheng, L. (2015) Ascl1 converts dorsal midbrain astrocytes into functional neurons in vivo, J. Neurosci., 35, 9336-9355, https://doi.org/10.1523/JNEUROSCI.3975-14.2015.
  21. Papadimitriou, E., Koutsoudaki, P. N., Thanou, I., Karagkouni, D., Karamitros, T., Chroni-Tzartou, D., Gaitanou, M., Gkemisis, C., Margariti, M., Xingi, E., Tzartos, S. J., Hatzigeorgiou, A. G., and Thomaidou, D. (2023) A miR-124-mediated post-transcriptional mechanism controlling the cell fate switch of astrocytes to induced neurons, Stem Cell Rep., 18, 915–935, https://doi.org/10.1016/j.stemcr.2023.02.009.
  22. Qian, H., Kang, X., Hu, J., Zhang, D., Liang, Z., Meng, F., Zhang, X., Xue, Y., Maimon, R., Dowdy, S. F., Devaraj, N. K., Zhou, Z., Mobley, W. C., Cleveland, D. W., and Fu, X. D. (2020) Reversing a model of Parkinson’s disease with in situ converted nigral neurons, Nature, 582, 550-556, https://doi.org/10.1038/s41586-020-2388-4.
  23. Yang, R. Y., Chai, R., Pan, J. Y., Bao, J. Y., Xia, P. H., Wang, Y. K., Chen, Y., Li, Y., Wu, J., and Chen, G. (2023) Knockdown of polypyrimidine tract binding protein facilitates motor function recovery after spinal cord injury, Neural Regener. Res., 18, 396-403, https://doi.org/10.4103/1673-5374.346463.
  24. Lau, K. (2024) In situ cellular reprogramming: a novel targeting of Parkinson’s disease, Int. J. High Sch. Res., 6, https://doi.org/10.36838/v6i9.10.
  25. Ghosh, H. S. (2019) Adult neurogenesis and the promise of adult neural stem cells, J. Exp. Neurosci., 13, 1179069519856876, https://doi.org/10.1177/1179069519856876.
  26. Ma, N. X., Puls, B., and Chen, G. (2022) Transcriptomic analyses of NeuroD1-mediated astrocyte-to-neuron conversion, Dev. Neurobiol., 82, 375-391, https://doi.org/10.1002/dneu.22882.
  27. Mahmoudi, N., Wang, Y., Moriarty, N., Ahmed, N. Y., Dehorter, N., Lisowski, L., Harvey, A. R., Parish, C. L., Williams, R. J., and Nisbet, D. R. (2024) Neuronal replenishment via hydrogel-rationed delivery of reprogramming factors, ACS Nano, 18, 3597-3613, https://doi.org/10.1021/acsnano.3c11337.
  28. Talifu, Z., Zhang, C., Xu, X., Pan, Y., Ke, H., Li, Z., Liu, W., Du, H., Wang, X., Gao, F., Yang, D., Jing, Y., Yu, Y., Du, L., and Li, J. (2024) Neuronal repair after spinal cord injury by in vivo astrocyte reprogramming mediated by the overexpression of NeuroD1 and Neurogenin-2, Biol. Res., 57, 53, https://doi.org/10.1186/ s40659-024-00534-w.
  29. Kim, J., Son, Y. W., Hwang, K., Park, H. W., Kim, Y., Kim, M., Shin, J., Park, K. I., Lee, S., and Jang, J. H. (2023) Synergistic enhancement of adeno-associated virus-mediated in vivo direct neuronal reprogramming by spatially aligned fibrous matrices in spinal cord injury models, Adv. Ther., 6, https://doi.org/10.1002/adtp. 202300040.
  30. Kim, M., Oh, S., Kim, S., Kim, I. S., Kim, J., Han, J., Ahn, J. W., Chung, S., Jang, J. H., Shin, J. E., and Park, K. I. (2024) In vivo neural regeneration via AAV-NeuroD1 gene delivery to astrocytes in neonatal hypoxic-ischemic brain injury, Inflamm. Regener., 44, 33, https://doi.org/10.1186/s41232-024-00349-y.
  31. De la Rossa, A., Bellone, C., Golding, B., Vitali, I., Moss, J., Toni, N., Lüscher, C., and Jabaudon, D. (2013) In vivo reprogramming of circuit connectivity in postmitotic neocortical neurons, Nat. Neurosci., 16, 193-200, https://doi.org/10.1038/nn.3299.
  32. Rouaux, C., and Arlotta, P. (2013) Direct lineage reprogramming of post-mitotic callosal neurons into corticofugal neurons in vivo, Nat. Cell Biol., 15, 214-221, https://doi.org/10.1038/ncb2660.
  33. Felske, T., Tocco, C., Péron, S., Harb, K., Alfano, C., Galante, C., Berninger, B., and Studer, M. (2023) Lmo4 synergizes with Fezf2 to promote direct in vivo reprogramming of upper layer cortical neurons and cortical glia towards deep-layer neuron identities, PLoS Biol., 21, e3002237, https://doi.org/10.1371/journal. pbio.3002237.
  34. Pereira, M., Birtele, M., Shrigley, S., Benitez, J. A., Hedlund, E., Parmar, M., and Ottosson, D. R. (2017) Direct reprogramming of resident NG2 glia into neurons with properties of fast-spiking parvalbumin-containing interneurons, Stem Cell Rep., 9, 742-751, https://doi.org/10.1016/j.stemcr.2017.07.023.
  35. Trovato, F., Stefani, F. R., Li, J., Zetterdahl, O. G., Canals, I., Ahlenius, H., and Bengzon, J. (2023) Transcription factor-forced astrocytic differentiation impairs human glioblastoma growth in vitro and in vivo, Mol. Cancer Ther., 22, 274-286, https://doi.org/10.1158/1535-7163.MCT-21-0903.
  36. Wang, H., Zhao, P., Zhang, Y., Chen, Z., Bao, H., Qian, W., Wu, J., Xing, Z., Hu, X., Jin, K., Zhuge, Q., and Yang, J. (2023) NeuroD4 converts glioblastoma cells into neuron-like cells through the SLC7A11-GSH-GPX4 antioxidant axis, Cell Death Discov., 9, 297, https://doi.org/10.1038/s41420-023-01595-8.
  37. Patton, J. G., Mayer, S. A., Tempst, P., and Nadal-Ginard, B. (1991) Characterization and molecular cloning of polypyrimidine tract-binding protein: a component of a complex necessary for pre-mRNA splicing, Genes Dev., 5, 1237-1251, https://doi.org/10.1101/gad.5.7.1237.
  38. Vuong, C. K., Black, D. L., and Zheng, S. (2016) The neurogenetics of alternative splicing, Nat. Rev. Neurosci., 17, 265-281, https://doi.org/10.1038/nrn.2016.27.
  39. Hamid, F. M., and Makeyev, E. V. (2017) A mechanism underlying position-specific regulation of alternative splicing, Nucleic Acids Res., 45, 12455-12468, https://doi.org/10.1093/nar/gkx901.
  40. Zhou, H., Su, J., Hu, X., Zhou, C., Li, H., Chen, Z., Xiao, Q., Wang, B., Wu, W., Sun, Y., Zhou, Y., Tang, C., Liu, F., Wang, L., Feng, C., Liu, M., Li, S., Zhang, Y., Xu, H., Yao, H., Shi, L., and Yang, H. (2020) Glia-to-neuron conversion by CRISPR-CasRx alleviates symptoms of neurological disease in mice, Cell, 181, 590-603, https://doi.org/10.1016/ j.cell.2020.03.024.
  41. Liu, J., Xin, X., Sun, J., Fan, Y., Zhou, X., Gong, W., Yang, M., Li, Z., Wang, Y., Yang, Y., and Gao, C. (2024) Dual-targeting AAV9P1-mediated neuronal reprogramming in a mouse model of traumatic brain injury, Neural Regener. Res., 19, 629-635, https://doi.org/10.4103/1673-5374.380907.
  42. Wang, L. L., Serrano, C., Zhong, X., Ma, S., Zou, Y., and Zhang, C. L. (2021) Revisiting astrocyte-to-neuron conversion with lineage tracing in vivo, Cell, 184, 5465-5481, https://doi.org/10.1016/j.cell.2021.09.005.
  43. Wang, L. L., and Zhang, C. L. (2023) Therapeutic potential of PTBP1 inhibition, if any, is not attributed to glia-to-neuron conversion, Annu. Rev. Neurosci., 46, 1-15, https://doi.org/10.1146/annurev-neuro-092822-083410.
  44. Demir, E. A., Tutuk, O., Dogan, H., and Tumer, C. (2019) In Depression in Alzheimer’s Disease: The Roles of Cholinergic and Serotonergic Systems (Wisniewski, T., ed), Alzheimer’s Disease, Codon Publications, Chap. 14.
  45. Hampel, H., Mesulam, M. M., Cuello, A. C., Farlow, M. R., Giacobini, E., Grossberg, G. T., Khachaturian, A. S., Vergallo, A., Cavedo, E., Snyder, P. J., and Khachaturian, Z. S. (2018) The cholinergic system in the pathophysiology and treatment of Alzheimer’s disease, Brain, 141, 1917-1933, https://doi.org/10.1093/ brain/awy132.
  46. Chen, L., Ke, Y., Ma, H., Gao, L., Zhou, Y., Zhu, H., Liu, H., Zhang, F., and Zhou, W. (2021) Fluoxetine and ketamine reverse the depressive but not anxiety behavior induced by lesion of cholinergic neurons in the horizontal limb of the diagonal band of Broca in male rat, Front. Behav. Neuroscience., 15, 602708, https://doi.org/10.3389/fnbeh.2021.602708.
  47. Zhou, Y., Zhang, K., Wang, F., Chen, J., Chen, S., Wu, M., Lai, M., Zhang, Y., and Zhou, W. (2023) Polypyrimidine tract binding protein knockdown reverses depression-like behaviors and cognition impairment in mice with lesioned cholinergic neurons, Front. Aging Neurosci., 15, 1174341, https://doi.org/10.3389/fnagi. 2023.1174341.
  48. Fukui, Y., Morihara, R., Hu, X., Nakano, Y., Yunoki, T., Takemoto, M., Abe, K., and Yamashita, T. (2024) Suppression of PTBP1 in hippocampal astrocytes promotes neurogenesis and ameliorates recognition memory in mice with cerebral ischemia, Sci. Rep., 14, 20521, https://doi.org/10.1038/s41598-024-71212-w.
  49. Faravelli, I., and Corti, S. (2018) MicroRNA-directed neuronal reprogramming as a therapeutic strategy for neurological diseases, Mol. Neurobiol., 55, 4428-4436, https://doi.org/10.1007/s12035-017-0671-7.
  50. Chen, X., and Li, H. (2022) Neuronal reprogramming in treating spinal cord injury, Neural Regen. Res., 17, 1440-1445, https://doi.org/10.4103/1673-5374.330590.
  51. Schneider, J. W., Gao, Z., Li, S., Farooqi, M., Tang, T. S., Bezprozvanny, I., Frantz, D. E., and Hsieh, J. (2008) Small-molecule activation of neuronal cell fate, Nat. Chem. Biol., 4, 408-410, https://doi.org/10.1038/ nchembio.95.
  52. Dai, W., Li, W., Hoque, M., Li, Z., Tian, B., and Makeyev, E. V. (2015) A post-transcriptional mechanism pacing expression of neural genes with precursor cell differentiation status, Nat. Commun., 6, 7576, https://doi.org/ 10.1038/ncomms8576.
  53. Hevner, R. F., Hodge, R. D., Daza, R. A., and Englund, C. (2006) Transcription factors in glutamatergic neurogenesis: conserved programs in neocortex, cerebellum, and adult hippocampus, Neurosci. Res., 55, 223-233, https://doi.org/10.1016/j.neures.2006.03.004.
  54. Mseis-Jackson, N., Sharma, M., and Li, H. (2024) Controlling the expression level of the neuronal reprogramming factors for a successful reprogramming outcome, Cells, 13, 1223, https://doi.org/10.3390/cells13141223.
  55. Xu, D., Zhong, L. T., Cheng, H. Y., Wang, Z. Q., Chen, X. M., Feng, A. Y., Chen, W. Y., Chen, G., and Xu, Y. (2023) Overexpressing NeuroD1 reprograms Müller cells into various types of retinal neurons, Neural Regener. Res., 18, 1124-1131, https://doi.org/10.4103/1673-5374.355818.
  56. Niceforo, A., Zholudeva, L. V., Fernandes, S., Lane, M. A., and Qiang, L. (2024) Challenges and efficacy of astrocyte-to-neuron reprogramming in spinal cord injury: in vitro insights and in vivo outcomes, bioRxiv, 2024.03.25.586619, https://doi.org/10.1101/2024.03.25.586619.
  57. Svendsen, C. N., and Sofroniew, M. V. (2022) Lineage tracing: The gold standard to claim direct reprogramming in vivo, Mol. Ther., 30, 988-989, https://doi.org/10.1016/j.ymthe.2022.01.029.
  58. Huang, L., Lai, X., Liang, X., Chen, J., Yang, Y., Xu, W., Qin, Q., Qin, R., Huang, X., Xie, M., and Chen, L. (2024) A promise for neuronal repair: reprogramming astrocytes into neurons in vivo, Biosci. Rep., 44, BSR20231717, https://doi.org/10.1042/BSR20231717.
  59. Wang, L.-L., and Zhang, C. L. (2022) In vivo glia-to-neuron conversion: pitfalls and solutions, Development, Neurobiol., 82, 367-374, https://doi.org/10.1002/dneu.22880.
  60. Xiang, Z., Xu, L., Liu, M., Wang, Q., Li, W., Lei, W., and Chen, G. (2021) Lineage tracing of direct astrocyte-to-neuron conversion in the mouse cortex, Neural Regen. Res., 16, 750-756, https://doi.org/10.4103/1673-5374.295925.
  61. Fu, X., Zhu, J., Duan, Y., Li, G., Cai, H., Zheng, L., Qian, H., Zhang, C., Jin, Z., Fu, X. D., and Zhang, K. (2020) Visual function restoration in genetically blind mice via endogenous cellular reprogramming, bioRxiv, https://doi.org/10.1101/2020.04.08.030981.
  62. Maimon, R., Chillon-Marinas, C., Snethlage, C. E., Singhal, S. M., McAlonis-Downes, M., Ling, K., Rigo, F., Bennett, C. F., Da Cruz, S., Hnasko, T. S., Muotri, A. R., and Cleveland, D. W. (2021) Therapeutically viable generation of neurons with antisense oligonucleotide suppression of PTB, Nat. Neurosci., 24, 1089-1099, https://doi.org/10.1038/s41593-021-00864-y.
  63. Hoang, T., Kim, D. W., Appel, H., Pannullo, N. A., Leavey, P., Ozawa, M., Zheng, S., Yu, M., Peachey, N. S., and Blackshaw, S. (2022) Genetic loss of function of Ptbp1 does not induce glia-to-neuron conversion in retina, Cell Rep., 39, 110849, https://doi.org/10.1016/j.celrep.2022.110849.
  64. Irie, T., Matsuda, T., Hayashi, Y., Matsuda-Ito, K., Kamiya, A., Masuda, T., Prinz, M., Isobe, N., Kira, J. I., and Nakashima, K. (2023) Direct neuronal conversion of microglia/macrophages reinstates neurological function after stroke, Proc. Natl. Acad. Sci. USA, 120, e2307972120, https://doi.org/10.1073/pnas.2307972120.
  65. Zhang, Y., Li, B., Cananzi, S., Han, C., Wang, L. L., Zou, Y., Fu, Y. X., Hon, G. C., and Zhang, C. L. (2022) A single factor elicits multilineage reprogramming of astrocytes in the adult mouse striatum, Proc. Natl. Acad. Sci. USA, 119, e2107339119, https://doi.org/10.1073/pnas.2107339119.
  66. Livingston, J. M., Lee, T. T., Enbar, T., Daniele, E., Phillips, C. M., Krassikova, A., Bang, K. W. A., Kortebi, I., Donville, B. W., Ibragimov, O. S., Sachewsky, N., Lozano Casasbuenas, D., Olfat, A., and Morshead, C. M. (2024) Ectopic expression of Neurod1 is sufficient for functional recovery following a sensory-motor cortical stroke, Biomedicines, 12, 663, https://doi.org/10.3390/biomedicines12030663.
  67. Xiang, Z., He, S., Chen, R., Liu, S., Liu, M., Xu, L., Zheng, J., Jiang, Z., Ma, L., Sun, Y., Qin, Y., Chen, Y., Li, W., Wang, X., Chen, G., and Lei, W. (2024) Two-photon live imaging of direct glia-to-neuron conversion in the mouse cortex, Neural Regen. Res., 19, 1781-1788, https://doi.org/10.4103/1673-5374.386401.
  68. Borodinova, A. A., Balaban, P. M., Bezprozvanny, I. B., Salmina, A. B., and Vlasova, O. L. (2021) Genetic constructs for the control of astrocytes’ activity, Cells, 10, 1600, https://doi.org/10.3390/cells10071600.
  69. Hu, N. Y., Chen, Y. T., Wang, Q., Jie, W., Liu, Y. S., You, Q. L., Li, Z. L., Li, X. W., Reibel, S., Pfrieger, F. W., Yang, J. M., and Gao, T. M. (2020) Expression patterns of inducible Cre recombinase driven by differential astrocyte-specific promoters in transgenic mouse lines, Neurosci. Bull., 36, 530-544, https://doi.org/10.1007/s12264-019-00451-z.
  70. Srinivasan, R., Lu, T. Y., Chai, H., Xu, J., Huang, B. S., Golshani, P., Coppola, G., and Khakh, B. S. (2016) New transgenic mouse lines for selectively targeting astrocytes and studying calcium signals in astrocyte processes in situ and in vivo, Neuron, 92, 1181-1195, https://doi.org/10.1016/j.neuron.2016.11.030.
  71. Lee, Y., Messing, A., Su, M., and Brenner, M. (2008) GFAP promoter elements required for region-specific and astrocyte-specific expression, Glia, 56, 481-493, https://doi.org/10.1002/glia.20620.
  72. Matsuda-Ito, K., Matsuda, T., and Nakashima, K. (2022) Expression level of the reprogramming factor NeuroD1 is critical for neuronal conversion efficiency from different cell types, Sci. Rep., 12, 17980, https://doi.org/10.1038/s41598-022-22802-z.
  73. O’Carroll, S. J., Cook, W. H., and Young, D. (2021) AAV targeting of glial cell types in the central and peripheral nervous system and relevance to human gene therapy, Front. Mol. Neurosci., 13, 618020, https://doi.org/10.3389/fnmol.2020.618020.
  74. Puglisi, M., Lao, C. L., Wani, G., Masserdotti, G., Bocchi, R., and Götz, M. (2024) Comparing viral vectors and fate mapping approaches for astrocyte-to-neuron reprogramming in the injured mouse cerebral cortex, Cells, 13, 1408, https://doi.org/10.3390/cells13171408.
  75. Cabrera, A., Edelstein, H. I., Glykofrydis, F., Love, K. S., Palacios, S., Tycko, J., Zhang, M., Lensch, S., Shields, C. E., Livingston, M., Weiss, R., Zhao, H., Haynes, K. A., Morsut, L., Chen, Y. Y., Khalil, A. S., Wong, W. W., Collins, J. J., Rosser, S. J., Polizzi, K., Elowitz, M. B., Fussenegger, M., Hilton, I. B., Leonard, J. N., Bintu, L., Galloway, K. E., and Deans, T. L. (2022) The sound of silence: transgene silencing in mammalian cell engineering, Cell Systems, 13, 950-973, https://doi.org/10.1016/j.cels.2022.11.005.
  76. Gascón, S., Murenu, E., Masserdotti, G., Ortega, F., Russo, G. L., Petrik, D., Deshpande, A., Heinrich, C., Karow, M., Robertson, S. P., Schroeder, T., Beckers, J., Irmler, M., Berndt, C., Angeli, J. P., Conrad, M., Berninger, B., and Götz, M. (2016) Identification and successful negotiation of a metabolic checkpoint in direct neuronal reprogramming, Cell Stem Cell, 18, 396-409, https://doi.org/10.1016/j.stem.2015.12.003.
  77. Russo, G. L., Sonsalla, G., Natarajan, P., Breunig, C. T., Bulli, G., Merl-Pham, J., Schmitt, S., Giehrl-Schwab, J., Giesert, F., Jastroch, M., Zischka, H., Wurst, W., Stricker, S. H., Hauck, S. M., Masserdotti, G., and Götz, M. (2021) CRISPR-mediated induction of neuron-enriched mitochondrial proteins boosts direct glia-to-neuron conversion, Cell Stem Cell, 28, 524-534, https://doi.org/10.1016/j.stem.2020.10.015.
  78. Ye, T., Yang, Y., Bai, J., Wu, F. Y., Zhang, L., Meng, L. Y., and Lan, Y. (2023) The mechanical, optical, and thermal properties of graphene influencing its pre-clinical use in treating neurological diseases, Front. Neurosci., 17, 1162493, https://doi.org/10.3389/fnins.2023.1162493.
  79. Chang, Y., Yoo, J., Kim, J., Hwang, Y., Shim, G., Oh, Y.-K., and Kim, J. (2021) Electromagnetized graphene facilitates direct lineage reprogramming into dopaminergic neurons, Adv. Funct. Mater., 31, https://doi.org/10.1002/adfm.202105346.
  80. Yoo, J., Lee, E., Kim, H. Y., Youn, D. H., Jung, J., Kim, H., Chang, Y., Lee, W., Shin, J., Baek, S., Jang, W., Jun, W., Kim, S., Hong, J., Park, H. J., Lengner, C. J., Moh, S. H., Kwon, Y., and Kim, J. (2017) Electromagnetized gold nanoparticles mediate direct lineage reprogramming into induced dopamine neurons in vivo for Parkinson’s disease therapy, Nat. Nanotechnol., 12, 1006-1014, https://doi.org/10.1038/nnano.2017.133.
  81. An, H., Lee, H.-L., Cho, D.-W., Hong, J., Lee, H. Y., Lee, J. M., Woo, J., Lee, J., Park, M., Yang, Y.-S., Han, S.-C., Ha, Y., and Lee, C. J. (2020) TRANsCre-DIONE transdifferentiates scar-forming reactive astrocytes into functional motor neurons, bioRxiv, https://doi.org/10.1101/2020.07.24.215160.
  82. Kallunki, T., Barisic, M., Jäättelä, M., and Liu, B. (2019) How to choose the right inducible gene expression system for mammalian studies? Cells, 8, 796, https://doi.org/10.3390/cells8080796.
  83. Das, A. T., Tenenbaum, L., and Berkhout, B. (2016) Tet-on systems for doxycycline-inducible gene expression, Curr. Gene Ther., 16, 156-167, https://doi.org/10.2174/1566523216666160524144041.
  84. Sullivan, K. A., Vitko, I., Blair, K., Gaykema, R. P., Failor, M. J., San Pietro, J. M., Dey, D., Williamson, J. M., Stornetta, R. L., Kapur, J., and Perez-Reyes, E. (2023) Drug-inducible gene therapy effectively reduces spontaneous seizures in kindled rats but creates off-target side effects in inhibitory neurons, Int. J. Mol. Sci., 24, 11347, https://doi.org/10.3390/ijms241411347.
  85. Pereira, A., Diwakar, J., Masserdotti, G., Beşkardeş, S., Simon, T., So, Y., Martín-Loarte, L., Bergemann, F., Vasan, L., Schauer, T., Danese, A., Bocchi, R., Colomé-Tatché, M., Schuurmans, C., Philpott, A., Straub, T., Bonev, B., and Götz, M. (2024) Direct neuronal reprogramming of mouse astrocytes is associated with multiscale epigenome remodeling and requires Yy1, Nat. Neurosci., 27, 1260-1273, https://doi.org/10.1038/s41593-024-01677-5.
  86. Wang, L. L., Su, Z., Tai, W., Zou, Y., Xu, X. M., and Zhang, C. L. (2016) The p53 pathway controls SOX2-mediated reprogramming in the adult mouse spinal cord, Cell Rep., 17, 891-903, https://doi.org/10.1016/j.celrep. 2016.09.038.
  87. Huang, L., Yuan, Z., Liu, P., and Zhou, T. (2015) Effects of promoter leakage on dynamics of gene expression, BMC Systems Biol., 9, 16, https://doi.org/10.1186/s12918-015-0157-z.
  88. Xie, Y., and Chen, B. (2024) Building the toolbox for in vivo glia-to-neuron reprogramming, Neural Regener. Res., 19, 1171-1172, https://doi.org/10.4103/1673-5374.385869.
  89. Taschenberger, G., Tereshchenko, J., and Kügler, S. (2017) A microRNA124 target sequence restores astrocyte specificity of gfaABC1D-driven transgene expression in AAV-mediated gene transfer, Mol. Ther., 8, 13-25, https://doi.org/10.1016/j.omtn.2017.03.009.
  90. Gleichman, A. J., Kawaguchi, R., Sofroniew, M. V., and Carmichael, S. T. (2023) A toolbox of astrocyte-specific, serotype-independent adeno-associated viral vectors using microRNA targeting sequences, Nat. Commun., 14, 7426, https://doi.org/10.1038/s41467-023-42746-w.
  91. Herrero-Navarro, Á., Puche-Aroca, L., Moreno-Juan, V., Sempere-Ferràndez, A., Espinosa, A., Susín, R., Torres-Masjoan, L., Leyva-Díaz, E., Karow, M., Figueres-Oñate, M., López-Mascaraque, L., López-Atalaya, J. P., Berninger, B., and López-Bendito, G. (2021) Astrocytes and neurons share region-specific transcriptional signatures that confer regional identity to neuronal reprogramming, Sci. Adv., 7, eabe8978, https://doi.org/10.1126/ sciadv.abe8978.
  92. He, S., Guo, Y., Zhang, Y., Li, Y., Feng, C., Li, X., Lin, L., Guo, L., Wang, H., Liu, C., Zheng, Y., Luo, C., Liu, Q., Wang, F., Sun, H., Liang, L., Li, L., Su, H., Chen, J., Pei, D., and Zheng, H. (2015) Reprogramming somatic cells to cells with neuronal characteristics by defined medium both in vitro and in vivo, Cell Regener., 4, https://doi.org/10.1186/s13619-015-0027-6.
  93. Li, Y., Yang, T., Cheng, Y., Hou, J., Liu, Z., Zhao, Y., Chen, S., Qin, Z., Wang, C., Song, W., Ge, H., Li, C., Liang, L., Guo, L., Sun, H., Wu, L. P., and Zheng, H. (2023) Low glutaminase and glycolysis correlate with a high transdifferentiation efficiency in mouse cortex, Cell Prolif., 56, e13422, https://doi.org/10.1111/cpr.13422.
  94. Masserdotti, G., Gillotin, S., Sutor, B., Drechsel, D., Irmler, M., Jørgensen, H. F., Sass, S., Theis, F. J., Beckers, J., Berninger, B., Guillemot, F., and Götz, M. (2015) Transcriptional mechanisms of proneural factors and REST in regulating neuronal reprogramming of astrocytes, Cell Stem Cell, 17, 74-88, https://doi.org/10.1016/j.stem. 2015.05.014.
  95. Bazarek, S. F., Thaqi, M., King, P., Mehta, A. R., Patel, R., Briggs, C. A., Reisenbigler, E., Yousey, J. E., Miller, E. A., Stutzmann, G. E., Marr, R. A., and Peterson, D. A. (2023) Engineered neurogenesis in naïve adult rat cortex by Ngn2-mediated neuronal reprogramming of resident oligodendrocyte progenitor cells, Front. Neurosci., 17, 1237176, https://doi.org/10.3389/fnins.2023.1237176.
  96. Casamassa, A., Cuomo, O., Pannaccione, A., Cepparulo, P., Laudati, G., Valsecchi, V., Annunziato, L., and Pignataro, G. (2022) In brain post-ischemic plasticity, Na+/Ca2+ exchanger 1 and Ascl1 intervene in microglia-dependent conversion of astrocytes into neuronal lineage, Cell Calcium, 105, 102608, https://doi.org/10.1016/ j.ceca.2022.102608.
  97. Pignataro, G., Brancaccio, P., Laudati, G., Valsecchi, V., Anzilotti, S., Casamassa, A., Cuomo, O., and Vinciguerra, A. (2020) Sodium/calcium exchanger as main effector of endogenous neuroprotection elicited by ischemic tolerance, Cell Calcium, 87, 102183, https://doi.org/10.1016/j.ceca.2020.102183.
  98. Verkhratsky A. (2020) Untangling complexities of glial-neuronal communications: astroglial metabolic cascades orchestrate tonic inhibition in the thalamus, Neuron, 108, 585-587, https://doi.org/10.1016/j.neuron.2020.10.025.
  99. Sofroniew, M. V. (2009) Molecular dissection of reactive astrogliosis and glial scar formation, Trends Neurosci., 32, 638-647, https://doi.org/10.1016/j.tins.2009.08.002.
  100. Götz, M., Sirko, S., Beckers, J., and Irmler, M. (2015) Reactive astrocytes as neural stem or progenitor cells: in vivo lineage, in vitro potential, and genome-wide expression analysis, Glia, 63, 1452-1468, https://doi.org/ 10.1002/glia.22850.
  101. Falco, A., Bartolomé-Cabrero, R., and Gascón, S. (2021) Bcl-2-assisted reprogramming of mouse astrocytes and human fibroblasts into induced neurons, Methods Mol. Biol., 2352, 57-71, https://doi.org/10.1007/978-1-0716-1601-7_5.
  102. Heinrich, C., Bergami, M., Gascón, S., Lepier, A., Viganò, F., Dimou, L., Sutor, B., Berninger, B., and Götz, M. (2014) Sox2-mediated conversion of NG2 glia into induced neurons in the injured adult cerebral cortex, Stem Cell Rep., 3, 1000-1014, https://doi.org/10.1016/j.stemcr.2014.10.007.
  103. Grande, A., Sumiyoshi, K., López-Juárez, A., Howard, J., Sakthivel, B., Aronow, B., Campbell, K., and Nakafuku, M. (2013) Environmental impact on direct neuronal reprogramming in vivo in the adult brain, Nat. Commun., 4, 2373, https://doi.org/10.1038/ncomms3373.
  104. Sirko, S., Behrendt, G., Johansson, P. A., Tripathi, P., Costa, M., Bek, S., Heinrich, C., Tiedt, S., Colak, D., Dichgans, M., Fischer, I. R., Plesnila, N., Staufenbiel, M., Haass, C., Snapyan, M., Saghatelyan, A., Tsai, L. H., Fischer, A., Grobe, K., Dimou, L., and Götz, M. (2013) Reactive glia in the injured brain acquire stem cell properties in response to sonic hedgehog, Cell Stem Cell, 12, 426-439, https://doi.org/10.1016/j.stem.2013.01.019.
  105. Bröhl, D., Strehle, M., Wende, H., Hori, K., Bormuth, I., Nave, K. A., Müller, T., and Birchmeier, C. (2008) A transcriptional network coordinately determines transmitter and peptidergic fate in the dorsal spinal cord, Dev. Biol., 322, 381-393, https://doi.org/10.1016/j.ydbio.2008.08.002.
  106. Tan, Z., Qin, S., Yuan, Y., Hu, X., Huang, X., Liu, H., Pu, Y., He, C., and Su, Z. (2022) NOTCH1 signaling regulates the latent neurogenic program in adult reactive astrocytes after spinal cord injury, Theranostics, 12, 4548-4563, https://doi.org/10.7150/thno.71378.
  107. Hao, X. Z., Sun, C. F., Lin, L. Y., Li, C. C., Zhao, X. J., Jiang, M., Yang, Y. M., and Yao, Z. W. (2023) Inhibition of Notch 1 signaling in the subacute stage after stroke promotes striatal astrocyte-derived neurogenesis, Neural Regener. Res., 18, 1777-1781, https://doi.org/10.4103/1673-5374.363179.
  108. Le, N., Vu, T. D., Palazzo, I., Pulya, R., Kim, Y., Blackshaw, S., and Hoang, T. (2024) Robust reprogramming of glia into neurons by inhibition of Notch signaling and nuclear factor I (NFI) factors in adult mammalian retina, Sci. Adv., 10, eadn2091, https://doi.org/10.1126/sciadv.adn2091.
  109. Cates, K., McCoy, M. J., Kwon, J. S., Liu, Y., Abernathy, D. G., Zhang, B., Liu, S., Gontarz, P., Kim, W. K., Chen, S., Kong, W., Ho, J. N., Burbach, K. F., Gabel, H. W., Morris, S. A., and Yoo, A. S. (2021) Deconstructing stepwise fate conversion of human fibroblasts to neurons by microRNAs, Cell Stem Cell, 28, 127-140, https://doi.org/10.1016/ j.stem.2020.08.015.
  110. Hörmanseder, E. (2021) Epigenetic memory in reprogramming, Curr. Opin. Genet. Dev., 70, 24-31, https://doi.org/10.1016/j.gde.2021.04.007.
  111. Wang, Y., Dorrell, C., Naugler, W. E., Heskett, M., Spellman, P., Li, B., Galivo, F., Haft, A., Wakefield, L., and Grompe, M. (2018) Long-term correction of diabetes in mice by in vivo reprogramming of pancreatic ducts, Mol. Ther., 26, 1327-1342, https://doi.org/10.1016/j.ymthe.2018.02.014.
  112. Kempf, J., Knelles, K., Hersbach, B. A., Petrik, D., Riedemann, T., Bednarova, V., Janjic, A., Simon-Ebert, T., Enard, W., Smialowski, P., Götz, M., and Masserdotti, G. (2021) Heterogeneity of neurons reprogrammed from spinal cord astrocytes by the proneural factors Ascl1 and Neurogenin2, Cell Rep., 36, 109409, https://doi.org/10.1016/ j.celrep.2021.109409.
  113. Kim, K. P., Li, C., Bunina, D., Jeong, H. W., Ghelman, J., Yoon, J., Shin, B., Park, H., Han, D. W., Zaugg, J. B., Kim, J., Kuhlmann, T., Adams, R. H., Noh, K. M., Goldman, S. A., and Schöler, H. R. (2021) Donor cell memory confers a metastable state of directly converted cells, Cell Stem Cell, 28, 1291–1306, https://doi.org/10.1016/ j.stem.2021.02.023.
  114. Merlevede, A., Legault, E. M., Drugge, V., Barker, R. A., Drouin-Ouellet, J., and Olariu, V. (2021) A quantitative model of cellular decision making in direct neuronal reprogramming, Sci. Rep., 11, 1514, https://doi.org/10.1038/s41598-021-81089-8.
  115. Sáez, M., Blassberg, R., Camacho-Aguilar, E., Siggia, E. D., Rand, D. A., and Briscoe, J. (2022) Statistically derived geometrical landscapes capture principles of decision-making dynamics during cell fate transitions, Cell Syst., 13, 12-28, https://doi.org/10.1016/j.cels.2021.08.013.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».