Tumor spheroids, tumor organoids, tumor explants, and tumoroids: what are the differences between them?

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Three-dimensional (3D) cell cultures that mimic tumor microenvironment have become an essential tool in cancer research and drug response analysis, significantly enhancing our understanding of tumor biology and advancing personalized medicine. Currently, the most widely mentioned 3D multicellular culture models include spheroids, organoids, tumor explants, and tumoroids. These 3D structures, exploited for various applications, are generated from cancer and non-cancer cells of different origin using multiple techniques. However, despite extensive research and numerous studies, consistent definitions of these 3D culture models are not clearly established. The manuscript provides a comprehensive overview of these models, detailing brief history of their research, unique biological characteristics, advantages, limitations, and specific applications.

About the authors

M. O. Durymanov

Yaroslav-the-Wise Novgorod State University; Lomonosov Moscow State University

Author for correspondence.
Email: durymanov.mo@novsu.ru

Medical Informatics Laboratory, Department of Radiochemistry, Faculty of Chemistry

Russian Federation, 173003 Veliky Novgorod; 119991 Moscow

References

  1. Murray, M. R., and Stout, A. P. (1947) Distinctive characteristics of the sympathicoblastoma cultivated in vitro: a method for prompt diagnosis, Am. J. Pathol., 23, 429.
  2. Cameron, G., and Chambers, R. (1937) Neoplasm studies: III. Organization of cells of human tumors in tissue culture, Am. J. Cancer, 30, 115-129, https://doi.org/10.1158/ajc.1937.115.
  3. Murray, M. R., and Stout, A. P. (1943) Characteristics of a liposarcoma grown in vitro, Am. J. Pathol., 19, 751.
  4. Sutherland, R. M., Inch, W. R., McCredie, J. A., and Kruuv, J. (1970) A multi-component radiation survival curve using an in vitro tumour model, Int. J. Radiat. Biol. Relat. Stud. Phys. Chem. Med., 18, 491-495, https://doi.org/10.1080/09553007014551401.
  5. Sutherland, R. M., McCredie, J. A., and Inch, W. R. (1971) Growth of multicell spheroids in tissue culture as a model of nodular carcinomas, J. Natl. Cancer. Inst., 46, 113-120.
  6. Durymanov, M., Kroll, C., Permyakova, A., O’Neill, E., Sulaiman, R., Person, M., and Reineke, J. (2019) Subcutaneous inoculation of 3D pancreatic cancer spheroids results in development of reproducible stroma-rich tumors, Translat. Oncol., 12, 180-189, https://doi.org/10.1016/j.tranon.2018.10.003.
  7. Tevis, K. M., Cecchi, R. J., Colson, Y. L., and Grinstaff, M. W. (2017) Mimicking the tumor microenvironment to regulate macrophage phenotype and assessing chemotherapeutic efficacy in embedded cancer cell/macrophage spheroid models, Acta Biomater., 50, 271-279, https://doi.org/10.1016/j.actbio.2016.12.037.
  8. Florczyk, S. J., Liu, G., Kievit, F. M., Lewis, A. M., Wu, J. D., and Zhang, M. (2012) 3D porous chitosan-alginate scaffolds: a new matrix for studying prostate cancer cell-lymphocyte interactions in vitro, Adv. Healthcare Mater., 1, 590-599, https://doi.org/10.1002/adhm.201100054.
  9. Alseud, K., Ostlund, T., Durymanov, M., Reineke, J., and Halaweish, F. (2024) Synthesis and biological activity of 11-Oxygenated and heterocyclic estrone analogs in pancreatic cancer monolayers and 3D spheroids, Bioorg. Med. Chem., 103, 117678, https://doi.org/10.1016/j.bmc.2024.117678.
  10. Ismail, L., Zahid, K., Polyanskaya, A., Al Othman, A., Shen, N., Qi, X., Sulimanov, R. A., Esakov, Y., Makarov, V. A., and Filkov, G. I. (2023) Patient-derived free-floating non-small cell lung cancer organoids: a versatile tool for personalized testing of chemotherapeutic drugs, Preprints, https://doi.org/10.20944/preprints202312.2280.v1.
  11. Jang, S.-D., Song, J., Kim, H.-A., Im, C.-N., Khawar, I. A., Park, J. K., and Kuh, H.-J. (2021) Anti-cancer activity profiling of chemotherapeutic agents in 3D co-cultures of pancreatic tumor spheroids with cancer-associated fibroblasts and macrophages, Cancers, 13, 5955, https://doi.org/10.3390/cancers13235955.
  12. Qi, X., Fedotova, A., Yu, Z., Polyanskaya, A., Shen, N., Egorova, B., Bagrov, D., Slastnikova, T., Rosenkranz, A., and Patriarche, G. (2024) Yttrium-90-doped metal-organic frameworks (MOFs) for low-dose rate intratumoral radiotherapy, bioRxiv, https://doi.org/10.1101/2024.09.14.613012.
  13. Nakajima, A., Endo, H., Okuyama, H., Kiyohara, Y., Kimura, T., Kamiura, S., Hiraoka, M., and Inoue, M. (2015) Radiation sensitivity assay with a panel of patient-derived spheroids of small cell carcinoma of the cervix, Int. J. Cancer, 136, 2949-2960, https://doi.org/10.1002/ijc.29349.
  14. Chen, M.-W., Yang, S.-T., Chien, M.-H., Hua, K.-T., Wu, C.-J., Hsiao, S. M., Lin, H., Hsiao, M., Su, J.-L., and Wei, L.-H. (2017) The STAT3-miRNA-92-Wnt signaling pathway regulates spheroid formation and malignant progression in ovarian cancer, Cancer Res., 77, 1955-1967, https://doi.org/10.1158/0008-5472.CAN-16-1115.
  15. Namekawa, T., Ikeda, K., Horie-Inoue, K., Suzuki, T., Okamoto, K., Ichikawa, T., Yano, A., Kawakami, S., and Inoue, S. (2020) ALDH1A1 in patient-derived bladder cancer spheroids activates retinoic acid signaling leading to TUBB3 overexpression and tumor progression, Int. J. Cancer, 146, 1099-1113, https://doi.org/10.1002/ijc.32505.
  16. Choe, C., Kim, H., Min, S., Park, S., Seo, J., and Roh, S. (2018) SOX2, a stemness gene, induces progression of NSCLC A549 cells toward anchorage-independent growth and chemoresistance to vinblastine, Onco Targets Ther., 11, 6197-6207, https://doi.org/10.2147/OTT.S175810.
  17. Sato, T., Vries, R. G., Snippert, H. J., van de Wetering, M., Barker, N., Stange, D. E., van Es, J. H., Abo, A., Kujala, P., Peters, P. J., and Clevers, H. (2009) Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche, Nature, 459, 262-265, https://doi.org/10.1038/nature07935.
  18. Ootani, A., Li, X., Sangiorgi, E., Ho, Q. T., Ueno, H., Toda, S., Sugihara, H., Fujimoto, K., Weissman, I. L., and Capecchi, M. R. (2009) Sustained in vitro intestinal epithelial culture within a Wnt-dependent stem cell niche, Nat. Med., 15, 701-706, https://doi.org/10.1038/nm.1951.
  19. Dost, A. F., Moye, A. L., Vedaie, M., Tran, L. M., Fung, E., Heinze, D., Villacorta-Martin, C., Huang, J., Hekman, R., and Kwan, J. H. (2020) Organoids model transcriptional hallmarks of oncogenic KRAS activation in lung epithelial progenitor cells, Cell Stem Cell, 27, 663-678, https://doi.org/10.1016/j.stem.2020.07.022.
  20. Huang, L., Holtzinger, A., Jagan, I., BeGora, M., Lohse, I., Ngai, N., Nostro, C., Wang, R., Muthuswamy, L. B., and Crawford, H. C. (2015) Ductal pancreatic cancer modeling and drug screening using human pluripotent stem cell-and patient-derived tumor organoids, Nat. Med., 21, 1364-1371, https://doi.org/10.1038/nm.3973.
  21. Qi, X., Prokhorova, A. V., Mezentsev, A. V., Shen, N., Trofimenko, A. V., Filkov, G. I., Sulimanov, R. A., Makarov, V. A., and Durymanov, M. O. (2022) Comparison of EMT-related and multi-drug resistant gene expression, extracellular matrix production, and drug sensitivity in NSCLC spheroids generated by scaffold-free and scaffold-based methods, Int. J. Mol. Sci., 23, 13306, https://doi.org/10.3390/ijms232113306.
  22. Bahl, R., Mata, C. V., Neth, B., Meinzinger, L., Deppe, A. C., Jahnke, H., Blackwell, C., Durymanov, M., and Reineke, J. (2024) Growing desmoplastic three-dimensional pancreatic cancer spheroids from co-culture, J. Vis. Exp., 211, e66625, https://doi.org/10.3791/66625.
  23. Zanoni, M., Piccinini, F., Arienti, C., Zamagni, A., Santi, S., Polico, R., Bevilacqua, A., and Tesei, A. (2016) 3D tumor spheroid models for in vitro therapeutic screening: a systematic approach to enhance the biological relevance of data obtained, Sci. Rep., 6, 19103, https://doi.org/10.1038/srep19103.
  24. Thakuri, P. S., Liu, C., Luker, G. D., and Tavana, H. (2018) Biomaterials-based approaches to tumor spheroid and organoid modeling, Adv. Healthcare Mater., 7, 1700980, https://doi.org/10.1002/adhm.201700980.
  25. Almuqbil, R. M., Heyder, R. S., Bielski, E. R., Durymanov, M., Reineke, J. J., and da Rocha, S. R. P. (2020) Dendrimer conjugation enhances tumor penetration and efficacy of doxorubicin in extracellular matrix-expressing 3D lung cancer models, Mol. Pharmaceut., 17, 1648-1662, https://doi.org/10.1021/acs.molpharmaceut.0c00083.
  26. Pulze, L., Congiu, T., Brevini, T. A., Grimaldi, A., Tettamanti, G., D’antona, P., Baranzini, N., Acquati, F., Ferraro, F., and de Eguileor, M. (2020) MCF7 spheroid development: new insight about spatio/temporal arrangements of TNTs, amyloid fibrils, cell connections, and cellular bridges, Int. J. Mol. Sci., 21, 5400, https://doi.org/10.3390/ijms21155400.
  27. Zanoni, M., Cortesi, M., Zamagni, A., Arienti, C., Pignatta, S., and Tesei, A. (2020) Modeling neoplastic disease with spheroids and organoids, J. Hematol. Oncol., 13, 97, https://doi.org/10.1186/s13045-020-00931-0.
  28. Halfter, K., Ditsch, N., Kolberg, H.-C., Fischer, H., Hauzenberger, T., von Koch, F. E., Bauerfeind, I., von Minckwitz, G., Funke, I., Crispin, A., Mayer, B., and Behalf of the SpheroNEO Study Group (2015) Prospective cohort study using the breast cancer spheroid model as a predictor for response to neoadjuvant therapy – the SpheroNEO study, BMC Cancer, 15, 519, https://doi.org/10.1186/s12885-015-1491-7.
  29. Jenkins, R. W., Aref, A. R., Lizotte, P. H., Ivanova, E., Stinson, S., Zhou, C. W., Bowden, M., Deng, J., Liu, H., and Miao, D. (2018) Ex vivo profiling of PD-1 blockade using organotypic tumor spheroids, Cancer Discov., 8, 196-215.
  30. Zhang, Z., Wang, H., Ding, Q., Xing, Y., Xu, Z., Lu, C., Luo, D., Xu, L., Xia, W., and Zhou, C. (2018) Establishment of patient-derived tumor spheroids for non-small cell lung cancer, PLoS One, 13, e0194016, https://doi.org/10.1371/journal.pone.0194016.
  31. Ruppen, J., Wildhaber, F. D., Strub, C., Hall, S. R., Schmid, R. A., Geiser, T., and Guenat, O. T. (2015) Towards personalized medicine: chemosensitivity assays of patient lung cancer cell spheroids in a perfused microfluidic platform, Lab Chip, 15, 3076-3085, https://doi.org/10.1039/C5LC00454C.
  32. Maritan, S. M., Lian, E. Y., and Mulligan, L. M. (2017) An efficient and flexible cell aggregation method for 3D spheroid production, J. Vis. Exp., e55544, https://doi.org/10.3791/55544-v.
  33. Foty, R. (2011) A simple hanging drop cell culture protocol for generation of 3D spheroids, J. Vis. Exp., e2720, https://doi.org/10.3791/2720-v.
  34. Massai, D., Isu, G., Madeddu, D., Cerino, G., Falco, A., Frati, C., Gallo, D., Deriu, M. A., Falvo D’Urso Labate, G., and Quaini, F. (2016) A versatile bioreactor for dynamic suspension cell culture. Application to the culture of cancer cell spheroids, PLoS One, 11, e0154610, https://doi.org/10.1371/journal.pone. 0154610.
  35. Kim, J. A., Choi, J.-H., Kim, M., Rhee, W. J., Son, B., Jung, H.-K., and Park, T. H. (2013) High-throughput generation of spheroids using magnetic nanoparticles for three-dimensional cell culture, Biomaterials, 34, 8555-8563, https://doi.org/10.1016/j.biomaterials.2013.07.056.
  36. Chen, K., Wu, M., Guo, F., Li, P., Chan, C. Y., Mao, Z., Li, S., Ren, L., Zhang, R., and Huang, T. J. (2016) Rapid formation of size-controllable multicellular spheroids via 3D acoustic tweezers, Lab Chip, 16, 2636-2643, https://doi.org/10.1039/C6LC00444J.
  37. Sebastian, A., Buckle, A., and Markx, G. H. (2007) Tissue engineering with electric fields: Immobilization of mammalian cells in multilayer aggregates using dielectrophoresis, Biotech. Bioeng., 98, 694-700, https://doi.org/10.1002/bit.21416.
  38. Rao, W., Zhao, S., Yu, J., Lu, X., Zynger, D. L., and He, X. (2014) Enhanced enrichment of prostate cancer stem-like cells with miniaturized 3D culture in liquid core-hydrogel shell microcapsules, Biomaterials, 35, 7762-7773, https://doi.org/10.1016/j.biomaterials.2014.06.011.
  39. Chu, J. H., Yu, S., Hayward, S. W., and Chan, F. L. (2009) Development of a three-dimensional culture model of prostatic epithelial cells and its use for the study of epithelial-mesenchymal transition and inhibition of PI3K pathway in prostate cancer, Prostate, 69, 428-442, https://doi.org/10.1002/pros.20897.
  40. Rousset, N., Sandoval, R. L., Modena, M. M., Hierlemann, A., and Misun, P. M. (2022) Modeling and measuring glucose diffusion and consumption by colorectal cancer spheroids in hanging drops using integrated biosensors, Microsyst. Nanoeng., 8, 14, https://doi.org/10.1038/s41378-021-00348-w.
  41. Langan, L. M., Dodd, N. J., Owen, S. F., Purcell, W. M., Jackson, S. K., and Jha, A. N. (2016) Direct measurements of oxygen gradients in spheroid culture system using electron parametric resonance oximetry, PLoS One, 11, e0149492, https://doi.org/10.1371/journal.pone.0149492.
  42. Yuhas, J. M., Li, A. P., Martinez, A. O., and Ladman, A. J. (1977) A simplified method for production and growth of multicellular tumor spheroids, Cancer Res., 37, 3639-3643.
  43. Pacheco-Marín, R., Melendez-Zajgla, J., Castillo-Rojas, G., Mandujano-Tinoco, E., Garcia-Venzor, A., Uribe-Carvajal, S., Cabrera-Orefice, A., Gonzalez-Torres, C., Gaytan-Cervantes, J., Mitre-Aguilar, I. B., and Maldonado, V. (2016) Transcriptome profile of the early stages of breast cancer tumoral spheroids, Sci. Rep., 6, 23373, https://doi.org/10.1038/srep23373.
  44. Shimazui, T., Schalken, J. A., Kawai, K., Kawamoto, R., Van Bockhoven, A., Oosterwijk, E., and Akaza, H. (2004) Role of complex cadherins in cell-cell adhesion evaluated by spheroid formation in renal cell carcinoma cell lines, Oncol. Rep., 11, 357-360, https://doi.org/10.3892/or.11.2.357.
  45. Ghosh, S., Joshi, M. B., Ivanov, D., Feder-Mengus, C., Spagnoli, G. C., Martin, I., Erne, P., and Resink, T. J. (2007) Use of multicellular tumor spheroids to dissect endothelial cell-tumor cell interactions: A role for T-cadherin in tumor angiogenesis, FEBS Lett., 581, 4523-4528, https://doi.org/10.1016/j.febslet.2007.08.038.
  46. Yang, W., Li, Z., Qin, R., Wang, X., An, H., Wang, Y., Zhu, Y., Liu, Y., Cai, S., and Chen, S. (2019) YY1 promotes endothelial cell-dependent tumor angiogenesis in hepatocellular carcinoma by transcriptionally activating VEGFA, Front. Oncol., 9, 1187, https://doi.org/10.3389/fonc.2019.01187.
  47. Raghavan, S., Mehta, P., Xie, Y., Lei, Y. L., and Mehta, G. (2019) Ovarian cancer stem cells and macrophages reciprocally interact through the WNT pathway to promote pro-tumoral and malignant phenotypes in 3D engineered microenvironments, J. Immunother. Cancer, 7, 190, https://doi.org/10.1186/s40425-019-0666-1.
  48. Durymanov, M., Kroll, C., Permyakova, A., and Reineke, J. (2019) Role of endocytosis in nanoparticle penetration of 3D pancreatic cancer spheroids, Mol. Pharmaceut., 16, 1074-1082, https://doi.org/10.1021/acs.molpharmaceut.8b01078.
  49. Pan, R., Lin, C., Yang, X., Xie, Y., Gao, L., and Yu, L. (2024) The influence of spheroid maturity on fusion dynamics and micro-tissue assembly in 3D tumor models, Biofabrication, 16, 035016, https://doi.org/10.1088/1758-5090/ad4392.
  50. Zhuang, P., Chiang, Y.-H., Fernanda, M. S., and He, M. (2021) Using spheroids as building blocks towards 3D bioprinting of tumor microenvironment, Int. J. Bioprint., 7, 444, https://doi.org/10.18063/ijb.v7i4.444.
  51. Zhu, T., Hu, Y., Cui, H., and Cui, H. (2024) 3D multispheroid assembly strategies towards tissue engineering and disease modeling, Adv. Healthcare Mater., 13, 2400957, https://doi.org/10.1002/adhm.202400957.
  52. Bjerkvig, R., Tønnesen, A., Laerum, O. D., and Backlund, E.-O. (1990) Multicellular tumor spheroids from human gliomas maintained in organ culture, J. Neurosurg., 72, 463-475, https://doi.org/10.3171/jns.1990.72.3.0463.
  53. Rajcevic, U., Knol, J. C., Piersma, S., Bougnaud, S., Fack, F., Sundlisaeter, E., Søndenaa, K., Myklebust, R., Pham, T. V., Niclou, S. P., and Jiménez, C. R. (2014) Colorectal cancer derived organotypic spheroids maintain essential tissue characteristics but adapt their metabolism in culture, Proteome Sci., 12, 39, https://doi.org/10.1186/1477-5956-12-39.
  54. Weiswald, L.-B., Richon, S., Validire, P., Briffod, M., Lai-Kuen, R., Cordelières, F. P., Bertrand, F., Dargere, D., Massonnet, G., Marangoni, E., Gayet, B., Pocard, M., Bieche, I., Poupon, M.-F., Bellet, D., and Dangles-Marie, V. (2009) Newly characterised ex vivo colospheres as a three-dimensional colon cancer cell model of tumour aggressiveness, Br. J. Cancer, 101, 473-482, https://doi.org/10.1038/sj.bjc.6605173.
  55. Kondo, J., Endo, H., Okuyama, H., Ishikawa, O., Iishi, H., Tsujii, M., Ohue, M., and Inoue, M. (2011) Retaining cell-cell contact enables preparation and culture of spheroids composed of pure primary cancer cells from colorectal cancer, Proc. Natl. Acad. Sci. USA, 108, 6235-6240, https://doi.org/10.1073/pnas.1015938108.
  56. Hong, H. K., Yun, N. H., Jeong, Y., Park, J., Doh, J., Lee, W. Y., and Cho, Y. B. (2021) Establishment of patient-derived organotypic tumor spheroid models for tumor microenvironment modeling, Cancer Med., 10, 5589-5598, https://doi.org/10.1002/cam4.4114.
  57. Montesano, R., Mouron, P., Amherdt, M., and Orci, L. (1983) Collagen matrix promotes reorganization of pancreatic endocrine cell monolayers into islet-like organoids, J. Cell Biol., 97, 935-939, https://doi.org/10.1083/jcb.97.3.935.
  58. Shannon, J. M., Mason, R. J., and Jennings, S. D. (1987) Functional differentiation of alveolar type II epithelial cells in vitro: effects of cell shape, cell-matrix interactions and cell-cell interactions, Biochim. Biophys. Acta, 931, 143-156, https://doi.org/10.1016/0167-4889(87)90200-X.
  59. Li, M. L., Aggeler, J., Farson, D. A., Hatier, C., Hassell, J., and Bissell, M. J. (1987) Influence of a reconstituted basement membrane and its components on casein gene expression and secretion in mouse mammary epithelial cells, Proc. Natl. Acad. Sci. USA, 84, 136-140, https://doi.org/10.1073/pnas.84.1.136.
  60. Evans, G. S., Flint, N., Somers, A. S., Eyden, B., and Potten, C. S. (1992) The development of a method for the preparation of rat intestinal epithelial cell primary cultures, J. Cell Sci., 101, 219-231, https://doi.org/10.1242/jcs.101.1.219.
  61. Stelzner, M., Helmrath, M., Dunn, J. C., Henning, S. J., Houchen, C. W., Kuo, C., Lynch, J., Li, L., Magness, S. T., and Martin, M. G. (2012) A nomenclature for intestinal in vitro cultures, Am. J. Physiol. Gastrointest. Liver Physiol., 302, G1359-G1363, https://doi.org/10.1152/ajpgi.00493.2011.
  62. Rutzky, L. P., Tomita, J. T., Calenoff, M. A., and Kahan, B. D. (1979) Human colon adenocarcinoma cells. III. In vitro organoid expression and carcinoembryonic antigen kinetics in hollow fiber culture, J. Natl. Cancer Inst., 63, 893-902.
  63. Lo, Y.-H., Karlsson, K., and Kuo, C. J. (2020) Applications of organoids for cancer biology and precision medicine, Nat. Cancer, 1, 761-773, https://doi.org/10.1038/s43018-020-0102-y.
  64. Nam, C., Ziman, B., Sheth, M., Zhao, H., and Lin, D.-C. (2022) Genomic and epigenomic characterization of tumor organoid models, Cancers, 14, 4090, https://doi.org/10.3390/cancers14174090.
  65. Sakalem, M. E., De Sibio, M. T., Da Costa, F. A. D. S., and De Oliveira, M. (2021) Historical evolution of spheroids and organoids, and possibilities of use in life sciences and medicine, Biotechnol. J., 16, 2000463, https://doi.org/10.1002/biot.202000463.
  66. Yucer, N., Ahdoot, R., Workman, M. J., Laperle, A. H., Recouvreux, M. S., Kurowski, K., Naboulsi, D. J., Liang, V., Qu, Y., Plummer, J. T., Gayther, S. A., Orsulic, S., Karlan, B. Y., and Svendsen, C. N. (2021) Human iPSC-derived fallopian tube organoids with BRCA1 mutation recapitulate early-stage carcinogenesis, Cell Rep., 37, 110146, https://doi.org/10.1016/j.celrep.2021.110146.
  67. Crespo, M., Vilar, E., Tsai, S.-Y., Chang, K., Amin, S., Srinivasan, T., Zhang, T., Pipalia, N. H., Chen, H. J., Witherspoon, M., Gordillo, M., Xiang, J. Z., Maxfield, F. R., Lipkin, S., Evans, T., and Chen, S. (2017) Colonic organoids derived from human induced pluripotent stem cells for modeling colorectal cancer and drug testing, Nat. Med., 23, 878-884, https://doi.org/10.1038/nm.4355.
  68. Xu, H., Lyu, X., Yi, M., Zhao, W., Song, Y., and Wu, K. (2018) Organoid technology and applications in cancer research, J. Hematol. Oncol., 11, 116, https://doi.org/10.1186/s13045-018-0662-9.
  69. Yokota, E., Iwai, M., Yukawa, T., Yoshida, M., Naomoto, Y., Haisa, M., Monobe, Y., Takigawa, N., Guo, M., Maeda, Y., Fukazawa, T., and Yamatsuji, T. (2021) Clinical application of a lung cancer organoid (tumoroid) culture system, NPJ Precis. Oncol., 5, 29, https://doi.org/10.1038/s41698-021-00166-3.
  70. Kim, M., Mun, H., Sung, C. O., Cho, E. J., Jeon, H.-J., Chun, S.-M., Jung, D. J., Shin, T. H., Jeong, G. S., Kim, D. K., Choi, E. K., Jeong, S.-Y., Taylor, A. M., Jain, S., Meyerson, M., and Jang, S. J. (2019) Patient-derived lung cancer organoids as in vitro cancer models for therapeutic screening, Nat. Commun., 10, 3991, https://doi.org/10.1038/s41467-019-11867-6.
  71. Gunti, S., Hoke, A. T. K., Vu, K. P., and London, N. R. (2021) Organoid and spheroid tumor models: techniques and applications, Cancers, 13, 874, https://doi.org/10.3390/cancers13040874.
  72. Shirure, V. S., Bi, Y., Curtis, M. B., Lezia, A., Goedegebuure, M. M., Goedegebuure, S. P., Aft, R., Fields, R. C., and George, S. C. (2018) Tumor-on-a-chip platform to investigate progression and drug sensitivity in cell lines and patient-derived organoids, Lab Chip, 18, 3687-3702, https://doi.org/10.1039/C8LC00596F.
  73. Dou, Y., Pizarro, T., and Zhou, L. (2022) Organoids as a model system for studying notch signaling in intestinal epithelial homeostasis and intestinal cancer, Am. J. Pathol., 192, 1347-1357, https://doi.org/10.1016/ j.ajpath.2022.06.008.
  74. Fiorini, E., Veghini, L., and Corbo, V. (2020) Modeling cell communication in cancer with organoids: making the complex simple, Front. Cell Dev. Biol., 8, 166, https://doi.org/10.3389/fcell.2020.00166.
  75. Low, R. R. J., Fung, K. Y., Gao, H., Preaudet, A., Dagley, L. F., Yousef, J., Lee, B., Emery-Corbin, S. J., Nguyen, P. M., and Larsen, R. H. (2023) S100 family proteins are linked to organoid morphology and EMT in pancreatic cancer, Cell Death Differ., 30, 1155-1165, https://doi.org/10.1038/s41418-023-01126-z.
  76. Hu, Y., Sui, X., Song, F., Li, Y., Li, K., Chen, Z., Yang, F., Chen, X., Zhang, Y., Wang, X., Liu, Q., Li, C., Zou, B., Chen, X., Wang, J., and Liu, P. (2021) Lung cancer organoids analyzed on microwell arrays predict drug responses of patients within a week, Nat. Commun., 12, 2581, https://doi.org/10.1038/s41467-021-22676-1.
  77. De Angelis, M. L., Francescangeli, F., Nicolazzo, C., Signore, M., Giuliani, A., Colace, L., Boe, A., Magri, V., Baiocchi, M., Ciardi, A., Scarola, F., Spada, M., La Torre, F., Gazzaniga, P., Biffoni, M., De Maria, R., and Zeuner, A. (2022) An organoid model of colorectal circulating tumor cells with stem cell features, hybrid EMT state and distinctive therapy response profile, J. Exp. Clin. Cancer Res., 41, 86, https://doi.org/10.1186/s13046-022-02263-y.
  78. Broutier, L., Mastrogiovanni, G., Verstegen, M. M., Francies, H. E., Gavarró, L. M., Bradshaw, C. R., Allen, G. E., Arnes-Benito, R., Sidorova, O., Gaspersz, M. P., Georgakopoulos, N., Koo, B.-K., Dietmann, S., Davies, S. E., Praseedom, R. K., Lieshout, R., Jzermans, J. N. M., Wigmore, S. J., Saeb-Parsy, K., Garnett, M. J., van der Laan, L. J., and Huch, M. (2017) Human primary liver cancer-derived organoid cultures for disease modeling and drug screening, Nat. Med., 23, 1424-1435, https://doi.org/10.1038/nm.4438.
  79. Neal, J. T., Li, X., Zhu, J., Giangarra, V., Grzeskowiak, C. L., Ju, J., Liu, I. H., Chiou, S.-H., Salahudeen, A. A., and Smith, A. R. (2018) Organoid modeling of the tumor immune microenvironment, Cell, 175, 1972-1988, https://doi.org/10.1016/j.cell.2018.11.021.
  80. Yang, Q., Li, M., Yang, X., Xiao, Z., Tong, X., Tuerdi, A., Li, S., and Lei, L. (2023) Flourishing tumor organoids: history, emerging technology, and application, Bioeng. Transl. Med., 8, e10559, https://doi.org/10.1002/btm2.10559.
  81. Leighton, J. (1951) A sponge matrix method for tissue culture. Formation of organized aggregates of cells in vitro, J. Natl. Cancer Inst., 12, 545-561.
  82. Freeman, A. E., and Hoffman, R. M. (1986) In vivo-like growth of human tumors in vitro, Proc. Natl. Acad. Sci. USA, 83, 2694-2698, https://doi.org/10.1073/pnas.83.8.2694.
  83. Gris-Cárdenas, I., Rábano, M., and Vivanco, M. D. M. (2022) Patient-derived explant cultures of normal and tumor human breast tissue, Methods Mol. Biol., 2471, 301-307, https://doi.org/10.1007/978-1-0716-2193-6_17.
  84. Naipal, K. A. T., Verkaik, N. S., Sánchez, H., van Deurzen, C. H. M., den Bakker, M. A., Hoeijmakers, J. H. J., Kanaar, R., Vreeswijk, M. P. G., Jager, A., and van Gent, D. C. (2016) Tumor slice culture system to assess drug response of primary breast cancer, BMC Cancer, 16, 78, https://doi.org/10.1186/s12885-016-2119-2.
  85. Davies, E. J., Dong, M., Gutekunst, M., Närhi, K., van Zoggel, H. J. A. A., Blom, S., Nagaraj, A., Metsalu, T., Oswald, E., Erkens-Schulze, S., Delgado San Martin, J. A., Turkki, R., Wedge, S. R., af Hällström, T. M., Schueler, J., van Weerden, W. M., Verschuren, E. W., Barry, S. T., van der Kuip, H., and Hickman, J. A. (2015) Capturing complex tumour biology in vitro: histological and molecular characterisation of precision cut slices, Sci. Rep., 5, 17187, https://doi.org/10.1038/srep17187.
  86. LeBlanc, V. G., Trinh, D. L., Aslanpour, S., Hughes, M., Livingstone, D., Jin, D., Ahn, B. Y., Blough, M. D., Cairncross, J. G., and Chan, J. A. (2022) Single-cell landscapes of primary glioblastomas and matched explants and cell lines show variable retention of inter- and intratumor heterogeneity, Cancer Cell, 40, 379-392, https://doi.org/10.1016/ j.ccell.2022.02.016.
  87. Vescio, R. A., Connors, K. M., Kubota, T., and Hoffman, R. M. (1991) Correlation of histology and drug response of human tumors grown in native-state three-dimensional histoculture and in nude mice, Proc. Natl. Acad. Sci. USA, 88, 5163-5166, https://doi.org/10.1073/pnas.88.12.5163.
  88. Wu, K. Z., Adine, C., Mitriashkin, A., Aw, B. J. J., Iyer, N. G., and Fong, E. L. S. (2023) Making in vitro tumor models whole again, Adv. Healthcare Mater., 12, 2202279, https://doi.org/10.1002/adhm.202202279.
  89. Adine, C., Fernando, K., Ho, N. C. W., Quah, H. S., Ho, S. S. W., Wu, K. Z., Teng, K. W. W., Arcinas, C., Li, L., Ha, K., Chew, J. W. L., Wang, C., Too, N. S. H., Yeong, J. P. S., Tan, D. S. W., Tan, I. B. H., Nagadia, R., Chia, C. S., Macalinao, D., Bhuvaneswari, H., Iyer, N. G., and Fong, E. L. S. (2024) Bioengineered hydrogels enhance ex vivo preservation of patient-derived tumor explants for drug evaluation, Biomaterials, 305, 122460, https://doi.org/10.1016/j.biomaterials.2023.122460.
  90. Koch, M. K., Ravichandran, A., Murekatete, B., Clegg, J., Joseph, M. T., Hampson, M., Jenkinson, M., Bauer, H. S., Snell, C., Liu, C., Gough, M., Thompson, E. W., Werner, C., Hutmacher, D. W., Haupt, L. M., and Bray, L. J. (2023) Exploring the potential of PEG-heparin hydrogels to support long-term ex vivo culture of patient-derived breast explant tissues, Adv. Healthcare Mater., 12, 2202202, https://doi.org/10.1002/adhm.202202202.
  91. Cordts, S. C., Yuki, K., Henao Echeverri, M. F., Narasimhan, B., Kuo, C. J., and Tang, S. K. (2024) Microdissection tools to generate organoids for modeling the tumor immune microenvironment, Microsyst. Nanoeng., 10, 126, https://doi.org/10.1038/s41378-024-00756-8.
  92. Tieu, T., Irani, S., Bremert, K. L., Ryan, N. K., Wojnilowicz, M., Helm, M., Thissen, H., Voelcker, N. H., Butler, L. M., and Cifuentes-Rius, A. (2021) Patient-derived prostate cancer explants: a clinically relevant model to assess siRNA-based nanomedicines, Adv. Healthcare Mater., 10, 2001594, https://doi.org/10.1002/adhm. 202001594.
  93. Powley, I. R., Patel, M., Miles, G., Pringle, H., Howells, L., Thomas, A., Kettleborough, C., Bryans, J., Hammonds, T., and MacFarlane, M. (2020) Patient-derived explants (PDEs) as a powerful preclinical platform for anti-cancer drug and biomarker discovery, Br. J. Cancer, 122, 735-744, https://doi.org/10.1038/s41416-019-0672-6.
  94. Sun, Y., Wang, B.-E., Leong, K. G., Yue, P., Li, L., Jhunjhunwala, S., Chen, D., Seo, K., Modrusan, Z., Gao, W.-Q., Settleman, J., and Johnson, L. (2012) Androgen deprivation causes epithelial-mesenchymal transition in the prostate: implications for androgen-deprivation therapy, Cancer Res., 72, 527-536, https://doi.org/10.1158/0008-5472.CAN-11-3004.
  95. Hasselluhn, M. C., Decker-Farrell, A. R., Vlahos, L., Thomas, D. H., Curiel-Garcia, A., Maurer, H. C., Wasko, U. N., Tomassoni, L., Sastra, S. A., and Palermo, C. F. (2024) Tumor explants elucidate a cascade of paracrine SHH, WNT, and VEGF signals driving pancreatic cancer angiosuppression, Cancer Discov., 14, 348-361, https://doi.org/10.1158/2159-8290.CD-23-0240.
  96. Chang, E. H., Ridge, J., Black, R., Zou, Z.-Q., Masnyk, T., Noguchi, P., and Harford, J. B. (1987) Interferon-gamma induces altered oncogene expression and terminal differentiation in A431 cells, Exp. Biol. Med., 186, 319-326, https://doi.org/10.3181/00379727-186-42620.
  97. Richtsmeier, W. J., Koch, W. M., McGuire, W. P., Poole, M. E., and Chang, E. H. (1990) Phase I-II study of advanced head and neck squamous cell carcinoma patients treated with recombinant human interferon gamma, Arch. Otolaryngol. Head Neck Surg., 116, 1271-1277, https://doi.org/10.1001/archotol.1990. 01870110043004.
  98. Samid, D., Ram, Z., Hudgins, W. R., Shack, S., Liu, L., Walbridge, S., Oldfield, E. H., and Myers, C. E. (1994) Selective activity of phenylacetate against malignant gliomas: resemblance to fetal brain damage in phenylketonuria, Cancer Res., 54, 891-895.
  99. Ridge, J., Muller, J., Noguchi, P., and Chang, E. H. (1991) Dynamics of differentiation in human epidermoid squamous carcinoma cells (A431) with continuous, long-term γ-IFN treatment, In Vitro Cell. Dev. Biol. Animal, 27, 417-424, https://doi.org/10.1007/BF02630962.
  100. Vamvakidou, A. P., Mondrinos, M. J., Petushi, S. P., Garcia, F. U., Lelkes, P. I., and Tozeren, A. (2007) Heterogeneous breast tumoroids: an in vitro assay for investigating cellular heterogeneity and drug delivery, SLAS Discov., 12, 13-20, https://doi.org/10.1177/1087057106296482.
  101. Xu, X., Gurski, L. A., Zhang, C., Harrington, D. A., Farach-Carson, M. C., and Jia, X. (2012) Recreating the tumor microenvironment in a bilayer, hyaluronic acid hydrogel construct for the growth of prostate cancer spheroids, Biomaterials, 33, 9049-9060, https://doi.org/10.1016/j.biomaterials.2012.08.061.
  102. Hao, Y., Zerdoum, A. B., Stuffer, A. J., Rajasekaran, A. K., and Jia, X. (2016) Biomimetic hydrogels incorporating polymeric cell-adhesive peptide to promote the 3D assembly of tumoroids, Biomacromolecules, 17, 3750-3760, https://doi.org/10.1021/acs.biomac.6b01266.
  103. Chen, G., Liu, W., and Yan, B. (2022) Breast cancer MCF-7 cell spheroid culture for drug discovery and development, J. Cancer Ther., 13, 117-130, https://doi.org/10.4236/jct.2022.133009.
  104. Malmros, K., Kirova, N., Kotarsky, H., Carlsén, D., Mansour, M. S. I., Magnusson, M., Prabhala, P., and Brunnström, H. (2024) 3D cultivation of non-small-cell lung cancer cell lines using four different methods, J. Cancer Res. Clin. Oncol., 150, 472, https://doi.org/10.1007/s00432-024-06003-x.
  105. Lê, H., Deforges, J., Hua, G., Idoux-Gillet, Y., Ponté, C., Lindner, V., Olland, A., Falcoz, P.-E., Zaupa, C., Jain, S., Quéméneur, E., Benkirane-Jessel, N., and Balloul, J.-M. (2023) In vitro vascularized immunocompetent patient-derived model to test cancer therapies, iScience, 26, 108094, https://doi.org/10.1016/j.isci.2023.108094.
  106. Séraudie, I., Pillet, C., Cesana, B., Bazelle, P., Jeanneret, F., Evrard, B., Chalmel, F., Bouzit, A., Battail, C., and Long, J.-A. (2023) A new scaffold-free tumoroid model provides a robust preclinical tool to investigate invasion and drug response in renal cell carcinoma, Cell Death Dis., 14, 622, https://doi.org/10.1038/s41419-023-06133-z.
  107. Hirokawa, Y., Clarke, J., Palmieri, M., Tan, T., Mouradov, D., Li, S., Lin, C., Li, F., Luo, H., Wu, K., Faux, M., Tan, C. W., Lee, M., Gard, G., Gibbs, P., Burgess, A. W., and Sieber, O. M. (2021) Low-viscosity matrix suspension culture enables scalable analysis of patient-derived organoids and tumoroids from the large intestine, Commun. Biol., 4, 1067, https://doi.org/10.1038/s42003-021-02607-y.
  108. Kim, J., Kim, R., Lee, W., Kim, G. H., Jeon, S., Lee, Y. J., Lee, J. S., Kim, K. H., Won, J.-K., Lee, W., Park, K., Kim, H. J., Im, S.-W., Lee, K. J., Park, C.-K., Kim, J.-I., and Lee, J. Y. (2024) Assembly of glioblastoma tumoroids and cerebral organoids: a 3D in vitro model for tumor cell invasion, Mol. Oncol., 19, 698-715, https://doi.org/10.1002/ 1878-0261.13740.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».