Memory T cells: research experience of original models with transgenic T-cell receptors

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

This paper summarizes the experience of research conducted on original mouse models developed in the Laboratory of Regulatory Mechanisms in Immunity at the Carcinogenesis Institute of the N.N. Blokhin National Research Institute of Oncology of the Ministry of Health of the Russian Federation. The transgenesis of individual α- and β-chains of T-cell receptors (TCR) of memory cells led to the production of animal lines valuable for studies of T-lymphocyte homeostasis and patterns of formation of their activation marker profiles. The obtained models revealed new features of immune selection and tumor progression. With their help, a fundamental property of some TCRs, recently called chain centricity, was confirmed, which implies the functional dominance of one of the TCR chains during recognition of the MHC/peptide complex. This property allows to form significant pool of antigen-specific T cells, which can be used for the adoptive immunotherapy of oncological and infectious diseases. Transgenesis of dominant active TCR α-chains provides opportunities for the creation of organisms with innate specific immunological resistance to certain pathogens. The results of recent works indicate that TCR, by determining the relationship of the T-lymphocyte with its MHC microenvironment, has an instructive role in the formation of its functions and phenotype. One of these functions may be the production of cyclophilin A by cortisone-resistant memory cells localized in the thymus. There is accumulating evidence that expression of a TCR with a certain structure and specificity is a sufficient condition for the formation of the functional potential of memory cells in a T cell, regardless of the history of its interaction with antigenic MHC/peptide complexes.

About the authors

D. B. Kazansky

Federal State Budgetary Institution “N. N. Blokhin National Medical Research Center of Oncology” of the Ministry of Health of the Russian Federation

Author for correspondence.
Email: kazansky1@yandex.ru
Russian Federation, 115522 Moscow

A. A. Kalinina

Federal State Budgetary Institution “N. N. Blokhin National Medical Research Center of Oncology” of the Ministry of Health of the Russian Federation

Email: kazansky1@yandex.ru
Russian Federation, 115522 Moscow

L. M. Khromykh

Federal State Budgetary Institution “N. N. Blokhin National Medical Research Center of Oncology” of the Ministry of Health of the Russian Federation

Email: kazansky1@yandex.ru
Russian Federation, 115522 Moscow

References

  1. Gray, D. (1993) Immunological memory, Annu. Rev. Immunol., 11, 49-77, https://doi.org/10.1146/annurev.iy.11.040193.000405.
  2. Murali-Krishna, K., and Ahmed, R. (2000) Cutting edge: naive T cells masquerading as memory cells, J. Immunol., 165, 1733-1737, https://doi.org/10.4049/jimmunol.165.4.1733.
  3. Seok, J., Cho, S.-D., Seo, S. J., and Park, S.-H. (2023) Roles of virtual memory T cells in diseases, Immune Network, 23, e11, https://doi.org/10.4110/in.2023.23.e11.
  4. Drobek, A., Moudra, A., Mueller, D., Huranova, M., Horkova, V., Pribikova, M., Ivanek, R., Oberle, S., Zehn, D., McCoy, K. D., Draber, P., and Stepanek, O. (2018) Strong homeostatic TCR signals induce formation of self-tolerant virtual memory CD8 T cells, EMBO J., 37, https://doi.org/10.15252/embj.201798518.
  5. Haynes, L., Linton, P.-J., and Swain, S. L. (1997) Age-related changes in CD4 T cells of T cell receptor transgenic mice, Mech. Ageing Dev., 93, 95-105, https://doi.org/10.1016/S0047-6374(96)01826-X.
  6. Kazanskiĭ, D. B., Petrishchev, V. N., Shtil’, A. A., Chernysheva, A. D., Sernova, N. V., Abronina, I. F., Pobezinskiĭ, L. A., and Agafonova, E. L. (1999) Use of heat shock of antigen-presenting cells for functional testing of allospecificity memory T-cells [in Russian], Bioorg. Khim., 25, 117-128.
  7. Pobezinskaya, E. L., Pobezinskii, L. A., Silaeva, Y. Y., Anfalova, T. V., Khromykh, L. M., Tereshchenko, T. S., Zvezdova, E. S., and Kazanskii, D. B. (2004) Cross reactivity of T cell receptor on memory CD8+ cells isolated after immunization with allogeneic tumor cells, Bull. Exp. Biol. Med., 137, 493-498, https://doi.org/10.1023/b:bebm.0000038162.13508.3a.
  8. Grinenko, T. S., Pobezinskaya, E. L., Pobezinskii, L. A., Baturina, I. A., Zvezdova, E. S., and Kazanskii, D. B. (2005) Suppression of primary allogenic response by CD8+ memory cells, Bull. Exp. Biol. Med., 140, 545-549, https://doi.org/10.1007/s10517-006-0020-8.
  9. Zvezdova, E. S., Grinenko, T. S., Pobezinskaia, E. L., Pobezinskiĭ, L. A., and Kazanskiĭ, D. B. (2008) Coreceptor function of CD4 in response to MHC class I molecule [in Russian], Mol. Biol., 42, 662-672.
  10. Silaeva, Y. Y., Kalinina, A. A., Vagida, M. S., Khromykh, L. M., Deikin, A. V., Ermolkevich, T. G., Sadchikova, E. R., Goldman, I. L., and Kazansky, D. B. (2013) Decrease in pool of T lymphocytes with surface phenotypes of effector and central memory cells under influence of TCR transgenic β-chain expression, Biochemistry (Moscow), 78, 549-559, https://doi.org/10.1134/S0006297913050143.
  11. Cho, J.-H., and Sprent, J. (2018) TCR tuning of T cell subsets, Immunol. Rev., 283, 129-137, https://doi.org/10.1111/imr.12646.
  12. Silaeva, Y. Y., Grinenko, T. S., Vagida, M. S., Kalinina, A. A., Khromykh, L. M., and Kazansky, D. B. (2014) Immune selection of tumor cells in TCR β-chain transgenic mice, J. Immunotoxicol., 11, 393-399, https://doi.org/10.3109/ 1547691X.2013.861548.
  13. Sender, R., Weiss, Y., Navon, Y., Milo, I., Azulay, N., Keren, L., et al. (2023) The total mass, number, and distribution of immune cells in the human body, Proc. Natl. Acad. Sci. USA, 120, https://doi.org/10.1073/pnas.2308511120.
  14. Lythe, G., Callard, R. E., Hoare, R. L., and Molina-París, C. (2016) How many TCR clonotypes does a body maintain? J. Theor. Biol., 389, 214-224, https://doi.org/10.1016/j.jtbi.2015.10.016.
  15. Zerrahn, J., Held, W., and Raulet, D. H. (1997) The MHC reactivity of the T cell repertoire prior to positive and negative selection, Cell, 88, 627-636, https://doi.org/10.1016/S0092-8674(00)81905-4.
  16. Kazansky, D. B. (2008) MHC restriction and allogeneic immune responses, J. Immunotoxicol., 5, 369-384, https://doi.org/10.1080/15476910802476708.
  17. Von Boehmer, H. (1992) Thymic selection: a matter of life and death, Immunol. Today, 13, 454-458, https://doi.org/10.1016/0167-5699(92)90075-I.
  18. Livak, F., Petrie, H. T., Crispe, I. N., and Schatz, D. G. (1995) In-frame TCR delta gene rearrangements play a critical role in the alpha beta/gamma delta T cell lineage decision, Immunity, 2, 617-627, https://doi.org/10.1016/ 1074-7613(95)90006-3.
  19. Uematsu, Y., Ryser, S., Dembić, Z., Borgulya, P., Krimpenfort, P., Berns, A., von Boehmer, H., and Steinmetz, M. (1988) In transgenic mice the introduced functional T cell receptor beta gene prevents expression of endogenous beta genes, Cell, 52, 831-841, https://doi.org/10.1016/0092-8674(88)90425-4.
  20. Rimm, I. J., Krenger, W., Beland, J. L., Geller, M. C., di Savino, E., Yui, K., Katsumata, M., and Ferrara, J. L. (1996) TCR-beta transgenic mice fail to mediate a GVHR due to defects of allorecognition and subsequent IL-2 generation, Bone Marrow Transplant., 17, 835-842.
  21. Petrie, H. T., Livak, F., Schatz, D. G., Strasser, A., Crispe, I. N., and Shortman, K. (1993) Multiple rearrangements in T cell receptor alpha chain genes maximize the production of useful thymocytes, J. Exp. Med., 178, 615-622, https://doi.org/10.1084/jem.178.2.615.
  22. Nakatsugawa, M., Yamashita, Y., Ochi, T., Tanaka, S., Chamoto, K., Guo, T., Butler, M. O., and Hirano, N. (2015) Specific roles of each TCR hemichain in generating functional chain-centric TCR, J. Immunol., 194, 3487-3500, https://doi.org/10.4049/jimmunol.1401717.
  23. Zamkova, M., Kalinina, A., Silaeva, Y., Persiyantseva, N., Bruter, A., Deikin, A., Khromykh, L., and Kazansky, D. (2019) Dominant role of the α-chain in rejection of tumor cells bearing a specific alloantigen in TCRα transgenic mice and in in vitro experiments, Oncotarget, 10, 4808-4821, https://doi.org/10.18632/oncotarget.27093.
  24. Kalinina, A. A., Nesterenko, L. N., Bruter, A. V., Balunets, D. V., Chudakov, D. M., Izraelson, M., Britanova, O. V., Khromykh, L. M., and Kazansky, D. B. (2020) Adoptive immunotherapy based on chain-centric TCRs in treatment of infectious diseases, IScience, 23, 101854, https://doi.org/10.1016/j.isci.2020.101854.
  25. Kalinina, A., Bruter, A., Nesterenko, L., Khromykh, L., and Kazansky, D. (2021) Generation of TCRα-transduced T cells for adoptive transfer therapy of salmonellosis in mice, STAR Protocols, 2, 100368, https://doi.org/10.1016/ j.xpro.2021.100368.
  26. Kalinina, A. A., Ziganshin, R. K., Silaeva, Y. Y., Sharova, N. I., Nikonova, M. F., Persiyantseva, N. A., Gorkova, T. G., Antoshina, E. E., Trukhanova, L. S., Donetskova, A. D., Komogorova, V. V., Litvina, M. M., Mitin, A. N., Zamkova, M. A., Bruter, A. V., Khromykh, L. M., and Kazansky, D. B. (2023) Physiological and functional effects of dominant active TCRα expression in transgenic mice, Int. J. Mol. Sci., 24, https://doi.org/10.3390/ijms24076527.
  27. Казанский Д. Б., Хромых Л. М., Калинина А. А., Силаева Ю. Ю., Замкова М. А., Брутер А. В., Персиянцева Н. А., Чикилева И. О., Джолохава Л. Х., Нестеренко Л. Н., Собянин К. А., Княжанская Е. С. (2019) Способ создания противоинфекционной иммунологической защиты к Salmonella typhimurium и Listeria monocytogenes с помощью трансгенеза Т-лимфоцитов, Патент на изобретение RU 2706554 13.12.2017, Россия.
  28. Kazansky, D. B., Kalinina, A. A., Zamkova, M. A., Khromykh, L. M., and Persiyantseva, N. A. (2020) Chain-centricity of TCR phenomenon – opportunities and problems of application in medicine, Immunologiya, 41, 421-431, https://doi.org/10.33029/0206-4952-2020-41-5-421-431.
  29. Kalinina, A. A., Khromykh, L. M., and Kazansky, D. B. (2023) T cell receptor chain centricity: the phenomenon and potential applications in cancer immunotherapy, Int. J. Mol. Sci., 24, https://doi.org/10.3390/ijms242015211.
  30. Kalinina, A., Bruter, A., Persiyantseva, N., Silaeva, Y., Zamkova, M., Khromykh, L., and Kazansky, D. (2022) Safety evaluation of the mouse TCRα – transduced T cell product in preclinical models in vivo and in vitro, Biomed. Pharmacother., 145, 112480, https://doi.org/10.1016/j.biopha.2021.112480.
  31. Padovan, E., Casorati, G., Dellabona, P., Meyer, S., Brockhaus, M., and Lanzavecchia, A. (1993) Expression of two T cell receptor α chains: dual receptor T cells, Science, 262, 422-424, https://doi.org/10.1126/science.8211163.
  32. Luo, O. J., Lei, W., Zhu, G., Ren, Z., Xu, Y., Xiao, C., Zhang, H., Cai, J., Luo, Z., Gao, L., Su, J., Tang, L., Guo, W., Su, H., Zhang, Z.-J., Fang, E. F., Ruan, Y., Leng, S. X., Ju, Z., Lou, H., Gao, J., Peng, N., Chen, J., Bao, Z., Liu, F., Chen, G. (2022) Multidimensional single-cell analysis of human peripheral blood reveals characteristic features of the immune system landscape in aging and frailty, Nature Aging, 2, 348-364, https://doi.org/10.1038/s43587-022-00198-9.
  33. Zhu, L., Peng, Q., Li, J., Wu, Y., Wang, J., Zhou, D., Ma, L., and Yao, X. (2023) scRNA-seq revealed the special TCR β & α V(D)J allelic inclusion rearrangement and the high proportion dual (or more) TCR-expressing cells, Cell Death Dis., 14, 487, https://doi.org/10.1038/s41419-023-06004-7.
  34. Jun, L., Lanwei, Z., Jiayi, W., and Xinsheng, Y. (2024) A new immunological index for the elderly: high proportion of multiple TCR T cells based on scRNA-Seq, Aging Dis., 15, 948-950, https://doi.org/10.14336/AD.2023.0509-1.
  35. Bradley, C. P., Teng, F., Felix, K. M., Sano, T., Naskar, D., Block, K. E., Huang, H., Knox, K. S., Littman, D. R., and Wu, H.-J. J. (2017) Segmented filamentous bacteria provoke lung autoimmunity by inducing gut-lung axis Th17 cells expressing Dual TCRs, Cell Host Microbe, 22, 697-704.e4, https://doi.org/10.1016/j.chom.2017.10.007.
  36. Yang, L., Jama, B., Wang, H., Labarta-Bajo, L., Zúñiga, E. I., and Morris, G. P. (2020) TCRα reporter mice reveal contribution of dual TCRα expression to T cell repertoire and function, Proc. Natl. Acad. Sci. USA, 117, 32574-32583, https://doi.org/10.1073/pnas.2013188117.
  37. Xu, Y., Yuan, Y., Mou, L., Hui, L., Zhang, X., Yao, X., and Li, J. (2024) scRNA+TCR-seq reveals the pivotal role of dual receptor T lymphocytes in the pathogenesis of Kawasaki disease and during IVIG treatment, Front. Immunol., 15, 1457687, https://doi.org/10.3389/fimmu.2024.1457687.
  38. Kalinina, A., Persiyantseva, N., Britanova, O., Lupyr, K., Shagina, I., Khromykh, L., and Kazansky, D. (2023) Unique features of the TCR repertoire of reactivated memory T cells in the experimental mouse tumor model, Computat. Struct. Biotechnol. J., 21, 3196-3209, https://doi.org/10.1016/j.csbj.2023.05.028.
  39. Khromykh, L. M., Kulikova, N. L., Anfalova, T. V., Muranova, T. A., Abramov, V. M., Vasiliev, A. M., Khlebnikov, V. S., and Kazansky, D. B. (2007) Cyclophilin A produced by thymocytes regulates the migration of murine bone marrow cells, Cell. Immunol., 249, 46-53, https://doi.org/10.1016/j.cellimm.2007.11.002.
  40. Kalinina, A. A., Silaeva, Yu. Yu., Kazansky, D. B., and Khromykh, L. M. (2019) The role of recombinant human cyclophilin A in the antitumor immune response, Acta Naturae, 11, 63-67, https://doi.org/10.32607/20758251-2019-11-2-63-67.
  41. Kalinina, A. A., Kolesnikov, A. V., Kozyr, A. V., Kulikova, N. L., Zamkova, M. A., Kazansky, D. B., and Khromykh, L. M. (2022) Preparative production and purification of recombinant human cyclophilin A, Biochemistry (Moscow), 87, 259-268, https://doi.org/10.1134/S0006297922030063.
  42. Kalinina, A., Golubeva, I., Kudryavtsev, I., Khromova, N., Antoshina, E., Trukhanova, L., Gorkova, T., Kazansky, D., and Khromykh, L. (2021) Cyclophilin A is a factor of antitumor defense in the early stages of tumor development, Int. Immunopharmacol., 94, 107470, https://doi.org/10.1016/j.intimp.2021.107470.
  43. Kalinina, A., Zamkova, M., Antoshina, E., Trukhanova, L., Gorkova, T., Kazansky, D., and Khromykh, L. (2019) Analyses of the toxic properties of recombinant human cyclophilin A in mice, J. Immunotoxicol., 16, 182-190, https://doi.org/10.1080/1547691X.2019.1665597.
  44. Kalinina, A., Semenova, M., Bruter, A., Varlamova, E., Kubekina, M., Pavlenko, N., Silaeva, Y., Deikin, A., Antoshina, E., Gorkova, T., Trukhanova, L., Salmina, A., Novikova, S., Voronkov, D., Kazansky, D., and Khromykh, L. (2023) Cyclophilin A as a pro-inflammatory factor exhibits embryotoxic and teratogenic effects during fetal organogenesis, Int. J. Mol. Sci., 24, 11279, https://doi.org/10.3390/ijms241411279.
  45. Kalinina, A. A., Khromykh, L. M., and Kazansky, D. B. (2017) Cyclophilin A: structure and functions, Adv. Mol. Oncol., 4, 17-23, https://doi.org/10.17650/2313-805X-2017-4-4-17-23.
  46. Xue, C., Sowden, M. P., and Berk, B. C. (2018) Extracellular and intracellular cyclophilin A, native and post-translationally modified, show diverse and specific pathological roles in diseases, Arterioscler. Thrombos. Vasc. Biol., 38, 986-993, https://doi.org/10.1161/ATVBAHA.117.310661.
  47. Bharadwaj, U., Zhang, R., Yang, H., Li, M., Doan, L. X., Chen, C., and Yao, Q. (2005) Effects of cyclophilin A on myeloblastic cell line KG-1 derived dendritic Like Cells (DLC) Through p38 MAP kinase activation, J. Surg. Res., 127, 29-38, https://doi.org/10.1016/j.jss.2005.02.020.
  48. Kazansky, D. B., Vagida, M. S., Silaeva, Yu. Yu., Kalinina, A. A., Zamkova, M. A., Khromykh, L. M., Persiyantseva, N. A., and Jolokhava, L. Kh. (2017) Functional capacity of memory cells CD8+ under lymphopenia induced by injection of hydrocortisone, Adv. Mol. Oncol., 4, 42-48, https://doi.org/10.17650/2313-805X-2017-4-4-42-48.
  49. Garcia, S., DiSanto, J., and Stockinger, B. (1999) Following the development of a CD4 T cell response in vivo, Immunity, 11, 163-171, https://doi.org/10.1016/S1074-7613(00)80091-6.
  50. Wojciechowski, S., Tripathi, P., Bourdeau, T., Acero, L., Grimes, H. L., Katz, J. D., Finkelman, F. D., and Hildeman, D. A. (2007) Bim/Bcl-2 balance is critical for maintaining naive and memory T cell homeostasis, J. Exp. Med., 204, 1665-1675, https://doi.org/10.1084/jem.20070618.
  51. Chen, L., Zeng, Z., Luo, H., Xiao, H., and Zeng, Y. (2024) The effects of CypA on apoptosis: potential target for the treatment of diseases, Appl. Microbiol. Biotechnol., 108, 28, https://doi.org/10.1007/s00253-023-12860-2.
  52. Daneri-Becerra, C., Valeiras, B., Gallo, L. I., Lagadari, M., and Galigniana, M. D. (2021) Cyclophilin A is a mitochondrial factor that forms complexes with p23 – correlative evidence for an anti-apoptotic action, J. Cell Sci., 134, https://doi.org/10.1242/jcs.253401.
  53. Ma, Z., Zhang, W., Wu, Y., Zhang, M., Wang, L., Wang, Y., Wang, Y., and Liu, W. (2021) Cyclophilin A inhibits A549 cell oxidative stress and apoptosis by modulating the PI3K/Akt/mTOR signaling pathway, Biosci. Rep., 41, https://doi.org/10.1042/BSR20203219.
  54. Wells, A. C., Hioki, K. A., Angelou, C. C., Lynch, A. C., Liang, X., Ryan, D. J., Thesmar, I., Zhanybekova, S., Zuklys, S., Ullom, J., Cheong, A., Mager, J., Hollander, G. A., Pobezinskaya, E. L., and Pobezinsky, L. A. (2023) Let-7 enhances murine anti-tumor CD8 T cell responses by promoting memory and antagonizing terminal differentiation, Nat. Commun., 14, 5585, https://doi.org/10.1038/s41467-023-40959-7.
  55. Anto, N. P., Arya, A. K., Muraleedharan, A., Shaik, J., Nath, P. R., Livneh, E., Sun, Z., Braiman, A., and Isakov, N. (2023) Cyclophilin A associates with and regulates the activity of ZAP70 in TCR/CD3-stimulated T cells, Cell. Mol. Life Sci., 80, 7, https://doi.org/10.1007/s00018-022-04657-9.
  56. De Boer, R. J., Yates, A. J. (2023) Modeling T cell fate, Annu. Rev. Immunol., 41, 513, https://doi.org/10.1146/annurev-immunol-101721-040924.
  57. Kretschmer, L., Fuchs, N., Busch, D. H., and Buchholz, V. R. (2023) Picking up speed: cell cycle regulation during effector CD8+ T cell differentiation, Med. Microbiol. Immunol., 212, 253-260, https://doi.org/10.1007/s00430-023-00768-7.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».