Mechanisms of glucocorticoid resistance in non-classic T helper populations Th17.1/ex-Th17
- Authors: Kuklina E.M.1
-
Affiliations:
- Institute of Ecology and Genetics of Microorganisms, Perm Federal Research Center, Ural Branch of the Russian Academy of Sciences
- Issue: Vol 90, No 2 (2025)
- Pages: 207-220
- Section: Articles
- URL: https://journals.rcsi.science/0320-9725/article/view/291888
- DOI: https://doi.org/10.31857/S0320972525020034
- EDN: https://elibrary.ru/BMYAHR
- ID: 291888
Cite item
Abstract
The non-classical population of Th17 lymphocytes polarized toward Th1 (Th17.1/ex-Th17) is currently the focus of research attention. Possessing an unique pro-inflammatory potential and the ability to overcome histohematic barriers, these cells play a key role in the pathogenesis of many inflammatory diseases, primarily autoimmune ones: they prevail in autoimmune lesions and are considered as a promising therapeutic target for these pathologies. At the same time, recent studies have shown another distinctive feature of Th1-polarized Th17 – selective resistance to glucocorticoids. Since glucocorticoids are first-line drugs in the treatment of exacerbations in autoimmune diseases, understanding the causes of this phenomenon is fundamentally important for predicting patients’ response to therapy and for improving the effectiveness of such therapy. In this paper, we analyze the mechanisms of drug resistance formation in Th17 cells polarized toward Th1, compare them with similar processes in non-pathogenic, classical Th17, and discuss the role of such resistance in the response to glucocorticoid therapy.
Keywords
About the authors
E. M. Kuklina
Institute of Ecology and Genetics of Microorganisms, Perm Federal Research Center, Ural Branch of the Russian Academy of Sciences
Author for correspondence.
Email: ibis_07@mail.ru
Russian Federation, 614081 Perm
References
- Hedegaard, C. J., Krakauer, M., Bendtzen, K., Lund, H., Sellebjerg, F., and Nielsen, C. H. (2008) T helper cell type 1 (Th1), Th2 and Th17 responses to myelin basic protein and disease activity in multiple sclerosis, Immunology, 125, 161-169, https://doi.org/10.1111/j.1365-2567.2008.02837.x.
- Wing, A. C., Hygino, J., Ferreira, T. B., Kasahara, T. M., Barros, P. O., Sacramento, P. M., Andrade, R. M., Camargo, S., Rueda, F., Alves-Leon, S. V., Vasconcelos, C. C., Alvarenga, R., and Bento, C. A. M. (2016) Interleukin-17-and interleukin-22-secreting myelin-specific CD4+ T cells resistant to corticoids are related with active brain lesions in multiple sclerosis patients, Immunology, 147, 212-220, https://doi.org/10.1111/imm.12552.
- Harper, E. G., Guo, C., Rizzo, H., Lillis, J. V., Kurtz, S. E., Skorcheva, I., Purdy, D., Fitch, E., Iordanov, M., and Blauvelt, A. (2009) Th17 cytokines stimulate CCL20 expression in keratinocytes in vitro and in vivo: Implications for psoriasis pathogenesis, J. Invest. Dermatol., 129, 2175-2183, https://doi.org/10.1038/jid.2009.65.
- Hawkes, J. E., Chan, T. C., and Krueger, J. G. (2017) Psoriasis pathogenesis and the development of novel targeted immune therapies, J. Allergy Clin. Immunol., 140, 645-653, https://doi.org/10.1016/j.jaci.2017.07.004.
- Koenders, M. I., Lubberts, E., Oppers-Walgreen, B., van den Bersselaar, L., Helsen, M. M., Di Padova, F. E., Boots, A. M. H., Gram, H., Joosten, L. A. B., and van den Berg, W. B. (2005) Blocking of interleukin-17 during reactivation of experimental arthritis prevents joint inflammation and bone erosion by decreasing RANKL and interleukin-1, Am. J. Pathol., 167, 141-149, https://doi.org/10.1016/S0002-9440(10)62961-6.
- Hirota, K., Yoshitomi, H., Hashimoto, M., Maeda, S., Teradaira, S., Sugimoto, N., Yamaguchi, T., Nomura, T., Ito, H., Nakamura, T., Sakaguchi, N., and Sakaguchi, S. (2007) Preferential recruitment of CCR6-expressing Th17 cells to inflamed joints via CCL20 in rheumatoid arthritis and its animal model, J. Exp. Med., 204, 2803-2812, https://doi.org/10.1084/jem.20071397.
- Zhang, Z., Zheng, M., Bindas, J., Schwarzenberger, P., and Kolls, J. K. (2006) Critical role of IL-17 receptor signaling in acute TNBS-induced colitis, Inflamm. Bowel Dis., 12, 382-388, https://doi.org/10.1097/01.MIB. 0000218764.06959.91.
- Kebir, H., Ifergan, I., Alvarez, J. I., Bernard, M., Poirier, J., Arbour, N., Duquette, P., and Prat, A. (2009) Preferential recruitment of interferon-gamma-expressing TH17 cells in multiple sclerosis, Ann. Neurol., 66, 390-402, https://doi.org/10.1002/ana.21748.
- Hirota, K., Duarte, J. H., Veldhoen, M., Hornsby, E., Li, Y., Cua, D. J., Ahlfors, H., Wilhelm, C., Tolaini, M., Menzel, U., Garefalaki, A., Potocnik, A. J., and Stockinger, B. (2011) Fate mapping of IL-17-producing T cells in inflammatory responses, Nat. Immunol., 12, 255-263, https://doi.org/10.1038/ni.1993.
- Thakore, P. I., Schnell, A., Zhao, M., Huang, L., Hou, Y., Christian, E., Zaghouani, S., Wang, C., Singh, V., Ma, S., Sankar, V., Notarbartolo, S., Buenrostro, J. D., Sallusto, F., Patsopoulos, N. A., Rozenblatt-Rosen, O., Kuchroo, V. K., and Regev, A. (2022) The chromatin landscape of Th17 cells reveals mechanisms of diversification of regulatory and pro-inflammatory states, BioRxiv, https://doi.org/10.1101/2022.02.26.482041.
- Schnell, A., Huang, L., Singer, M., Singaraju, A., Barilla, R. M., Regan, B. M. L., Bollhagen, A., Thakore, P. I., Dionne, D., Delorey, T. M., Pawlak, M., zu Horste, G. M., Rozenblatt-Rosen, Orit., Irizarry, R. A., Regev, A., and Kuchroo, V. K. (2021) Stem-like intestinal Th17 cells give rise to pathogenic effector T cells during autoimmunity, Cell, 184, 6281-6298.e23, https://doi.org/10.1016/j.cell.2021.11.018.
- Schnell, A., Littman, D. R., and Kuchroo, V. K. (2023) TH17 cell heterogeneity and its role in tissue inflammation, Nat. Immunol., 24, 19-29, https://doi.org/10.1038/s41590-022-01387-9.
- Annunziato, F., Cosmi, L., Santarlasci, V., Maggi, L., Liotta, F., Mazzinghi, B., Parente, E., Filì, L., Ferri, S., Frosali, F., Giudici, F., Romagnani, P., Parronchi, P., Tonelli, F., Maggi, E., and Romagnani S. (2007) Phenotypic and functional features of human Th17 cells, J. Exp. Med., 204, 1849-1861, https://doi.org/10.1084/jem.20070663.
- Dhaeze, T., Tremblay, L., Lachance, C., Peelen, E., Zandee, S., Grasmuck, C., Bourbonnière, L., Larouche, S., Ayrignac, X., Rébillard, R.-M., Poirier, J., Lahav, B., Duquette, P., Girard, M., Moumdjian, R., Bouthillier, A., Larochelle, C., and Prat, A. (2019) CD70 defines a subset of proinflammatory and CNS-pathogenic TH1/TH17 lymphocytes and is overexpressed in multiple sclerosis, Cell. Mol. Immunol., 16, 652-665, https://doi.org/10.1038/s41423-018-0198-5.
- Quirant-Sanchez, B., Presas-Rodriguez, S., Mansilla, M. J., Teniente-Serra, A., Hervas-Garcia, J., Brieva, L., Moral-Torres, E., Cano, A., Munteis, E., Navarro-Barriuso, J., Martínez-Cáceres, E. M., and Ramo-Tello, C. (2019) Th1Th17CM lymphocyte subpopulation as a predictive biomarker of disease activity in multiple sclerosis patients under dimethyl fumarate or fingolimod treatment, Mediators Inflamm., 8147803, https://doi.org/10.1155/ 2019/8147803.
- Dankers, W., den Braanker, H., Paulissen, S. M. J., van Hamburg, J. P., Davelaar, N., Colin, E. M., and Lubberts, E. (2021) The heterogeneous human memory CCR6+ T helper-17 populations differ in T-bet and cytokine expression but all activate synovial fibroblasts in an IFNg-independent manner, Arthritis Res. Ther., 23, 157, https:// doi.org/10.1186/s13075-021-02532-9.
- Ramesh, R., Kozhaya, L., McKevitt, K., Djuretic, I. M., Carlson, T. J., Quintero, M. A., McCauley, J. L., Abreu, M. T., Unutmaz, D., and Sundrud, D. (2014) Pro-inflammatory human Th17 cells selectively express P-glycoprotein and are refractory to glucocorticoids, J. Exp. Med., 211, 89-104, https://doi.org/10.1084/jem.20130301.
- Van Langelaar, J., van der Vuurst de Vries, R. M., Janssen, M., Wierenga-Wolf, A. F., Spilt, I. M., Siepman, T. A., Dankers, W., Verjans, G. M. G. M., de Vries, H. E., Lubberts, E., Hintzen, R. Q., and van Luijn, M. M. (2018) T helper 17.1 cells associate with multiple sclerosis disease activity: perspectives for early intervention, Brain, 141, 1334-1349, https://doi.org/10.1093/brain/awy069.
- Koetzier, S. C., van Langelaar, J., Blok, K. M., van den Bosch, T. P. P., Wierenga-Wolf, A. F., Melief, M.-J., Pol, K., Siepman, T. A., Verjans, G. M. G. M., Smolders, J., Lubberts, E., de Vries, H. E., and van Luijn, M. M. (2020) Brain-homing CD4+ T cells display glucocorticoid-resistant features in MS, Neurol. Neuroimmunol. Neuroinflamm., 7, e894, https://doi.org/10.1212/NXI.0000000000000894.
- Koetzier, S. C., van Langelaar, J., Wierenga-Wolf, A. F., Melief, M. J., Pol, K., Musters, S., Lubberts, E., Dik, W. A., Smolders, J., and van Luijn, M. M. (2022) Improving glucocorticoid sensitivity of brain-homing CD4+ T helper cells by steroid hormone crosstalk, Front. Immunol., 13, 893702, https://doi.org/10.3389/fimmu. 2022.893702.
- Krieger, S., Sorrells, S. F., Nickerson, M., and Pace, T. W. (2014) Mechanistic insights into corticosteroids in multiple sclerosis: war horse or chameleon? Clin. Neurol. Neurosurg., 119, 6-16, https://doi.org/10.1016/j.clineuro. 2013.12.021.
- Ransohoff, R. M., Hafler, D. A., and Lucchinetti, C. F. (2015) Multiple sclerosis-a quiet revolution, Nat. Rev. Neurol., 11, 134-142, https://doi.org/10.1038/nrneurol.2015.14.
- Gabryel, M., Skrzypczak-Zielinska, M., Kucharski, M. A., Slomski, R., and Dobrowolska, A. (2016) The impact of genetic factors on response to glucocorticoids therapy in IBD, Scand. J. Gastroenterol., 51, 654-665, https://doi.org/ 10.3109/00365521.2015.1132336.
- Vincken, N. L. A., Balak, D. M. W., Knulst, A. C., Welsing, P. M. J., and van Laar, J. M. (2022) Systemic glucocorticoid use and the occurrence of flares in psoriatic arthritis and psoriasis: a systematic review, Rheumatology, 61, 4232-4244, https://doi.org/10.1093/rheumatology/keac129.
- Höpner, L., Proschmann, U., Inojosa, H., Ziemssen, T., and Akgün, K. (2024) Corticosteroid-depending effects on peripheral immune cell subsets vary according to disease modifying strategies in multiple sclerosis, Front. Immunol., 13, 1404316, https://doi.org/10.3389/fimmu.2024.1404316.
- Stockinger, B., and Omenetti, S. (2017) The dichotomous nature of T helper 17 cells, Nat. Rev. Immunol., 17, 535-544, https://doi.org/10.1038/nri.2017.50.
- Omenetti, S., Bussi, C., Metidji, A., Iseppon, A., Lee, S., Tolaini, M., Li, Y., Kelly, G., Chakravarty, P., Shoaie, S., Gutierrez, M. G., and Stockinger, B. (2019) The intestine harbors functionally distinct homeostatic tissue-resident and inflammatory Th17 cells, Immunity, 51, 77-89, https://doi.org/10.1016/j.immuni.2019.05.004.
- Langrish, C. L., Chen, Y., Blumenschein, W. M., Mattson, J., Basham, B., Sedgwick, J. D., McClanahan, T., Kastelein, R. A., and Cua, D. J. (2005) IL-23 drives a pathogenic T cell population that induces autoimmune inflammation, J. Exp. Med., 201, 233-240, https://doi.org/10.1084/jem.20041257.
- Cua, D. J., Sherlock, J., Chen, Y., Murphy, C. A., Joyce, B., Seymour, B., Lucian, L., To, W., Kwan, S., Churakova, T., Zurawski, S., Wiekowski, M., Lira, S. A., Gorman, D., Kastelein, R. A., and Sedgwick, J. D. (2003) Interleukin-23 rather than interleukin-12 is the critical cytokine for autoimmune inflammation of the brain, Nature, 421, 744-748, https://doi.org/10.1038/nature01355.
- Lee, Y. K., Turner, H., Maynard, C. L., Oliver, J. R., Chen, D., Elson, C. O., and Weaver, C. T. (2009) Late developmental plasticity in the T helper 17 lineage, Immunity, 30, 92-107, https://doi.org/10.1016/j.immuni. 2008.11.005,
- Nistala, K., Adams, S., Cambrook, H., Ursu, S., Olivito, B., de Jager, W., Evans, J. G., Cimaz, R., Bajaj-Elliott, M., and Wedderburn, L. R. (2010) Th17 plasticity in human autoimmune arthritis is driven by the inflammatory environment, Proc. Natl. Acad. Sci. USA, 107, 14751-14756, https://doi.org/10.1073/pnas. 1003852107.
- Maggi, L., Santarlasci, V., Capone, M., Rossi, M. C., Querci, V., Mazzoni, A. Cimaz, R., De Palma, R., Liotta, F., Maggi, E., Romagnani, S., Cosmi, L., and Annunziato, F. (2012) Distinctive features of classic and nonclassic (Th17 derived) human Th1 cells, Eur. J. Immunol., 42, 3180-3188, https://doi.org/10.1002/eji.201242648.
- Jones, S. A., Perera, D. N., Fan, H., Russ, B. E., Harris, J., and Morand, E. F. (2015) GILZ regulates Th17 responses and restrains IL-17-mediated skin inflammation, J. Autoimmun., 61, 73-80, https://doi.org/10.1016/ j.jaut. 2015.05.010.
- Kleinschek, M. A., Boniface, K., Sadekova, S., Grein, J., Murphy, E. E., Turner, S. P., Raskin, L., Desai, B., Faubion, W. A., de Waal Malefyt, R., Pierce, R. H., McClanahan, T., and Kastelein, R. A. (2009) Circulating and gut-resident human Th17 cells express CD161 and promote intestinal inflammation, J. Exp. Med., 206, 525-534, https:// doi.org/10.1084/jem.20081712.
- Charmandari, E., Kino, T., Ichijo, T., and Chrousos, G. P. (2008) Generalized glucocorticoid resistance: clinical aspects, molecular mechanisms, and implications of a rare genetic disorder, J. Clin. Endocrinol. Metab., 93, 1563-1572, https://doi.org/10.1210/jc.2008-0040.
- Trebble, P., Matthews, L., Blaikley, J., Wayte, A. W. O., Black, G. C. M., Wilton, A., and Ray, D. (2010) Familial glucocorticoid resistance caused by a novel frameshift glucocorticoid receptor mutation, J. Clin. Endocrinol. Metab., 95, E490-E499, https://doi.org/10.1210/jc.2010-0705.
- Tatsi, C., Xekouki, P., Niotl, O., Bachrach, B., Belyavskaya, E., Lyssikatos, C., and Stratakis, C. A. (2019) A novel mutation in the glucocorticoid receptor gene as a cause of severe glucocorticoid resistance complicated by hypertensive encephalopathy, J. Hypertens., 37, 1475-1481, https://doi.org/10.1097/HJH.0000000000002048.
- Van der Zwet, J. C. G., Smits, W., Buijs-Gladdines, J. G. C. A. M., Pieters, R., and Meijerink, J. P. P. (2020) Recurrent NR3C1 aberrations at first diagnosis relate to steroid resistance in pediatric T-cell acute lymphoblastic leukemia patients, Hemasphere, 21, e513, https://doi.org/10.1097/HS9.0000000000000513.
- Van Oosten, M. J., Dolhain, R. J., Koper, J. W., van Rossum, E. F., Emonts, M., Han, K. H., Wouters, J. M., Hazes, J. M., Lamberts, S. W., and Feelders, R. A. (2010) Polymorphisms in the glucocorticoid receptor gene that modulate glucocorticoid sensitivity are associated with rheumatoid arthritis, Arthritis Res. Ther., 12, 1-8, https:// doi.org/10.1186/ar3118.
- Fang, S.-Y., Li, C.-L., Liu, X.-S., Chen, F., and Hua, H. (2017) Correlation between polymorphisms of the NR3C1 gene and glucocorticoid effectiveness in patients with pemphigus vulgaris, Sci. Rep., 7, 11890, https://doi.org/10.1038/s41598-017-12255-0.
- Parvin, M. N., Aziz, A., Rabbi, S. N. I. Al-Mamun, A., Hanif, M., Islam, M. S., and Islam, M. S. (2021) Assessment of the Link of ABCB1 and NR3C1 gene polymorphisms with the prednisolone resistance in pediatric nephrotic syndrome patients of Bangladesh: a genotype and haplotype approach, J. Adv. Res., 33, 141-151, https://doi.org/ 10.1016/j.jare.2021.02.001.
- Ledderose. C., Möhnle, P., Limbeck, E., Schütz, S., Weis, F., Rink, J., Briegel, J., and Kreth, S. (2012) Corticosteroid resistance in sepsis is influenced by microRNA-124-induced downregulation of glucocorticoid receptor-α, Crit. Care Med., 40, 2745-2753.
- Charmandari, E., Chrousos, G. P., Ichijo, T., Bhattacharyya, N., Vottero, A., Souvatzoglou, E., and Kino, T. (2005) The human glucocorticoid receptor (hGR) beta isoform suppresses the transcriptional activity of hGRalpha by interfering with formation of active coactivator complexes, Mol. Endocrinol., 19, 52-64, https://doi.org/10.1210/me.2004-0112.
- Liang, Y., Song, M. M., Liu, S. Y., and Ma, L. L. (2016) Relationship between expression of glucocorticoid receptor isoforms and glucocorticoid resistance in immune thrombocytopenia, Hematology, 21, 440-446, https://doi.org/ 10.1080/10245332.2015.1102371.
- Lockett, J., Inder, W. J., and Clifton, V. L. (2024) The glucocorticoid receptor: isoforms, functions, and contribution to glucocorticoid sensitivity, Endocr. Rev., 45, 593-624, https://doi.org/10.1210/endrev/bnae008.
- Lu, N. Z., and Cidlowski, J. A. (2005) Translational regulatory mechanisms generate N-terminal glucocorticoid receptor isoforms with unique transcriptional target genes, Mol. Cell, 18, 331-342, https://doi.org/10.1016/ j.molcel.2005.03.025.
- Cao, Y., Bender, I. K., Konstantinidis, A. K., Shin, S. C., Jewell, C. M., Cidlowski, J. A., Schleimer, R. P., and Lu, N. Z. (2013) Glucocorticoid receptor translational isoforms underlie maturational stage-specific glucocorticoid sensitivities of dendritic cells in mice and humans, Blood, 121, 1553-1562, https://doi.org/10.1182/blood-2012-05-432336.
- Taniguchi, Y., Iwasaki, Y., Tsugita, M., Nishiyama, M., Taguchi, T., Okazaki, M., Nakayama, S., Kambayashi, M., Hashimoto, K., and Terada, Y. (2010) Glucocorticoid receptor-beta and receptor-gamma exert dominant negative effect on gene repression but not on gene induction, Endocrinology, 151, 3204-3213, https://doi.org/10.1210/en.2009-1254.
- He, B., Cruz-Topete, D., Oakley, R. H., Xiao, X., and Cidlowski, J. A. (2015) Human glucocorticoid receptor beta regulates gluconeogenesis and inflammation in mouse liver, Mol. Cell Biol., 36, 714-730, https://doi.org/10.1128/MCB.00908-15.
- Marino, J. S., Stechschulte, L. A., Stec, D. E., Nestor-Kalinoski, A., Coleman, S., and Hinds, T. D. (2016) Glucocorticoid receptor beta induces hepatic steatosis by augmenting inflammation and inhibition of the peroxisome proliferator-activated receptor (PPAR) alpha, J. Biol. Chem., 291, 25776-25788, https://doi.org/10.1074/ jbc.M116.752311.
- Kino, T., Manoli, I., Kelkar, S., Wang, Y., Su, Y. A., and Chrousos, G. P. (2009) Glucocorticoid receptor (GR) b has intrinsic, GRα-independent transcriptional activity, Biochem. Biophys. Res. Commun., 381, 671-675, https://doi.org/ 10.1016/j.bbrc.2009.02.110.
- Vazquez-Tello, A., Semlali, A., Chakir, J., Martin, J. G., Leung, D. Y., Eidelman, D. H., and Hamid, Q. (2010) Induction of glucocorticoid receptor-beta expression in epithelial cells of asthmatic airways by T-helper type 17 cytokines, Clin. Exp. Allergy, 40, 1312-1322, https://doi.org/10.1111/j.1365-2222.2010.03544.x.
- Lo, C.-Y., Wang, C.-H., Wang, C.-W., Chen, C.-J., Huang, H.-Y., Chung, F.-T., Huang, Y.-C., Lin, C.-W., Lee, C.-S., Lin, C.-Y., Lin, C.-H., Chang, P.-J., Lin, T.-Y., Heh, C.-C., He, J.-R., and Chung, K. F. (2022) Increased interleukin-17 and glucocorticoid receptor-β expression in interstitial lung diseases and corticosteroid insensitivity, Front. Immunol., 13, 905727, https://doi.org/10.3389/fimmu.2022.905727.
- Al Heialy, S., Gaudet, M., Ramakrishnan, R. K., Mogas, A., Salameh, L., Mahboub, B., and Hamid, Q. (2020) Contribution of IL-17 in steroid hyporesponsiveness in obese asthmatics through dysregulation of glucocorticoid receptors α and β, Front Immunol., 11, 1724, https://doi.org/10.3389/fimmu.2020.01724.
- Strickland, I., Kisich, K., Hauk, P. J., Vottero, A., Chrousos, G. P., Klemm, D. J., and Leung, D. Y. (2001) High constitutive glucocorticoid receptor beta in human neutrophils enables them to reduce their spontaneous rate of cell death in response to corticosteroids, J. Exp. Med., 193, 585-593, https://doi.org/10.1084/jem.193.5.585.
- Gold, S. M., Sasidhar, M. V., Lagishetty, V., Spence, R. D., Umeda, E., Ziehn, M. O., Krieger, T., Schulz, K. H., Heesen, C., Hewison, M., and Voskuhl, R. R. (2012) Dynamic development of glucocorticoid resistance during autoimmune neuroinflammation, J. Clin. Endocrinol. Metab., 97, E1402-E1410, https://doi.org/10.1210/jc.2012-1294.
- Ji, N., Kovalovsky, A., Fingerle-Rowson, G., Guentzel, M. N., and Forsthuber, T. G. (2015) Macrophage migration inhibitory factor promotes resistance to glucocorticoid treatment in EAE, Neurol. Neuroimmunol. Neuroinflamm., 2, e139, https://doi.org/10.1212/NXI.0000000000000139.
- Crowe, A., and Tan, A. M. (2012) Oral and inhaled corticosteroids: differences in P-glycoprotein (ABCB1) mediated efflux, Toxicol. Appl. Pharmacol., 260, 294-302, https://doi.org/10.1016/j.taap.2012.03.008.
- Chaudhary, P. M., and Roninson, I. B. (1991) Expression and activity of P-glycoprotein, a multidrug efflux pump, in human hematopoietic stem cells, Cell, 66, 85-94, https://doi.org/10.1016/0092-8674(91)90141-K.
- Weiss, J., and Haefeli, W. E. (2010) Impact of ATP-binding cassette transporters on human, immunodeficiency virus therapy, Int. Rev. Cell. Mol. Biol., 280, 219-279, https://doi.org/10.1016/S1937-6448(10)80005-X.
- Edavalath, S., Rai, M. K., Gupta, V., Mishra, R., Misra, D. P., Gupta, L., and Agarwal, V. (2022) Tacrolimus induces remission in refractory and relapsing lupus nephritis by decreasing P-glycoprotein expression and function on peripheral blood lymphocytes, Rheumatol. Int., 42, 1347-1354, https://doi.org/10.1007/s00296-021-05057-1.
- Liberman, A. C., Budziñski, M. L., Sokn, C., Gobbini, R. P., Steininger, A., and Arzt, E. (2018) Regulatory and mechanistic actions of glucocorticoids on T and inflammatory cells, Front. Endocrinol., 9, 235, https://doi.org/10.3389/fendo.2018.00235.
- Banuelos, J., Shin, S., Cao, Y., Bochner, B. S., Morales-Nebreda, L., Budinger, G. R. S., Zhou, L., Li, S., Xin, J., Lingen, M. W., Dong, C., Schleimer, R. P., and Lu, N. Z. (2016) BCL-2 protects human and mouse Th17 cells from glucocorticoid-induced apoptosis, Allergy, 71, 640-650, https://doi.org/10.1111/all.12840.
- Schewitz-Bowers, L. P., Lait, P. J. P., Copland, D. A., Chen, P., Wu, W., Dhanda, A. D., Vistica, B. P., Williams, E. L., Liu, B., Jawad, S., Li, Z., Tucker, W., Hirani, S., Wakabayashi, Y., Zhu, J., Sen, N., Conway-Campbell, B. L., Gery, I., Dick, A. D., Wei, L., Nussenblatt, R. B., and Lee, R. W. J. (2015) Glucocorticoid-resistant Th17 cells are selectively attenuated by cyclosporine A, Proc. Natl. Acad. Sci. USA, 112, 4080-4085.
- McKinley, L., Alcorn, J. F., Peterson, A., DuPont, R. B., Kapadia, S., Logar, A., Henry, A., Irvin, C. G., Piganelli, J. D., Ray, A., and Kolls, J. K. (2008) TH17 cells mediate steroid-resistant airway inflammation and airway hyperresponsiveness in mice, J. Immunol., 181, 4089-4097, https://doi.org/10.4049/jimmunol.181.6.4089.
- Zhao, J., Lloyd, C. M., and Noble, A. (2013) Th17 responses in chronic allergic airway inflammation abrogate regulatory T-cell-mediated tolerance and contribute to airway remodeling, Mucosal Immunol., 6, 335-346, https://doi.org/10.1038/mi.2012.76.
- Xie, H., Huang, Z., Wang, R., and Sun, Z. (2006) Regulation of thymocyte survival by transcriptional coactivators, Crit. Rev. Immunol., 26, 475-486, https://doi.org/10.1615/CritRevImmunol.v26.i6.10.
- Langlais, D., Couture, C., Balsalobre, A., and Drouin, J. (2012) The Stat3/GR interaction code: predictive value of direct/indirect DNA recruitment for transcription outcome, Mol. Cell, 47, 38-49, https://doi.org/10.1016/ j.molcel.2012.04.021.
- Rahmawati, S. F., Vos, R., Bos, I. S. T., Kerstjens, H. A. M., Kistemaker, L. E. M., and Gosens, R. (2022) Function-specific IL-17A and dexamethasone interactions in primary human airway epithelial cells, Sci. Rep., 12, 11110, https://doi.org/10.1038/s41598-022-15393-2.
- Marwick, J. A., Adcock, I. M., and Chung, K. F. (2010) Overcoming reduced glucocorticoid sensitivity in airway disease: molecular mechanisms and therapeutic approaches, Drugs, 70, 929-948, https://doi.org/10.2165/ 10898520-000000000-00000.
- Clarisse, D., Thommis, J., Van Wesemael, K., Houtman, R., Ratman, D., Tavernier, J., Offner, F., Beck, I., and De Bosscher, K. (2017) Coregulator profiling of the glucocorticoid receptor in lymphoid malignancies, Oncotarget, 8, 109675-109691, https://doi.org/10.18632/oncotarget. 22764.
- Lonard, D. M., and O’Malley, B. W. (2007) Nuclear receptor coregulators: judges, juries, and executioners of cellular regulation, Mol. Cell, 27, 691-700, https://doi.org/10.1016/j.molcel.2007.08.012.
- King, H. A., Trotter, K. W., and Archer, T. K. (2012) Chromatin remodeling during glucocorticoid receptor regulated transactivation, Biochim. Biophys. Acta, 1819, 716-726, https://doi.org/10.1016/j.bbagrm.2012.02.019.
- Hudson, W. H., de Vera, I. M. S., Nwachukwu, J. C., Weikum, E. R., Herbst, A. G., Yang, Q., Bain, D. L., Nettles, K. W., Kojetin, D. J., and Ortlund, E. A. (2018) Cryptic glucocorticoid receptor-binding sites pervade genomic NF-κB response elements, Nat. Commun., 9, 1337, https://doi.org/10.1038/s41467-018-03780-1.
- Yu, C., York, B., Wang, S., Feng, Q., Xu, J., and O’Malley, B. W. (2007) An essential function of the SRC-3 coactivator in suppression of cytokine mRNA translation and inflammatory response, Mol. Cell, 25, 765-778, https://doi.org/10.1016/j.molcel.2007.01.025.
- Tanaka, K., Martinez, G. J., Yan, X., Long, W., Ichiyama, K., Chi, X., Kim, B. S., Reynolds, J. M., Chung, Y., Tanaka, S., Liao, L., Nakanishi, Y., Yoshimura, A., Zheng, P., Wang, X., Tian, Q., Xu, J., O’Malley, B. W., and Dong, C. (2018) Regulation of pathogenic T helper 17 cell differentiation by steroid receptor coactivator-3, Cell. Rep., 23, 2318-2329, https://doi.org/10.1016/j.celrep.2018.04.088.
- He, Z., Zhang, J., Du, Q., Xu, J., Gwack, Y., and Sun, Z. (2019) SRC3 is a cofactor for RORgt in Th17 differentiation but not thymocyte development, J. Immunol., 202, 760-769, https://doi.org/10.4049/jimmunol.1801187.
- Sen, S., Wang, F., Zhang, J., He, Z., Ma, J., Gwack, Y., Xu, J., and Sun, Z. (2018) SRC1 promotes Th17 differentiation by overriding Foxp3 suppression to stimulate RORgammat activity in a PKC-theta-dependent manner, Proc. Natl. Acad. Sci. USA, 115, E458-E467, https://doi.org/10.1073/pnas.1717789115.
- Gu, Z., Chen, X., Zhu, D., Wu, S., and Yu, C. (2022) Histone deacetylase 1 and 3 inhibitors alleviate colon inflammation by inhibiting Th17 cell differentiation, J. Clin. Lab. Anal., 36, e24699, https://doi.org/10.1002/jcla.2469.
- Göschl, L., Preglej, T., Hamminger, P., Bonelli, M., Andersen, L., and Boucheron, N. (2018) A T cell-specific deletion of HDAC1 protects against experimental autoimmune encephalomyelitis, J. Autoimmun., 86, 51-61, https://doi.org/10.1016/j.jaut.2017.09.008.
- Liu, J., Zhou, F., Chen, Q., Kang, A., Lu, M., Liu, W., Zang, X., Wang, G., and Zhang, J. (2015) Chronic inflammation up-regulates P-gp in peripheral mononuclear blood cells via the STAT3/Nf-kappab pathway in 2,4,6-trinitrobenzene sulfonic acid-induced colitis mice, Sci. Rep., 5, 13558, https://doi.org/10.1038/srep13558.
- Leussink, V. I., Jung, S., Merschdorf, U., Toyka, K. V., and Gold, R. (2001) High-dose methylprednisolone therapy in multiple sclerosis induces apoptosis in peripheral blood leukocytes, Arch. Neurol., 58, 91-97, https:// doi.org/10.1001/archneur.58.1.91.
- Augustin, M., Mrowietz, U., Bonnekoh, B., Rosenbach, T., Thaci, D., Reusch, M., Ardabili, M., and Reich, K. (2014) Topical long-term therapy of psoriasis with vitamin D3 analogues, corticosteroids and their two compound formulations: position paper on evidence and use in daily practice, J. Dtsch. Dermatol. Ges., 12, 667-682, https://doi.org/10.1111/ddg.12396.
- Kirwan, J., and Power, L. (2007) Glucocorticoids: action and new therapeutic insights in rheumatoid arthritis, Curr. Opin. Rheumatol., 19, 233-237, https://doi.org/10.1097/BOR.0b013e3280d6471a.
- Barnes, P. J. (2010) Mechanisms and resistance in glucocorticoid control of inflammation, J. Steroid Biochem. Mol. Biol., 120, 76-85, https://doi.org/10.1016/j.jsbmb.2010.02.018.
- De Iudicibus, S. (2011) Molecular mechanism of glucocorticoid resistance in inflammatory bowel disease, World J. Gastroenterol., 17, 1095, https://doi.org/10.3748/wjg.v17.i9.1095.
- Van Winsen, L. M., Muris, D. F., Polman, C. H., Dijkstra, C. D., van den Berg, T. K., and Uitdehaag, B. M. (2005) Sensitivity to glucocorticoids is decreased in relapsing remitting multiple sclerosis, J. Clin. Endocrinol. Metab., 90, 734-740, https://doi.org/10.1210/jc.2004-0306.
- Brusaferri, F., and Candelise, L. (2000) Steroids for multiple sclerosis and optic neuritis: a meta-analysis of randomized controlled clinical trials, J. Neurol., 247, 435-442, https://doi.org/10.1007/s004150070172.
- Martinez-Caceres, E. M., Barrau, M. A., Brieva, L., Espejo, C., Barbera, N., and Montalban, X. (2002) Treatment with methylprednisolone in relapses of multiple sclerosis patients: immunological evidence of immediate and short-term but not long-lasting effects, Clin. Exp. Immunol., 127, 165-171, https://doi.org/10.1046/ j.1365-2249.2002.01725.x.
- Quinn, M. A., Green, M. J., Marzo-Ortega, H., Proudman, S., Karim, Z., Wakefield, R. J., Conaghan, P. G., and Emery, P. (2003) Prognostic factors in a large cohort of patients with early undifferentiated inflammatory arthritis after application of a structured management protocol, Arthritis Rheum., 48, 3039-3045, https://doi.org/10.1002/art.11269.
- McGinley, M. P., Goldschmidt, C. H., and Rae-Grant, A. D. (2021) Diagnosis and treatment of multiple sclerosis: a review, JAMA, 325, 765-779, https://doi.org/10.1001/jama.2020.26858.
Supplementary files
