Selective labeling techniques of molecules and subcellular structures for cryo-electron tomography
- Authors: Kazakov E.P.1, Kireev I.I.1, Golyshev S.A.1
-
Affiliations:
- Lomonosov Moscow State University
- Issue: Vol 90, No 2 (2025)
- Pages: 189-206
- Section: Articles
- URL: https://journals.rcsi.science/0320-9725/article/view/291838
- DOI: https://doi.org/10.31857/S0320972525020028
- EDN: https://elibrary.ru/BNDUNJ
- ID: 291838
Cite item
Abstract
Electron microscopy is one of the most effective methods for studying the fine structure of the cells with a resolution thousands of times higher than that of the visible light microscopy. The most advanced implementation of biological electron microscopy is EM tomography of samples stabilized by freezing without water crystallization (cryoET). By circumventing the drawbacks of chemical fixation and dehydration, this technique allows the investigation of cellular structures in three dimensions at molecular level, down to resolving the individual proteins and their sub-domains. However, the problem of effective identification and localization of the object of interest has not yet been solved, thus limiting the range of targets to easily recognizable or abundant subcellular components. Labeling techniques provide the only way for locating the subject of investigation in microscopic images. CryoET imposes conflicting demands on the labeling system. These requirements can be succinctly stated as the need to introduce particles, composed of substances, foreign to the cellular chemistry, into a living cell, conjugate it to the molecule of interest without disrupting its vital functions and the gross physiology of the cell. This review examines both the established and promising methods for selectively labeling of proteins and subcellular structures, enabling their localization in cryoET images.
About the authors
E. P. Kazakov
Lomonosov Moscow State University
Author for correspondence.
Email: kazakov.evgeny.2016@post.bio.msu.ru
Belozersky Research Institute of Physico-Chemical Biology, Department of Cell Biology and Histology, Faculty of Biology
Russian Federation, 119991 MoscowI. I. Kireev
Lomonosov Moscow State University
Email: kazakov.evgeny.2016@post.bio.msu.ru
Belozersky Research Institute of Physico-Chemical Biology, Department of Cell Biology and Histology, Faculty of Biology
Russian Federation, 119991 MoscowS. A. Golyshev
Lomonosov Moscow State University
Email: kazakov.evgeny.2016@post.bio.msu.ru
Belozersky Research Institute of Physico-Chemical Biology
Russian Federation, 119991 MoscowReferences
- Osumi, M. (2012) Visualization of yeast cells by electron microscopy, J. Electron. Microsc., 61, 343-365, https://doi.org/10.1093/jmicro/dfs082.
- Knott, G., and Genoud, C. (2013) Is EM dead? J. Cell Sci., 126, 4545-4552, https://doi.org/10.1242/jcs.124123.
- Sengupta, R., Poderycki, M. J., and Mattoo, S. (2019) CryoAPEX – an electron tomography tool for subcellular localization of membrane proteins, J. Cell Sci., 132, jcs222315, https://doi.org/10.1242/jcs.222315.
- Walther, P., Schmid, E., and Höhn, K. (2013) High-pressure freezing for scanning transmission electron tomography analysis of cellular organelles, Methods Mol. Biol., 931, 525-535, https://doi.org/10.1007/978-1-62703-056-4_28.
- Moor, H. (1987) Theory and practice of high pressure freezing, in Cryotechniques in Biological Electron Microscopy, Berlin, Heidelberg, Springer Berlin Heidelberg, pp. 175-191, https://doi.org/10.1007/978-3-642-72815-0_8.
- Studer, D., Humbel, B. M., and Chiquet, M. (2008) Electron microscopy of high pressure frozen samples: bridging the gap between cellular ultrastructure and atomic resolution, Histochem. Cell Biol., 130, 877-889, https:// doi.org/10.1007/s00418-008-0500-1.
- Dubochet, J., and McDowall, A. W. (1981) Vitrification of pure water for electron microscopy, J. Microsc., 124, 3-4.
- D’Imprima, E., Fung, H. K., Zagoriy, I., and Mahamid, J. (2024) Cryogenic Preparations of Biological Specimens for Cryo-Electron Tomography, in Cryo-Electron Tomography: Structural Biology in situ, Cham, Springer International Publishing, 85-114, https://doi.org/10.1007/978-3-031-51171-4_6.
- Williams, D.B. and Carter, C.B. (2009) “Transmission Electron Microscopy: A Textbook for Materials Science”, 2nd Edition, Springer, New York, pp. 1-757.
- Tokuyasu K. T. (1973) A technique for ultracryotomy of cell suspensions and tissues, J. Cell Biol., 57, 551-565, https://doi.org/10.1083/jcb.57.2.551.
- McDowall, A. W., Chang, J. J., Freeman, R., Lepault, J., Walter, C. A., and Dubochet, J. (1983) Electron microscopy of frozen hydrated sections of vitreous ice and vitrified biological samples, J. Microsc., 131, 1-9., https:// doi.org/10.1111/j.1365-2818.1983.tb04225.x.
- Al-Amoudi, A., Norlen, L. P., and Dubochet, J. (2004) Cryo-electron microscopy of vitreous sections of native biological cells and tissues, J. Struct. Biol., 148, 131-135, https://doi.org/10.1016/j.jsb.2004.03.010.
- Marko, M., Hsieh, C., Moberlychan, W., Mannella, C. A., and Frank, J. (2006) Focused ion beam milling of vitreous water: prospects for an alternative to cryo-ultramicrotomy of frozen-hydrated biological samples, J. Microsc., 222, 42-47, https://doi.org/10.1111/j.1365-2818.2006.01567.x.
- Marko, M., Hsieh, C., Schalek, R., Frank, J., and Mannella, C. (2007) Focused-ion-beam thinning of frozen-hydrated biological specimens for cryo-electron microscopy, Nat. Methods, 4, 215-217., https://doi.org/10.1038/ nmeth1014.
- Rigort, A., Bäuerlein, F. J., Villa, E., Eibauer, M., Laugks, T., Baumeister, W., and Plitzko, J. M. (2012) Focused ion beam micromachining of eukaryotic cells for cryoelectron tomography, Proc. Natl. Acad. Sci. USA, 109, 4449-4454, https://doi.org/10.1073/pnas.1201333109.
- Frangakis A. S. (2024) Principles of tomographic reconstruction, in Cryo-Electron Tomography. Focus on Structural Biology (Förster, F., and Briegel, A., eds) Springer, Cham, vol. 11, doi.org/10.1007/978-3-031-51171-4_26.
- Xue, L., Lenz, S., Zimmermann-Kogadeeva, M., Tegunov, D., Cramer, P., Bork, P., Rappsilber, J., and Mahamid, J. (2022) Visualizing translation dynamics at atomic detail inside a bacterial cell, Nature, 610, 205-211, https:// doi.org/10.1038/s41586-022-05255-2.
- Jin, W., Zhou, Y., and Bartesaghi, A. (2024) Accurate size-based protein localization from cryo-ET tomograms, J. Struct. Biol., 10, 100104, https://doi.org/10.1016/j.yjsbx.2024.100104.
- DeRosier, D. J. (2021) Where in the cell is my protein? Q. Rev. Biophys., 54, e9, https://doi.org/10.1017/S003358352100007X.
- Kaufmann, R., Grünewald, K., and Baker, L.A. (2024) Targeting, Localisation and Identification, in Cryo-Electron Tomography. Focus on Structural Biology (Förster, F., and Briegel, A., eds) Springer, Cham, vol. 11, https:// doi.org/10.1007/978-3-031-51171-4_6.
- Beales, C. T., and Medalia, O. (2022) Gold nanomaterials and their potential use as cryo-electron tomography labels, J. Struct. Biol., 214, 107880, https://doi.org/10.1016/j.jsb.2022.107880.
- Groysbeck, N., Hanss, V., Donzeau, M., Strub, J. M., Cianférani, S., Spehner, D., Bahri, M., Ersen, O., Eltsov, M., Schultz, P., and Zuber, G. (2023) Bioactivated and PEG-protected circa 2 nm gold nanoparticles for in cell labelling and Cryo-electron microscopy, Small Methods, 7, e2300098, https://doi.org/10.1002/smtd.202300098.
- Eltsov, M., Maclellan, K. M., Maeshima, K., Frangakis, A. S., and Dubochet, J. (2008) Analysis of cryo-electron microscopy images does not support the existence of 30-nm chromatin fibers in mitotic chromosomes in situ, Proc. Natl. Acad. Sci. USA, 105, 19732-19737, https://doi.org/10.1073/pnas.0810057105.
- Nishino, Y., Eltsov, M., Joti, Y., Ito, K., Takata, H., Takahashi, Y., Hihara, S., Frangakis, A. S., Imamoto, N., Ishikawa, T., and Maeshima, K. (2012) Human mitotic chromosomes consist predominantly of irregularly folded nucleosome fibres without a 30-nm chromatin structure, EMBO J., 31, 1644-1653, https://doi.org/10.1038/ emboj.2012.35.
- Plitzko, J. M., and Bollschweiler, D., (2024) Fundamentals of Instrumentation and Electron Optics for Cryo-Electron Tomography, in Cryo-Electron Tomography. Focus on Structural Biology (Förster, F., and Briegel, A., eds) Springer, Cham, vol. 11, https://doi.org/10.1007/978-3-031-51171-4_1.
- Wang, Q., Mercogliano, C. P., and Löwe, J. (2011) A ferritin-based label for cellular electron cryotomography, Structure, 19, 147-154, https://doi.org/10.1016/j.str.2010.12.002.
- De Boer, P., Hoogenboom, J. P., and Giepmans, B. N. (2015) Correlated light and electron microscopy: ultrastructure lights up! Nat. Methods, 12, 503-513, https://doi.org/10.1038/nmeth.3400.
- Horisberger, M., and Rosset, J. (1977) Colloidal gold, a useful marker for transmission and scanning electron microscopy, J. Histochem. Cytochem., 25, 295-305, https://doi.org/10.1177/25.4.323352.
- Hainfeld, J. F., and Furuya, F. R. (1992) A 1.4-nm gold cluster covalently attached to antibodies improves immunolabeling, J. Histochem. Cytochem., 40, 177-184, https://doi.org/10.1177/40.2.1552162.
- Bendayan, M. (1995) Colloidal gold post-embedding immunocytochemistry, Progr. Histochem. Cytochem., 29, 1-159, https://doi.org/10.1016/s0079-6336(11)80027-6.
- Connor, E. E., Mwamuka, J., Gole, A., Murphy, C. J., and Wyatt, M. D. (2005) Gold nanoparticles are taken up by human cells but do not cause acute cytotoxicity, Small, 1, 325-327, https://doi.org/10.1002/smll.200400093.
- Yi, H., Strauss, J. D., Ke, Z., Alonas, E., Dillard, R. S., Hampton, C. M., Lamb, K. M., Hammonds, J. E., Santangelo, P. J., Spearman, P. W., and Wright, E. R. (2015) Native immunogold labeling of cell surface proteins and viral glycoproteins for cryo-electron microscopy and cryo-electron tomography applications, J. Histochem. Cytochem., 63, 780-792, https://doi.org/10.1369/0022155415593323.
- Dahan, I., Sorrentino, S., Boujemaa-Paterski, R., and Medalia, O. (2018) Tiopronin-protected gold nanoparticles as a potential marker for cryo-EM and tomography, Structure, 26, 1408-1413.e3, https://doi.org/10.1016/ j.str.2018.06.009.
- Jiang, J., Cheong, K. Y., Falkowski, P. G., and Dai, W. (2021) Integrating on-grid immunogold labeling and cryo-electron tomography to reveal photosystem II structure and spatial distribution in thylakoid membranes, J. Struct. Biol., 213, 107746, https://doi.org/10.1016/j.jsb.2021.107746.
- Petersen, J. D., Mekhedov, E., Kaur, S., Roberts, D. D., and Zimmerberg, J. (2022) Endothelial cells release hybrid extracellular vesicles: microvesicles that secrete exosomes, Biophys. J., 121, 293a, https://doi.org/10.1016/ j.bpj.2021.11.1285.
- Koifman, N., Nir-Shapira, M., and Talmon, Y. (2023) Selective labeling of phosphatidylserine for cryo-TEM by a two-step immunogold method, J. Struct. Biol., 215, 108025, https://doi.org/10.1016/j.jsb.2023.108025.
- Kireev, I., Lakonishok, M., Liu, W., Joshi, V. N., Powell, R., and Belmont, A. S. (2008) In vivo immunogold labeling confirms large-scale chromatin folding motifs, Nat. Methods, 5, 311-313, https://doi.org/10.1038/nmeth.1196.
- Orlov, I., Schertel, A., Zuber, G., Klaholz, B., Drillien, R., Weiss, E., Schultz, P., and Spehner, D. (2015) Live cell immunogold labelling of RNA polymerase II, Sci. Rep., 5, 8324, https://doi.org/10.1038/srep08324.
- Fontana, J., Tzeng, W. P., Calderita, G., Fraile-Ramos, A., Frey, T. K., and Risco, C. (2007) Novel replication complex architecture in rubella replicon-transfected cells, Cell. Microbiol., 9, 875-890, https://doi.org/10.1111/j.1462-5822.2006.00837.x.
- Teng, K. W., Ishitsuka, Y., Ren, P., Youn, Y., Deng, X., Ge, P., Lee, S. H., Belmont, A. S., and Selvin, P. R. (2016) Labeling proteins inside living cells using external fluorophores for microscopy, eLife, 5, e20378, https://doi.org/ 10.7554/eLife.20378.
- Fung, H. K. H., Hayashi, Y., Salo, V. T., Babenko, A., Zagoriy, I., Brunner, A., Ellenberg, J., Müller, C. W., Cuylen-Haering, S., and Mahamid, J. (2023) Genetically encoded multimeric tags for subcellular protein localization in cryo-EM, Nat. Methods, 20, 1900-1908, https://doi.org/10.1038/s41592-023-02053-0.
- Yadav, A., Verma, N. C., Rao, C., Mishra, P. M., Jaiswal, A., and Nandi, C. K. (2020) Bovine serum albumin-conjugated red emissive gold nanocluster as a fluorescent nanoprobe for super-resolution microscopy, J. Phys. Chem. Lett., 11, 5741-5748, https://doi.org/10.1021/acs.jpclett.0c01354.
- Tan, Y., He, K., Tang, B., Chen, H., Zhao, Z., Zhang, C., Lin, L., and Liu, J. (2020) Precisely regulated luminescent gold nanoparticles for identification of cancer metastases, ACS Nano, 14, 13975-13985, https://doi.org/10.1021/acsnano.0c06388.
- Phan, M. D., Kim, H., Lee, S., Yu, C. J., Moon, B., and Shin, K. (2017) HIV peptide-mediated binding behaviors of nanoparticles on a lipid membrane, Langmuir, 33, 2590-2595, https://doi.org/10.1021/acs.langmuir. 6b04234.
- Quan, X., Sun, D., and Zhou, J., (2019) Molecular mechanism of HIV-1 TAT peptide and its conjugated gold nanoparticles translocating across lipid membranes, Phys. Chem. Chem. Phys., 21, 10300-10310, https://doi.org/10.1039/c9cp01543d.
- Morgan, E., Doh, J., Beatty, K., and Reich, N. (2019) VIPERnano: improved live cell intracellular protein tracking, ACS Appl. Mater. Interf., 11, 36383-36390, https://doi.org/10.1021/acsami.9b12679.
- Ahwazi, R. P., Kiani, M., Dinarvand, M., Assali, A., Tekie, F. S. M., Dinarvand, R., and Atyabi, F. (2020) Immobilization of HIV-1 TAT peptide on gold nanoparticles: a feasible approach for siRNA delivery, J. Cell. Physiol., 235, 2049-2059, https://doi.org/10.1002/jcp.29105.
- Jiménez-Mancilla, N., Ferro-Flores, G., Santos-Cuevas, C., Ocampo-García, B., Luna-Gutiérrez, M., Azorín-Vega, E., Isaac-Olivé, K., Camacho-López, M., and Torres-García, E. (2013) Multifunctional targeted therapy system based on (99m) Tc/(177) Lu-labeled gold nanoparticles-Tat(49-57)-Lys(3)-bombesin internalized in nuclei of prostate cancer cells, J. Labell. Compounds Radiopharmaceut., 56, 663-671, https://doi.org/10.1002/jlcr.3087.
- Keppler, A., Gendreizig, S., Gronemeyer, T., Pick, H., Vogel, H., and Johnsson, K. (2003) A general method for the covalent labeling of fusion proteins with small molecules in vivo, Nat. Biotechnol., 21, 86-89, https:// doi.org/10.1038/nbt765.
- Los, G. V., Encell, L. P., McDougall, M. G., Hartzell, D. D., Karassina, N., Zimprich, C., Wood, M. G., Learish, R., Ohana, R. F., Urh, M., Simpson, D., Mendez, J., Zimmerman, K., Otto, P., Vidugiris, G., Zhu, J., Darzins, A., Klaubert, D. H., Bulleit, R. F., and Wood, K. V. (2008) HaloTag: a novel protein labeling technology for cell imaging and protein analysis, ACS Chem. Biol., 3, 373-382, https://doi.org/10.1021/cb800025k.
- Vu, T. Q., Lam, W. Y., Hatch, E. W., and Lidke, D. S. (2015) Quantum dots for quantitative imaging: from single molecules to tissue, Cell Tissue Res., 360, 71-86, https://doi.org/10.1007/s00441-014-2087-2.
- Giepmans, B. N., Deerinck, T. J., Smarr, B. L., Jones, Y. Z., and Ellisman, M. H. (2005) Correlated light and electron microscopic imaging of multiple endogenous proteins using Quantum dots, Nat. Methods, 2, 743-749, https:// doi.org/10.1038/nmeth791.
- Huang, X., and Tang, M. (2021) Research advance on cell imaging and cytotoxicity of different types of quantum Dots, J. Appl. Toxicol., 41, 342-361, https://doi.org/10.1002/jat.4083.
- Nielson, K. B., Atkin, C. L., and Winge, D. R. (1985) Distinct metal-binding configurations in metallothionein, J. Biol. Chem., 260, 5342-5350, https://doi.org/10.1016/S0021-9258(18)89027-5.
- Mercogliano, C. P., and DeRosier, D. J. (2006) Gold nanocluster formation using metallothionein: mass spectrometry and electron microscopy, J. Mol. Biol., 355, 211-223, https://doi.org/10.1016/j.jmb.2005.10.026.
- Ziller, A., and Fraissinet-Tachet, L. (2018) Metallothionein diversity and distribution in the tree of life: a multifunctional protein, Metallomics, 10, 1549-1559, https://doi.org/10.1039/c8mt00165k.
- Nordberg, M., and Nordberg, G. F. (2000) Toxicological aspects of metallothionein, Cell. Mol. Biol., 46, 451-463.
- Ruttkay-Nedecky, B., Nejdl, L., Gumulec, J., Zitka, O., Masarik, M., Eckschlager, T., Stiborova, M., Adam, V., and Kizek, R. (2013) The role of metallothionein in oxidative stress, Int. J. Mol. Sci., 14, 6044-6066, https:// doi.org/10.3390/ijms14036044.
- Mercogliano, C. P., and DeRosier, D. J. (2007) Concatenated metallothionein as a clonable gold label for electron microscopy, J. Struct. Biol., 160, 70-82, https://doi.org/10.1016/j.jsb.2007.06.010.
- Bouchet-Marquis, C., Pagratis, M., Kirmse, R., and Hoenger, A. (2012) Metallothionein as a clonable high-density marker for cryo-electron microscopy, J. Struct. Biol., 177, 119-127, https://doi.org/10.1016/j.jsb.2011.10.007.
- Risco, C., Sanmartín-Conesa, E., Tzeng, W. P., Frey, T. K., Seybold, V., and de Groot, R. J. (2012) Specific, sensitive, high-resolution detection of protein molecules in eukaryotic cells using metal-tagging transmission electron microscopy, Structure, 20, 759-766, https://doi.org/10.1016/j.str.2012.04.001.
- Barajas, D., Martín, I. F., Pogany, J., Risco, C., and Nagy, P. D. (2014) Noncanonical role for the host Vps4 AAA+ ATPase ESCRT protein in the formation of Tomato bushy stunt virus replicase, PLoS Pathog., 10, e1004087, https://doi.org/10.1371/journal.ppat.1004087.
- Nishino, Y., Yasunaga, T., and Miyazawa, A. (2007) A genetically encoded metallothionein tag enabling efficient protein detection by electron microscopy, J. Electron Microsc., 56, 93-101, https://doi.org/10.1093/ jmicro/dfm008.
- Diestra, E., Fontana, J., Guichard, P., Marco, S., and Risco, C. (2009) Visualization of proteins in intact cells with a clonable tag for electron microscopy, J. Struct. Biol., 165, 157-168, https://doi.org/10.1016/j.jsb. 2008.11.009.
- Diestra, E., Cayrol, B., Arluison, V., and Risco, C. (2009) Cellular electron microscopy imaging reveals the localization of the Hfq protein close to the bacterial membrane, PLoS One, 4, e8301, https://doi.org/10.1371/journal.pone.0008301.
- Hirabayashi, A., Fukunaga, Y., and Miyazawa, A. (2014) Structural analysis of the PSD-95 cluster by electron tomography and CEMOVIS: a proposal for the application of the genetically encoded metallothionein tag, Microscopy, 63, 227-234, https://doi.org/10.1093/jmicro/dfu006.
- Grandinetti, G., Goetz, D., Santas, A. J., Chinthalapudi, K., and Trout, A. (2024) Tracking intracellular proteins of interest with cryo-electron microscopy, Microsc. Microanal., 30, https://doi.org/10.1093/mam/ozae044.387.
- Jutz, G., van Rijn, P., Santos Miranda, B., and Böker, A. (2015) Ferritin: a versatile building block for bionanotechnology, Chem. Rev., 115, 1653-1701, https://doi.org/10.1021/cr400011b.
- Clarke, N. I., and Royle, S. J. (2018) FerriTag is a new genetically-encoded inducible tag for correlative light-electron microscopy, Nat. Commun., 9, 2604, https://doi.org/10.1038/s41467-018-04993-0.
- Wang, C., Iacovache, I., and Zuber, B. (2024) Genetically encoded FerriTag as a specific label for cryo-electron tomography, bioRxiv, https://doi.org/10.1101/2024.09.10.612178.
- Ni, T. W., Staicu, L. C., Nemeth, R. S., Schwartz, C. L., Crawford, D., Seligman, J. D., Hunter, W. J., Pilon-Smits, E. A., and Ackerson, C. J. (2015) Progress toward clonable inorganic nanoparticles, Nanoscale, 7, 17320-17327, https://doi.org/10.1039/c5nr04097c.
- Jiang, Z., Jin, X., Li, Y., Liu, S., Liu, X. M., Wang, Y. Y., Zhao, P., Cai, X., Liu, Y., Tang, Y., Sun, X., Liu, Y., Hu, Y., Li, M., Cai, G., Qi, X., Chen, S., Du, L. L., and He, W. (2020) Genetically encoded tags for direct synthesis of EM-visible gold nanoparticles in cells, Nat. Methods, 17, 937-946, https://doi.org/10.1038/s41592-020-0911-z.
- Silvester, E., Vollmer, B., Pražák, V., Vasishtan, D., Machala, E. A., Whittle, C., Black, S., Bath, J., Turberfield, A. J., Grünewald, K., and Baker, L. A. (2021) DNA origami signposts for identifying proteins on cell membranes by electron cryotomography, Cell, 184, 1110-1121.e16, https://doi.org/10.1016/j.cell.2021.01.033.
- Rothemund P. W. (2006) Folding DNA to create nanoscale shapes and patterns, Nature, 440, 297-302, https:// doi.org/10.1038/nature04586.
- Jiang, Q., Shang, Y., Xie, Y., and Ding, B. (2024) DNA origami: from molecular folding art to drug delivery technology, Adv. Mater., 36, e2301035, https://doi.org/10.1002/adma.202301035.
- Mallik, L., Dhakal, S., Nichols, J., Mahoney, J., Dosey, A. M., Jiang, S., Sunahara, R. K., Skiniotis, G., and Walter, N. G. (2015) Electron microscopic visualization of protein assemblies on flattened DNA origami, ACS Nano, 9, 7133-7141, https://doi.org/10.1021/acsnano.5b01841.
- Aissaoui, N., Mills, A., Lai-Kee-Him, J., Triomphe, N., Cece, Q., Doucet, C., Bonhoure, A., Vidal, M., Ke, Y., and Bellot, G. (2024) Free-standing DNA origami superlattice to facilitate Cryo-EM visualization of membrane vesicles, J. Am. Chem. Soc., 146, 12925-12932, https://doi.org/10.1021/jacs.3c07328.
- Raab, M., Jusuk, I., Molle, J., Buhr, E., Bodermann, B., Bergmann, D., Bosse, H., and Tinnefeld, P. (2018) Using DNA origami nanorulers as traceable distance measurement standards and nanoscopic benchmark structures, Sci. Rep., 8, 1780, https://doi.org/10.1038/s41598-018-19905-x.
- Bouvier-Müller, A., and Ducongé, F. (2018) Application of aptamers for in vivo molecular imaging and theranostics, Adv. Drug Deliv. Rev., 134, 94-106, https://doi.org/10.1016/j.addr.2018.08.004.
- Hong, H., Goel, S., Zhang, Y., and Cai, W. (2011) Molecular imaging with nucleic acid aptamers, Curr. Med. Chem., 18, 4195-4205, https://doi.org/10.2174/092986711797189691.
- López-Colón, D., Jiménez, E., You, M., Gulbakan, B., and Tan, W. (2011) Aptamers: turning the spotlight on cells, Nanomed. Nanobiotechnol., 3, 328-340, https://doi.org/10.1002/wnan.133.
- Valdés-Stauber, N., and Scherer, S. (1994) Isolation and characterization of Linocin M18, a bacteriocin produced by Brevibacterium linens, Appl. Environ. Microbiol., 60, 3809-3814, https://doi.org/10.1128/aem.60.10.3809-3814.1994.
- Moon, H., Lee, J., Min, J., and Kang, S. (2014) Developing genetically engineered encapsulin protein cage nanoparticles as a targeted delivery nanoplatform, Biomacromolecules, 15, 3794-3801, https://doi.org/10.1021/bm501066m.
- Sutter, M., Boehringer, D., Gutmann, S., Günther, S., Prangishvili, D., Loessner, M. J., Stetter, K. O., Weber-Ban, E., and Ban, N. (2008) Structural basis of enzyme encapsulation into a bacterial nanocompartment, Nat. Struct. Mol. Biol., 15, 939-947, https://doi.org/10.1038/nsmb.1473.
- Contreras, H., Joens, M. S., McMath, L. M., Le, V. P., Tullius, M. V., Kimmey, J. M., Bionghi, N., Horwitz, M. A., Fitzpatrick, J. A., and Goulding, C. W. (2014) Characterization of a Mycobacterium tuberculosis nanocompartment and its potential cargo proteins, J. Biol. Chem., 289, 18279-18289, https://doi.org/10.1074/jbc. M114.570119.
- McHugh, C. A., Fontana, J., Nemecek, D., Cheng, N., Aksyuk, A. A., Heymann, J. B., Winkler, D. C., Lam, A. S., Wall, J. S., Steven, A. C., and Hoiczyk, E. (2014) A virus capsid-like nanocompartment that stores iron and protects bacteria from oxidative stress, EMBO J., 33, 1896-1911, https://doi.org/10.15252/embj.201488566.
- Giessen, T. W., Orlando, B. J., Verdegaal, A. A., Chambers, M. G., Gardener, J., Bell, D. C., Birrane, G., Liao, M., and Silver, P. A. (2019) Large protein organelles form a new iron sequestration system with high storage capacity, eLife, 8, e46070, https://doi.org/10.7554/eLife.46070.
- Sigmund, F., Massner, C., Erdmann, P., Stelzl, A., Rolbieski, H., Desai, M., Bricault, S., Wörner, T. P., Snijder, J., Geerlof, A., Fuchs, H., Hrabĕ de Angelis, M., Heck, A. J. R., Jasanoff, A., Ntziachristos, V., Plitzko, J., and Westmeyer, G. G. (2018) Bacterial encapsulins as orthogonal compartments for mammalian cell engineering, Nat. Commun., 9, 1990, https://doi.org/10.1038/s41467-018-04227-3.
- Sigmund, F., Berezin, O., Beliakova, S., Magerl, B., Drawitsch, M., Piovesan, A., Gonçalves, F., Bodea, S. V., Winkler, S., Bousraou, Z., Grosshauser, M., Samara, E., Pujol-Martí, J., Schädler, S., So, C., Irsen, S., Walch, A., Kofler, F., Piraud, M., Kornfeld, J., Briggman, K., and Westmeyer, G. G. (2023) Genetically encoded barcodes for correlative volume electron microscopy, Nat. Biotechnol., 41, 1734-1745, https://doi.org/10.1038/s41587-023-01713-y.
- Pagano, R. E., Sepanski, M. A., and Martin, O. C. (1989) Molecular trapping of a fluorescent ceramide analogue at the Golgi apparatus of fixed cells: interaction with endogenous lipids provides a trans-Golgi marker for both light and electron microscopy, J. Cell Biol., 109, 2067-2079, https://doi.org/10.1083/jcb.109.5.2067.
- Zhang, Y., and Hensel, M. (2013) Evaluation of nanoparticles as endocytic tracers in cellular microbiology, Nanoscale, 5, 9296-9309, https://doi.org/10.1039/c3nr01550e.
- Fermie, J., de Jager, L., Foster, H. E., Veenendaal, T., de Heus, C., van Dijk, S., Ten Brink, C., Oorschot, V., Yang, L., Li, W., Müller, W. H., Howes, S., Carter, A. P., Förster, F., Posthuma, G., Gerritsen, H. C., Klumperman, J., and Liv, N. (2022) Bimodal endocytic probe for three-dimensional correlative light and electron microscopy, Cell Rep. Methods, 2, 100220, https://doi.org/10.1016/j.crmeth.2022.100220.
- Miyanari, Y., Ziegler-Birling, C., and Torres-Padilla, M. E. (2013) Live visualization of chromatin dynamics with fluorescent TALEs, Nat. Struct. Mol. Biol., 20, 1321-1324, https://doi.org/10.1038/nsmb.2680.
- Ma, Y., Wang, M., Li, W., Zhang, Z., Zhang, X., Tan, T., Zhang, X. E., and Cui, Z. (2017) Live cell imaging of single genomic loci with quantum dot-labeled TALEs, Nat. Commun., 8, 15318, https://doi.org/10.1038/ncomms15318.
- Chen, B., Gilbert, L. A., Cimini, B. A., Schnitzbauer, J., Zhang, W., Li, G. W., Park, J., Blackburn, E. H., Weissman, J. S., Qi, L. S., and Huang, B. (2013) Dynamic imaging of genomic loci in living human cells by an optimized CRISPR/Cas system, Cell, 155, 1479-1491, https://doi.org/10.1016/j.cell.2013.12.001.
- Song, K., Awata, J., Tritschler, D., Bower, R., Witman, G. B., Porter M. E., and Nicastro, D. (2015) In situ localization of N and C termini of subunits of the flagellar nexin-dynein regulatory complex (N-DRC) using SNAP tag and cryo-electron tomography, J. Biol. Chem., 290, 5341-53, https://doi.org/10.1074/jbc.M114.626556.
- Sun, W. W., Michalak, D. J., Sochacki, K. A., Kunamaneni, P., Alfonzo-Méndez, M. A., Arnold, A. M., Strub, M. P., Hinshaw, J. E., and Taraska, J. W. (2024) Cryo-electron tomography pipeline for plasma membranes, bioRxiv, https://doi.org/10.1101/2024.06.27.600657.
- Stahlberg, H. (2024) Cryo-electron microscopy in color, Nat. Methods, 21, 2233-2234, https://doi.org/10.1038/s41592-024-02427-y.
- Pfeil-Gardiner, O., Rosa, H. V. D., Riedel, D., Chen, Y. S., Lörks, D., Kükelhan, P., Linck, M., Müller, H., Van Petegem, F., and Murphy, B. J. (2024) Elemental mapping in single-particle reconstructions by reconstructed electron energy-loss analysis, Nat. Methods, 21, 2299-2306, https://doi.org/10.1038/s41592-024-02482-5.
- Gao, J., Tong, M., Lee, C., Gaertig, J., Legal, T., and Bui, K. H. (2024) DomainFit: Identification of protein domains in cryo-EM maps at intermediate resolution using AlphaFold2-predicted models, Structure, 32, 1248-1259.e5, https://doi.org/10.1016/j.str.2024.04.017.
- Maurer, V. J., Siggel, M., and Kosinski, J. (2024) What shapes template-matching performance in cryogenic electron tomography in situ? Acta Crystallogr. D. Struct. Biol., 80, 410-420, https://doi.org/10.1107/S2059798324004303.
Supplementary files
