The cohesin complex: structure and principles of interaction with dna

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Accurate duplication and separation of long linear genomic DNA molecules is associated with a number of purely mechanical problems. SMC complexes are key components of the cellular machinery that ensures decatenation of sister chromosomes and compaction of genomic DNA during division. Cohesin, one of the essential eukaryotic SMC complexes, has a typical ring structure with intersubunit pore through which DNA molecules can be threaded. The capacity of cohesin for such topological entrapment of DNA is crucial for the phenomenon of post-replicative association of sister chromatids better known as cohesion. Recently, it became apparent that cohesin and other SMC complexes are in fact motor proteins with a very peculiar movement pattern leading to the formation of DNA loops. This specific process was called loop extrusion. Extrusion underlies multiple cohesin’s functions beyond cohesion, but the molecular mechanism of the process remains a mystery. In this review, we have summarized data on the molecular architecture of cohesin, the influence of ATP hydrolysis cycle on this architecture, and the known modes of cohesin–DNA interactions. Many of the seemingly disparate facts presented here will probably be incorporated in a unified mechanistic model of loop extrusion in a not so far future.

Full Text

Restricted Access

About the authors

A. K. Golov

Institute of Gene Biology, Russian Academy of Sciences; Technion – Israel Institute of Technology

Author for correspondence.
Email: golovstein@gmail.com
Russian Federation, Moscow; Haifa, Israel

A. A. Gavrilov

Институт биологии гена РАН

Email: aleksey.a.gavrilov@gmail.com
Russian Federation, Москва

References

  1. Yatskevich, S., Rhodes, J., and Nasmyth, K. (2019) Organization of chromosomal DNA by SMC complexes, Annu. Rev. Genet., 53, 445-482, https://doi.org/10.1146/annurev-genet-112618-043633.
  2. Gligoris, T., and Löwe, J. (2016) Structural insights into ring formation of cohesin and related Smc complexes, Trends Cell Biol., 26, 680-693, https://doi.org/10.1016/j.tcb.2016.04.002.
  3. Lee, H., Noh, H., and Ryu, J.-K. (2021) Structure-function relationships of SMC protein complexes for DNA loop extrusion, Biodesign, 9, 1-13, https://doi.org/10.34184/kssb.2021.9.1.1.
  4. Davidson, I. F., and Peters, J.-M. (2021) Genome folding through loop extrusion by SMC complexes, Nat. Rev. Mol. Cell Biol., 22, 445-464, https://doi.org/10.1038/s41580-021-00349-7.
  5. Oldenkamp, R., and Rowland, B. D. (2022) A walk through the SMC cycle: from catching DNAs to shaping the genome, Mol. Cell, 82, 1616-1630, https://doi.org/10.1016/j.molcel.2022.04.006.
  6. Kabirova, E., Nurislamov, A., Shadskiy, A., Smirnov, A., Popov, A., Salnikov, P., Battulin, N., and Fishman, V. (2023) Function and evolution of the loop extrusion machinery in animals, Int. J. Mol. Sci., 24, 5017, https://doi.org/10.3390/ijms24055017.
  7. Srinivasan, M., Scheinost, J. C., Petela, N. J., Gligoris, T. G., Wissler, M., Ogushi, S., Collier, J. E., Voulgaris, M., Kurze, A., Chan, K.-L., Hu, B., Costanzo, V., and Nasmyth, K. A. (2018) The cohesin ring uses its hinge to organize DNA using non-topological as well as topological mechanisms, Cell, 173, 1508-1519.e18, https://doi.org/10.1016/j.cell.2018.04.015.
  8. Nagasaka, K., Davidson, I. F., Stocsits, R. R., Tang, W., Wutz, G., Batty, P., Panarotto, M., Litos, G., Schleiffer, A., Gerlich, D. W., and Peters, J.-M. (2023) Cohesin mediates DNA loop extrusion and sister chromatid cohesion by distinct mechanisms, Mol. Cell, 83, 3049-3063.e6, https://doi.org/10.1016/j.molcel.2023.07.024.
  9. Arumugam, P., Nishino, T., Haering, C. H., Gruber, S., and Nasmyth, K. (2006) Cohesin’s ATPase activity is stimulated by the C-terminal winged-helix domain of Its kleisin subunit, Curr. Biol., 16, 1998-2008, https://doi.org/10.1016/ j.cub.2006.09.002.
  10. Golov, A. K., and Gavrilov, A. A. (2024) Cohesin-dependent loop extrusion: molecular mechanics and role in cell physiology, Biochemistry (Moscow), 89, 601-625, https://doi.org/S0006297924040023.
  11. Nasmyth, K., and Haering, C. H. (2005) The structure and function of SMC and kleisin complexes, Annu. Rev. Biochem., 74, 595-648, https://doi.org/10.1146/annurev.biochem.74.082803.133219.
  12. Cobbe, N., and Heck, M. M. S. (2004) The evolution of SMC proteins: phylogenetic analysis and structural implications, Mol. Biol. Evol., 21, 332-347, https://doi.org/10.1093/molbev/msh023.
  13. Schleiffer, A., Kaitna, S., Maurer-Stroh, S., Glotzer, M., Nasmyth, K., and Eisenhaber, F. (2003) Kleisins: a superfamily of bacterial and eukaryotic SMC protein partners, Mol. Cell, 11, 571-575, https://doi.org/10.1016/ s1097-2765(03)00108-4.
  14. Harvey, S. H., Krien, M. J. E., and O’Connell, M. J. (2002) Structural maintenance of chromosomes (SMC) proteins, a family of conserved ATPases, Genome Biol., 3, REVIEWS3003, https://doi.org/10.1186/gb-2002-3-2-reviews3003.
  15. Wells, J. N., Gligoris, T. G., Nasmyth, K. A., and Marsh, J. A. (2017) Evolution of condensin and cohesin complexes driven by replacement of Kite by Hawk proteins, Curr. Biol., 27, R17-R18, https://doi.org/10.1016/j.cub.2016.11.050.
  16. Löwe, J., Cordell, S. C., and van den Ent, F. (2001) Crystal structure of the SMC head domain: an ABC ATPase with 900 residues antiparallel coiled-coil inserted, J. Mol. Biol., 306, 25-35, https://doi.org/10.1006/jmbi.2000.4379.
  17. Haering, C. H., Löwe, J., Hochwagen, A., and Nasmyth, K. (2002) Molecular architecture of SMC proteins and the yeast cohesin complex, Mol. Cell, 9, 773-788, https://doi.org/10.1016/S1097-2765(02)00515-4.
  18. Kurze, A., Michie, K. A., Dixon, S. E., Mishra, A., Itoh, T., Khalid, S., Strmecki, L., Shirahige, K., Haering, C. H., Löwe, J., and Nasmyth, K. (2011) A positively charged channel within the Smc1/Smc3 hinge required for sister chromatid cohesion, EMBO J., 30, 364-378, https://doi.org/10.1038/emboj.2010.315.
  19. Bürmann, F., Lee, B.-G., Than, T., Sinn, L., O’Reilly, F. J., Yatskevich, S., Rappsilber, J., Hu, B., Nasmyth, K., and Löwe, J. (2019) A folded conformation of MukBEF and cohesin, Nat. Struct. Mol. Biol., 26, 227-236, https://doi.org/10.1038/s41594-019-0196-z.
  20. Melby, T. E., Ciampaglio, C. N., Briscoe, G., and Erickson, H. P. (1998) The symmetrical structure of structural maintenance of chromosomes (SMC) and MukB proteins: long, antiparallel coiled coils, folded at a flexible hinge, J. Cell Biol., 142, 1595-1604, https://doi.org/10.1083/jcb.142.6.1595.
  21. Uhlmann, F., Wernic, D., Poupart, M. A., Koonin, E. V., and Nasmyth, K. (2000) Cleavage of cohesin by the CD clan protease separin triggers anaphase in yeast, Cell, 103, 375-386, https://doi.org/10.1016/s0092-8674(00)00130-6.
  22. Gruber, S., Haering, C. H., and Nasmyth, K. (2003) Chromosomal cohesin forms a ring, Cell, 112, 765-777, https:// doi.org/10.1016/S0092-8674(03)00162-4.
  23. Stigler, J., Çamdere, G. Ö., Koshland, D. E., and Greene, E. C. (2016) Single-molecule imaging reveals a collapsed conformational state for DNA-bound cohesin, Cell Rep., 15, 988-998, https://doi.org/10.1016/j.celrep.2016.04.003.
  24. Davidson, I. F., Goetz, D., Zaczek, M. P., Molodtsov, M. I., Huis In ’t Veld, P. J., Weissmann, F., Litos, G., Cisneros, D. A., Ocampo-Hafalla, M., Ladurner, R., Uhlmann, F., Vaziri, A., and Peters, J.-M. (2016) Rapid movement and transcriptional re-localization of human cohesin on DNA, EMBO J., 35, 2671-2685, https://doi.org/10.15252/embj. 201695402.
  25. Shi, Z., Gao, H., Bai, X.-C., and Yu, H. (2020) Cryo-EM structure of the human cohesin-NIPBL-DNA complex, Science, 368, 1454-1459, https://doi.org/10.1126/science.abb0981.
  26. Diebold-Durand, M.-L., Lee, H., Ruiz Avila, L. B., Noh, H., Shin, H.-C., Im, H., Bock, F. P., Bürmann, F., Durand, A., Basfeld, A., Ham, S., Basquin, J., Oh, B.-H., and Gruber, S. (2017) Structure of full-length SMC and rearrangements required for chromosome organization, Mol. Cell, 67, 334-347.e5, https://doi.org/10.1016/j.molcel. 2017.06.010.
  27. Krishnan, A., Burroughs, A. M., Iyer, L. M., and Aravind, L. (2020) Comprehensive classification of ABC ATPases and their functional radiation in nucleoprotein dynamics and biological conflict systems, Nucleic Acids Res., 48, 10045-10075, https://doi.org/10.1093/nar/gkaa726.
  28. Lammens, A., Schele, A., and Hopfner, K.-P. (2004) Structural biochemistry of ATP-driven dimerization and DNA-stimulated activation of SMC ATPases, Curr. Biol., 14, 1778-1782, https://doi.org/10.1016/j.cub.2004.09.044.
  29. Arumugam, P., Gruber, S., Tanaka, K., Haering, C. H., Mechtler, K., and Nasmyth, K. (2003) ATP hydrolysis is required for cohesin’s association with chromosomes, Curr. Biol., 13, 1941-1953, https://doi.org/10.1016/j.cub.2003.10.036.
  30. Gligoris, T. G., Scheinost, J. C., Bürmann, F., Petela, N., Chan, K.-L., Uluocak, P., Beckouët, F., Gruber, S., Nasmyth, K., and Löwe, J. (2014) Closing the cohesin ring: structure and function of its Smc3-kleisin interface, Science, 346, 963-967, https://doi.org/10.1126/science.1256917.
  31. Bürmann, F., Shin, H.-C., Basquin, J., Soh, Y.-M., Giménez-Oya, V., Kim, Y.-G., Oh, B.-H., and Gruber, S. (2013) An asymmetric SMC-kleisin bridge in prokaryotic condensin, Nat. Struct. Mol. Biol., 20, 371-379, https://doi.org/10.1038/nsmb.2488.
  32. Haering, C. H., Schoffnegger, D., Nishino, T., Helmhart, W., Nasmyth, K., and Löwe, J. (2004) Structure and stability of cohesin’s Smc1-kleisin interaction, Mol. Cell, 15, 951-964, https://doi.org/10.1016/j.molcel.2004.08.030.
  33. Roig, M. B., Löwe, J., Chan, K.-L., Beckouët, F., Metson, J., and Nasmyth, K. (2014) Structure and function of cohesin’s Scc3/SA regulatory subunit, FEBS Lett., 588, 3692-3702, https://doi.org/10.1016/j.febslet.2014.08.015.
  34. Lee, B.-G., Roig, M. B., Jansma, M., Petela, N., Metson, J., Nasmyth, K., and Löwe, J. (2016) Crystal structure of the cohesin gatekeeper Pds5 and in complex with kleisin Scc1, Cell Rep., 14, 2108-2115, https://doi.org/10.1016/ j.celrep.2016.02.020.
  35. Petela, N. J., Gligoris, T. G., Metson, J., Lee, B.-G., Voulgaris, M., Hu, B., Kikuchi, S., Chapard, C., Chen, W., Rajendra, E., Srinivisan, M., Yu, H., Löwe, J., and Nasmyth, K. A. (2018) Scc2 is a potent activator of Cohesin’s ATPase that promotes loading by binding Scc1 without Pds5, Mol. Cell, 70, 1134-1148.e7, https://doi.org/10.1016/j.molcel. 2018.05.022.
  36. Ouyang, Z., Zheng, G., Tomchick, D. R., Luo, X., and Yu, H. (2016) Structural basis and IP6 requirement for Pds5-dependent cohesin dynamics, Mol. Cell, 62, 248-259, https://doi.org/10.1016/j.molcel.2016.02.033.
  37. Neuwald, A. F., and Hirano, T. (2000) HEAT repeats associated with condensins, cohesins, and other complexes involved in chromosome-related functions, Genome Res., 10, 1445-1452, https://doi.org/10.1101/gr.147400.
  38. Losada, A., Yokochi, T., Kobayashi, R., and Hirano, T. (2000) Identification and characterization of SA/Scc3p subunits in the Xenopus and human cohesin complexes, J. Cell Biol., 150, 405-416, https://doi.org/10.1083/ jcb.150.3.405.
  39. Murayama, Y., and Uhlmann, F. (2014) Biochemical reconstitution of topological DNA binding by the cohesin ring, Nature, 505, 367-371, https://doi.org/10.1038/nature12867.
  40. Davidson, I. F., Bauer, B., Goetz, D., Tang, W., Wutz, G., and Peters, J.-M. (2019) DNA loop extrusion by human cohesin, Science, 366, 1338-1345, https://doi.org/10.1126/science.aaz3418.
  41. Kim, Y., Shi, Z., Zhang, H., Finkelstein, I. J., and Yu, H. (2019) Human cohesin compacts DNA by loop extrusion, Science, 366, 1345-1349, https://doi.org/10.1126/science.aaz4475.
  42. Kueng, S., Hegemann, B., Peters, B. H., Lipp, J. J., Schleiffer, A., Mechtler, K., and Peters, J.-M. (2006) Wapl controls the dynamic association of cohesin with chromatin, Cell, 127, 955-967, https://doi.org/10.1016/j.cell.2006.09.040.
  43. Ouyang, Z., Zheng, G., Song, J., Borek, D. M., Otwinowski, Z., Brautigam, C. A., Tomchick, D. R., Rankin, S., and Yu, H. (2013) Structure of the human cohesin inhibitor Wapl, Proc. Natl. Acad. Sci. USA, 110, 11355-11360, https:// doi.org/10.1073/pnas.1304594110.
  44. Collier, J. E., Lee, B.-G., Roig, M. B., Yatskevich, S., Petela, N. J., Metson, J., Voulgaris, M., Gonzalez Llamazares, A., Löwe, J., and Nasmyth, K. A. (2020) Transport of DNA within cohesin involves clamping on top of engaged heads by Scc2 and entrapment within the ring by Scc3, Elife, 9, e59560, https://doi.org/10.7554/eLife.59560.
  45. Nora, E. P., Caccianini, L., Fudenberg, G., So, K., Kameswaran, V., Nagle, A., Uebersohn, A., Hajj, B., Saux, A. L., Coulon, A., Mirny, L. A., Pollard, K. S., Dahan, M., and Bruneau, B. G. (2020) Molecular basis of CTCF binding polarity in genome folding, Nat. Commun., 11, 5612, https://doi.org/10.1038/s41467-020-19283-x.
  46. Dauban, L., Montagne, R., Thierry, A., Lazar-Stefanita, L., Bastié, N., Gadal, O., Cournac, A., Koszul, R., and Beckouët, F. (2020) Regulation of cohesin-mediated chromosome folding by Eco1 and other partners, Mol. Cell, 77, 1279-1293.e4, https://doi.org/10.1016/j.molcel.2020.01.019.
  47. Muir, K. W., Li, Y., Weis, F., and Panne, D. (2020) The structure of the cohesin ATPase elucidates the mechanism of SMC-kleisin ring opening, Nat. Struct. Mol. Biol., 27, 233-239, https://doi.org/10.1038/s41594-020-0379-7.
  48. Chapard, C., Jones, R., van Oepen, T., Scheinost, J. C., and Nasmyth, K. (2019) Sister DNA entrapment between Juxtaposed Smc heads and Kleisin of the cohesin complex, Mol. Cell, 75, 224-237.e5, https://doi.org/10.1016/ j.molcel.2019.05.023.
  49. Higashi, T. L., Eickhoff, P., Sousa, J. S., Locke, J., Nans, A., Flynn, H. R., Snijders, A. P., Papageorgiou, G., O’Reilly, N., Chen, Z. A., O’Reilly, F. J., Rappsilber, J., Costa, A., and Uhlmann, F. (2020) A structure-based mechanism for DNA entry into the cohesin ring, Mol. Cell, 79, 917-933.e9, https://doi.org/10.1016/j.molcel.2020.07.013.
  50. Bauer, B. W., Davidson, I. F., Canena, D., Wutz, G., Tang, W., Litos, G., Horn, S., Hinterdorfer, P., and Peters, J.-M. (2021) Cohesin mediates DNA loop extrusion by a “swing and clamp” mechanism, Cell, 184, 5448-5464.e22, https://doi.org/10.1016/j.cell.2021.09.016.
  51. Hons, M. T., Huis In ’t Veld, P. J., Kaesler, J., Rombaut, P., Schleiffer, A., Herzog, F., Stark, H., and Peters, J.-M. (2016) Topology and structure of an engineered human cohesin complex bound to Pds5B, Nat. Commun., 7, 12523, https://doi.org/10.1038/ncomms12523.
  52. Ryu, J.-K., Katan, A. J., van der Sluis, E. O., Wisse, T., de Groot, R., Haering, C. H., and Dekker, C. (2020) The condensin holocomplex cycles dynamically between open and collapsed states, Nat. Struct. Mol. Biol., 27, 1134-1141, https://doi.org/10.1038/s41594-020-0508-3.
  53. Higashi, T. L., Pobegalov, G., Tang, M., Molodtsov, M. I., and Uhlmann, F. (2021) A Brownian ratchet model for DNA loop extrusion by the cohesin complex, Elife, 10, e67530, https://doi.org/10.7554/eLife.67530.
  54. Huang, C. E., Milutinovich, M., and Koshland, D. (2005) Rings, bracelet or snaps: fashionable alternatives for Smc complexes, Philos. Trans. R. Soc. Lond. B Biol. Sci., 360, 537-542, https://doi.org/10.1098/rstb.2004.1609.
  55. Anderson, D. E., Losada, A., Erickson, H. P., and Hirano, T. (2002) Condensin and cohesin display different arm conformations with characteristic hinge angles, J. Cell Biol., 156, 419-424, https://doi.org/10.1083/jcb.200111002.
  56. Ciosk, R., Shirayama, M., Shevchenko, A., Tanaka, T., Toth, A., Shevchenko, A., and Nasmyth, K. (2000) Cohesin’s binding to chromosomes depends on a separate complex consisting of Scc2 and Scc4 proteins, Mol. Cell, 5, 243-254, https://doi.org/10.1016/s1097-2765(00)80420-7.
  57. Gerlich, D., Koch, B., Dupeux, F., Peters, J.-M., and Ellenberg, J. (2006) Live-cell imaging reveals a stable cohesin-chromatin interaction after but not before DNA replication, Curr. Biol., 16, 1571-1578, https://doi.org/10.1016/ j.cub.2006.06.068.
  58. Uhlmann, F., Lottspeich, F., and Nasmyth, K. (1999) Sister-chromatid separation at anaphase onset is promoted by cleavage of the cohesin subunit Scc1, Nature, 400, 37-42, https://doi.org/10.1038/21831.
  59. Minamino, M., Higashi, T. L., Bouchoux, C., and Uhlmann, F. (2018) Topological in vitro loading of the budding yeast cohesin ring onto DNA, Life Sci. Alliance, 1, e201800143, https://doi.org/10.26508/lsa.201800143.
  60. Haering, C. H., Farcas, A.-M., Arumugam, P., Metson, J., and Nasmyth, K. (2008) The cohesin ring concatenates sister DNA molecules, Nature, 454, 297-301, https://doi.org/10.1038/nature07098.
  61. Wilhelm, L., Bürmann, F., Minnen, A., Shin, H.-C., Toseland, C. P., Oh, B.-H., and Gruber, S. (2015) SMC condensin entraps chromosomal DNA by an ATP hydrolysis dependent loading mechanism in Bacillus subtilis, Elife, 4, e06659, https://doi.org/10.7554/eLife.06659.
  62. Shaltiel, I. A., Datta, S., Lecomte, L., Hassler, M., Kschonsak, M., Bravo, S., Stober, C., Ormanns, J., Eustermann, S., and Haering, C. H. (2022) A hold-and-feed mechanism drives directional DNA loop extrusion by condensin, Science, 376, 1087-1094, https://doi.org/10.1126/science.abm4012.
  63. Chan, K.-L., Roig, M. B., Hu, B., Beckouët, F., Metson, J., and Nasmyth, K. (2012) Cohesin’s DNA exit gate is distinct from its entrance gate and is regulated by acetylation, Cell, 150, 961-974, https://doi.org/10.1016/j.cell. 2012.07.028.
  64. Huis in ’t Veld, P. J., Herzog, F., Ladurner, R., Davidson, I. F., Piric, S., Kreidl, E., Bhaskara, V., Aebersold, R., and Peters, J.-M. (2014) Characterization of a DNA exit gate in the human cohesin ring, Science, 346, 968-972, https:// doi.org/10.1126/science.1256904.
  65. Gandhi, R., Gillespie, P. J., and Hirano, T. (2006) Human Wapl is a cohesin-binding protein that promotes sister-chromatid resolution in mitotic prophase, Curr. Biol., 16, 2406-2417, https://doi.org/10.1016/j.cub.2006.10.061.
  66. Ouyang, Z., and Yu, H. (2017) Releasing the cohesin ring: a rigid scaffold model for opening the DNA exit gate by Pds5 and Wapl, Bioessays, 39, 1600207, https://doi.org/10.1002/bies.201600207.
  67. Hauf, S., Waizenegger, I. C., and Peters, J. M. (2001) Cohesin cleavage by separase required for anaphase and cytokinesis in human cells, Science, 293, 1320-1323, https://doi.org/10.1126/science.1061376.
  68. Murayama, Y., Samora, C. P., Kurokawa, Y., Iwasaki, H., and Uhlmann, F. (2018) Establishment of DNA-DNA interactions by the cohesin ring, Cell, 172, 465-477.e15, https://doi.org/10.1016/j.cell.2017.12.021.
  69. Chiu, A., Revenkova, E., and Jessberger, R. (2004) DNA interaction and dimerization of eukaryotic SMC hinge domains, J. Biol. Chem., 279, 26233-26242, https://doi.org/10.1074/jbc.M402439200.
  70. Soh, Y.-M., Bürmann, F., Shin, H.-C., Oda, T., Jin, K. S., Toseland, C. P., Kim, C., Lee, H., Kim, S. J., Kong, M.-S., Durand-Diebold, M.-L., Kim, Y.-G., Kim, H. M., Lee, N. K., Sato, M., Oh, B.-H., and Gruber, S. (2015) Molecular basis for SMC rod formation and its dissolution upon DNA binding, Mol. Cell, 57, 290-303, https://doi.org/10.1016/j.molcel. 2014.11.023.
  71. Griese, J. J., Witte, G., and Hopfner, K.-P. (2010) Structure and DNA binding activity of the mouse condensin hinge domain highlight common and diverse features of SMC proteins, Nucleic Acids Res., 38, 3454-3465, https:// doi.org/10.1093/nar/gkq038.
  72. Li, Y., Muir, K. W., Bowler, M. W., Metz, J., Haering, C. H., and Panne, D. (2018) Structural basis for Scc3-dependent cohesin recruitment to chromatin, Elife, 7, e38356, https://doi.org/10.7554/eLife.38356.
  73. Kschonsak, M., Merkel, F., Bisht, S., Metz, J., Rybin, V., Hassler, M., and Haering, C. H. (2017) Structural basis for a safety-belt mechanism that anchors condensin to chromosomes, Cell, 171, 588-600.e24, https://doi.org/10.1016/ j.cell.2017.09.008.
  74. Lee, B.-G., Rhodes, J., and Löwe, J. (2022) Clamping of DNA shuts the condensin neck gate, Proc. Natl. Acad. Sci. USA, 119, e2120006119, https://doi.org/10.1073/pnas.2120006119.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Sister chromatid cohesion and DNA loop extrusion mediated by SMC complexes. a – Two basic cohesin activities: cohesion (1) and extrusion (2). b – Extrusion mediated by SMC complexes and the activity of type II DNA topoisomerases mediate post-replicative individualization of sister genomes in all cells, prokaryotic and eukaryotic.

Download (772KB)
3. Fig. 2. Subunit structure of the cohesin complex. a – Folding and main structural features of SMC proteins. b – General structure of the three-part cohesin ring and interaction of HAWK subunits with it. c – General structure of hook-shaped HAWK subunits of SMC complexes

Download (902KB)
4. Fig. 3. Diversity of conformational states of cohesin. a – O-, E- and J-configurations of cohesin head domains and transitions between them, RAD21 subunit is not shown for clarity of the figure. The pictograms indicate the S-K ring and subcompartments (E-S, E-K and J-K) formed by the interaction of the head domains with each other. b – Main conformational states of cohesin, revealed using microscopic methods

Download (714KB)
5. Fig. 4. Topological interaction of the cohesin ring with DNA. a – Topological (1) and pseudo-topological (2) interaction of cohesin with DNA. The pictograms use ● and + symbols to reflect the direction of the DNA strand passing through the plane of the figure; topological binding is indicated by the gray fill. b – Methods for identifying the topological nature of the interaction between the protein complex and DNA: analysis of the stability of binding in buffers with high ionic strength (1); analysis of the sensitivity of the interaction to proteolytic cleavage of one of the subunits (2); analysis of sensitivity to a break in the DNA molecule (3); analysis of the stability of the interaction under denaturing conditions after covalent cross-linking of the protein ring using cysteine-specific cross-linking agents (BMOE, bBBr) (4). c – Two pathways for removing the cohesin ring from DNA, realized in eukaryotic cells: WAPL-dependent (1) and proteolytic (2)

Download (1MB)
6. Fig. 5. Electrostatic interactions of cohesin with DNA. a – Two hypothetical pathways of “DNA capture” formation proposed to describe the activity of cohesin in S. cerevisiae (1) and Schizosaccharomyces pombe (2). The pictograms use ● and + symbols to reflect the direction of DNA strand passage through the plane of the figure; topological binding is indicated by gray filling. The pairs of pictograms show the formation of E-S and E-K subcompartments and the position of DNA strands relative to them on the left one, and the position of DNA strands relative to the S-K ring on the right one. The dotted parts of the RAD21 subunit correspond to the regions in which the path of the protein chain is shown conditionally for clarity of the figure (in reality, the HAWK subunits remain bound to RAD21 at all stages shown). b – Electrostatic interactions of the loop domains of cohesin with DNA. Three (non-mutually exclusive) scenarios are shown: NIPBL-subunit-mediated interaction (1), direct DNA contact with the inner surface of the loop domain pore (2), and direct DNA contact with the south pole of the loop domain dimer (3). c – Interaction of the HAWK-B subunits of cohesin (STAG1/2) and condensin (CAP-G) with DNA. A peptide loop, called a “safety belt”, formed by the kleisin subunit of condensin (CAP-H), additionally stabilizes the binding of the HAWK-B subunit (CAP-G) to DNA.

Download (1MB)

Copyright (c) 2024 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».