EVOLUTION OF LONGEVITY IN TETRAPODA: SAFETY IS MORE IMPORTANT THAN METABOLISM LEVEL

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Various environmental morphological and behavioral factors may be decisive in the longevity of representatives of various taxa. Long-lived species develop systems aimed at increasing the body’s stability and defense, and ultimately increasing life expectancy. In addition, long-living species are characterized by different levels of manifestation of factors favorable to longevity (gerontological success): body size, slow metabolism, level of activity of the body’s repair systems and antioxidant defense systems, resistance to toxic substances and tumor formation, and the presence of neotenic characteristics. Continuing the work on mammals, in this work we studied the characteristics that distinguish long-lived ectotherms (crocodiles and turtles) and compared them with those of other representatives of ectotherms (squamates and amphibians) and endotherms (birds and mammals). The article also discusses mathematical indicators used to assess the predisposition to longevity in different species. These indicators include both standard ones (mortality rate, maximum lifespan, coefficient of variation of lifespan) and derivatives from them. evolutionary patterns of aging are further explained by protective phenotypes and life history strategies. The work assessed the relationship between lifespan and various studied factors, including body size and temperature, encephalization, protection of occupied econiches, the presence of protective structures (for example, shell and osteoderms), environmental temperature, etc.), and their influence on the distribution of lifespan as a statistical quantities. The hypothesis about the level of metabolism and temperature as the most determining factors of longevity was not confirmed. It turned out that animals protected by shells (turtles with their exceptional longevity) live longer than species that have poison or lack protective devices. The improvement of methods of defense against external threats in long-lived ectotherms is consistent with the characteristics of long-lived endotherms (for example, naked mole rats that live in tunnels underground, or bats and birds, whose ability to fly is also one of the best methods of defense).

About the authors

G. A Shilovsky

Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University; Faculty of Biology, Lomonosov Moscow State University; Institute for Information Transmission Problems (Kharkevich Institute), Russian Academy of Sciences

Email: grgerontol@gmail.com
119991 Moscow, Russia; 119234 Moscow, Russia; 127051 Moscow, Russia

T. S Putyatina

Faculty of Biology, Lomonosov Moscow State University

119234 Moscow, Russia

A. V Markov

Faculty of Biology, Lomonosov Moscow State University

119234 Moscow, Russia

References

  1. Comfort, A. (1979) The Biology of Senescence, Churchill Livingstone, Edinburgh and London.
  2. Austad, S. N. (1997) Why We Age, John Wiley and Sons, New York.
  3. Finch, C. E. (2009) Update on slow aging and negligible senescence – a mini-review, Gerontology, 55, 307-313, https://doi.org/10.1159/000215589.
  4. Medawar, P. B. (1952) An Unsolved Problem of Biology, H. C. Lewis & Co LTD, London.
  5. Williams, G. C. (1957) Pleiotropy, natural selection and the evolution of senescence, Evolution, 11, 398-411, https://doi.org/10.1111/j.1558-5646.1957.tb02911.x.
  6. Kirkwood, T. B. L. (1977) Evolution of ageing, Nature, 270, 301-304, https://doi.org/10.1038/270301a0.
  7. Rando, T. A., and Chang, H. Y. (2012) Aging, rejuvenation, and epigenetic reprogramming: resetting the aging clock, Cell, 148, 46-57, doi: 10.1016/j.cell.2012.01.003.
  8. Skulachev, M. V., and Skulachev, V. P. (2014) New data on programmed aging – slow phenoptosis, Biochemistry (Moscow), 79, 977-993, https://doi.org/10.1134/S0006297914100010.
  9. Vaupel, J. W., Baudisch, A., Dölling, M., Roach, D. A., and Gampe, J. (2004) The case for negative senescence, Theor. Popul. Biol., 65, 339-351, https://doi.org/10.1016/j.tpb.2003.12.003.
  10. Jones, O. R., Scheuerlein, A., Salguero-Gómez, R., Camarda, C. G., Schaible, R., Schaible, R., Casper, B. B., Dahlgren, J. P., Ehrlén, J., García, M. B., Menges, E., Quintana-Ascencio, P. F., Caswell, H., Baudisch, A., and Vaupel, J. W. (2014) Diversity of ageing across the tree of life, Nature, 505, 169-173, https://doi.org/10.1038/nature12789.
  11. Lemoine, M. (2021) The evolution of the hallmarks of aging, Front. Genet., 12, 693071, https://doi.org/10.3389/fgene.2021.693071.
  12. Martínez, D. E. (1998) Mortality patterns suggest lack of senescence in hydra, Exp. Gerontol., 33, 217-225, https://doi.org/10.1016/s0531-5565(97)00113-7.
  13. Bilinski, T, Bylak, A, and Zadrag-Tecza, R. (2016) Principles of alternative gerontology, Aging (Albany NY), 8, 589-602, https://doi.org/10.18632/aging.100931.
  14. Bilinski, T., Bylak, A., Kukuła, K., and Zadrag-Tecza, R. (2021) Senescence as a trade-off between successful land colonisation and longevity: critical review and analysis of a hypothesis, PeerJ, 9, e12286, https://doi.org/10.7717/peerj.12286.
  15. Shilovsky, G. A., Putyatina, T. S., and Markov, A. V. (2022) Evolution of longevity as a species-specific trait in mammals, Biochemistry (Moscow), 87, 1579-1599, https://doi.org/10.1134/S0006297922120148.
  16. Martinez, D. E., and Levinton, J. S. (1992) Asexual metazoans undergo senescence, Proc. Natl. Acad. Sci. USA, 89, 9920-9923, https://doi.org/10.1073/pnas.89.20.9920.
  17. Healy, K., Ezard, T. H. G, Jones, O. R, Salguero-Gómez, R., and Buckley, Y. M. (2019) Animal life history is shaped by the pace of life and the distribution of age-specific mortality and reproduction, Nat. Ecol. Evol., 3, 1217-1224, https://doi.org/10.1038/s41559-019-0938-7.
  18. Hoekstra, L. A., Schwartz, T. S., Sparkman, A. M., Miller, D. A. W., and Bronikowski, A. M. (2020) The untapped potential of reptile biodiversity for understanding how and why animals age, Funct. Ecol., 34, 38-54, https://doi.org/10.1111/1365-2435.13450.
  19. Dart, A. (2022) Peto’s paradox put to the test, Nat. Rev. Cancer, 22, 129, https://doi.org/10.1038/s41568-022-00447-4.
  20. De Magalhães, J. P., and Costa, J. (2009) A database of vertebrate longevity records and their relation to other life–history traits, J. Evol. Biol., 22, 1770-1774, https://doi.org/10.1111/j.1420-9101.2009.01783.x.
  21. Martin, F. J., Amode, M. R., Aneja, A., Austine-Orimoloye, O., Azov, A. G., Azov, A. G., Barnes, I., Becker, A., Bennett, R., Berry, A., Bhai, J., Bhurji, S. K., Bignell, A., Boddu, S., Branco Lins, P. R., Brooks, L., Ramaraju, S. B., Charkhchi, M., Cockburn, A., Da Rin Fiorretto, L., Davidson, C., Dodiya, K., Donaldson, S., El Houdaigui, B., El Naboulsi, T., et al. (2023) Ensembl 2023, Nucleic Acids Res., 51, 933-941, https://doi.org/10.1093/nar/gkac958.
  22. Nielsen, J., Hedeholm R. B., Heinemeier J., Bushnell P. G., Christiansen J. S., Olsen J., Ramsey C. B., Brill R. W., Simon M., Steffensen K. F., and Steffensen J. F. (2016) Eye lens radiocarbon reveals centuries of longevity in the Greenland shark (Somniosus microcephalus), Science, 353, 702-704, https://doi.org/10.1126/science.aaf1703.
  23. Congdon, J. D., Nagle, R. D., Kinney, O. M., van Loben Sels, R. C., Quinter, T., and Tinkle, D. W. (2003) Testing hypotheses of aging in long-lived painted turtles (Chrysemys picta), Exp. Gerontol., 38, 765772, https://doi.org/10.1016/s0531-5565(03)00106-2.
  24. Voituron, Y., De Fraipont, M., Issartel, J., Guillaume, O., and Clobert, J. (2011) Extreme lifespan of the human fish (Proteus anguinus): a challenge for ageing mechanisms, Biol. Lett., 7, 105107, https://doi.org/10.1098/rsbl.2010.0539.
  25. Kostanjšek, R., Diderichsen, B., Recknagel, H., Gunde-Cimerman, N., Gostinčar, C., Fan, G., Kordiš, D., Trontelj, P., Jiang, H., Bolund, L., and Luo, Y. (2022) Toward the massive genome of Proteus anguinus-illuminating longevity, regeneration, convergent evolution, and metabolic disorders, Ann. N. Y. Acad. Sci., 1507, 5-11, https://doi.org/10.1111/nyas.14686.
  26. Voituron, Y., Guillaume, O., Dumet, A., Zahn, S., Criscuolo, F. (2023) Temperature-independent telomere lengthening with age in the long-lived human fish (Proteus anguinus), Proc. Biol. Sci., 290, 20230503, https://doi.org/10.1098/rspb.2023.0503.
  27. Delhaye, J., Salamin, N., Roulin, A., Criscuolo, F., Bize, P., and Christe, P. (2016) Interspecific correlation between red blood cell mitochondrial ROS production, cardiolipin content and longevity in birds, Age (Dordr), 38, 433-443, https://doi.org/10.1007/s11357-016-9940-z.
  28. Amir, Y., Insler, M., Giller, A., Gutman, D., and Atzmon, G. (2020) Senescence and longevity of sea urchins, Genes (Basel), 11, 573, https://doi.org/10.3390/genes11050573.
  29. Medina-Feliciano, J. G., and García-Arrarás, J. E. (2021) Regeneration in echinoderms: molecular advancements, Front. Cell. Dev. Biol., 9, 768641, https://doi.org/10.3389/fcell.2021.768641.
  30. Korotkova, D. D., Lyubetsky, V. A., Ivanova, A. S., Rubanov, L. I., Seliverstov, A. V., Zverkov, O. A., Martynova, N. Y., Nesterenko, A. M., Tereshina, M. B., Peshkin, L., and Zaraisky, A. G. (2019) Bioinformatics screening of genes specific for well-regenerating vertebrates reveals c-answer, a regulator of brain development and regeneration, Cell Rep., 29, 1027-1040.e6, https://doi.org/10.1016/j.celrep.2019.09.038.
  31. Kolora, S. R. R., Owens, G. L., Vazquez, J. M., Stubbs, A, Chatla, K., Jainese, C., Seeto, K., McCrea, M., Sandel, M. W., Vianna, J. A., Maslenikov, K., Bachtrog, D., Orr, J. W., Love, M., and Sudmant, P. H. (2021) Origins and evolution of extreme life span in Pacific Ocean rockfishes, Science, 374, 842-847, https://doi.org/10.1126/science.abg5332.
  32. Reinke, B. A., Cayuela, H., Janzen, F. J., Lemaître, J. F., Gaillard, J. M., Lawing, A. M., Iverson, J. B., Christiansen, D. G., Martínez-Solano, I., Sánchez-Montes, G., Gutiérrez-Rodríguez, J., Rose, F. L., Nelson, N., Keall, S., Crivelli, A. J., Nazirides, T., Grimm-Seyfarth, A., Henle, K., et al. (2022) Diverse aging rates in ectothermic tetrapods provide insights for the evolution of aging and longevity, Science, 376, 1459-1466, https://doi.org/10.1126/science.abm0151.
  33. Skulachev, V. P., Holtze, S., Vyssokikh, M. Y., Bakeeva, L. E., Skulachev, M. V., Markov, A. V., Hildebrandt, T. B, and Sadovnichii, V. A. (2017) Neoteny, prolongation of youth: From naked mole rats to “naked apes” (humans), Physiol. Rev., 97, 699-720, https://doi.org/10.1152/physrev.00040.2015.
  34. Skulachev, V. P., Shilovsky, G. A., Putyatina, T. S., Popov, N. A., Markov, A. V, Skulachev, M. V., and Sadovnichii, V. A. (2020) Perspectives of Homo sapiens lifespan extension: focus on external or internal resources? Aging (Albany NY), 12, 5566-5584, https://doi.org/10.18632/aging.102981.
  35. Wilkinson, P. M., Rainwater, T. R., Woodward, A. R., Leone, E. H., and Carter, C. (2016) Determinate growth and reproductive lifespan in the American alligator (Alligator mississippiensis): evidence from long-term recaptures, Copeia, 104, 843-852, https://doi.org/10.1643/CH-16-430.
  36. Moreira, M. O., Qu, Y. F., and Wiens, J. J. (2021) Large-scale evolution of body temperatures in land vertebrates, Evol. Lett., 5, 484-494, https://doi.org/10.1002/evl3.249.
  37. Clarke, A., and Pörtner, H. O. (2010) Temperature, metabolic power and the evolution of endothermy, Biol. Rev., 85, 703-727, https://doi.org/10.1111/j.1469-185X.2010.00122.x.
  38. Skulachev, M. V., Severin, F. F., and Skulachev, V. P. (2015) Aging as an evolvability-increasing program which can be switched off by organism to mobilize additional resources for survival, Curr. Aging Sci., 8, 95-109, https://doi.org/10.2174/1874609808666150422122401.
  39. Skulachev, V. P., Vyssokikh, M. Y., Chernyak, B. V., Averina, O. A., Andreev-Andrievskiy, A. A., Zinovkin, R. A., Lyamzaev, K. G., Marey, M. V., Egorov, M. V., Frolova, O. J., Zorov, D. B., Skulachev, M. V., and Sadovnichii, V. A. (2023) Mitochondrion-targeted antioxidant SkQ1 prevents rapid animal death caused by highly diverse shocks, Sci. Rep., 13, 4326, https://doi.org/10.1038/s41598-023-31281-31289.
  40. Skulachev, V. P., Vyssokikh, M. Y., Chernyak, B. V., Mulkidjanian, A. Y., Skulachev, M. V., Shilovsky, G. A., Lyamzaev, K. G., Borisov, V. B., Severin, F. F., and Sadovnichii, V. A. (2023) Six functions of respiration: isn’t it time to take control over ROS production in mitochondria, and aging along with it? Int. J. Mol. Sci., 24, 12540, https://doi.org/10.3390/ijms241612540.
  41. Patnaik, B. K. (1994) Ageing in reptiles, Gerontology, 40, 200-220, https://doi.org/10.1159/000213588.
  42. Alvarez, J. A., and Vaupel, J. W. (2023) Mortality as a function of survival, Demography, 60, 327-342, https://doi.org/10.1215/00703370-10429097.
  43. da Silva, R., Conde, D. A., Baudisch, A., and Colchero, F. (2022) Slow and negligible senescence among testudines challenges evolutionary theories of senescence, Science, 376, 1466-1470, https://doi.org/10.1126/science.abl7811.
  44. Frýdlová, P., Mrzílková, J., Šeremeta, M., Křemen, J., Dudák, J., Žemlička, J., Minnich, B., Kverková, K., Němec, P., Zach, P., and Frynta, D. (2020) Determinate growth is predominant and likely ancestral in squamate reptiles, Proc. Biol. Sci., 287, 20202737, https://doi.org/10.1098/rspb.2020.2737.
  45. Sparkman, A. M., Arnold, S. J., and Bronikowski, A. M. (2007) An empirical test of evolutionary theories for reproductive senescence and reproductive effort in the garter snake Thamnophis elegans, Proc. Biol. Sci., 274, 943-950, https://doi.org/10.1098/rspb.2006.0072.
  46. Kara, T. C. (1994) Ageing in amphibians, Gerontology, 40, 161-173, https://doi.org/10.1159/000213585.
  47. Jiang, Y., Zhao, L., Luan, X., and Liao, W. (2022) Geographical variation in body size and the Bergmann’s rule in Andrew’s toad (Bufo andrewsi), Biology (Basel), 11, 1766, https://doi.org/10.3390/biology11121766.
  48. Miller, J. K. (2001) Escaping senescence: demographic data from the threetoed box turtle (Terrapene carolina triunguis), Exp. Gerontol., 36, 829-832.
  49. Warner, D. A., Miller, D. A., Bronikowski, A. M., and Janzen, F. J. (2016) Decades of field data reveal that turtles senesce in the wild, Proc. Natl. Acad. Sci. USA, 113, 6502-6507, https://doi.org/10.1073/pnas.1600035113.
  50. Bronikowski, A. M., Hedrick, A. R., Kutz, G. A., Holden, K. G., Reinke, B., and Iverson, J. B. (2023) Sex-specific innate immunity and ageing in long-lived fresh water turtles (Kinosternon flavescens: Kinosternidae), Immun. Ageing, 20, 11, https://doi.org/10.1186/s12979-023-00335-x.
  51. Cayuela, H, Akani, G. C., Hema, E. M., Eniang, E. A., Amadi, N., Ajong, S. N., Dendi, D., Petrozzi, F., and Luiselli, L. (2019) Life history and age-dependent mortality processes in tropical reptiles, Biol. J. Linn. Soc. Lond., 128, 251-262, https://doi.org/10.1093/biolinnean/blz103.
  52. Shilovsky, G. A., Putyatina, T. S., Markov, A. V., and Skulachev, V. P. (2015) Contribution of quantitative methods of estimating mortality dynamics to explaining mechanisms of aging, Biochemistry (Moscow), 80, 1547-1559, https://doi.org/10.1134/S0006297915120020.
  53. Shilovsky, G. A., Putyatina, T. S., Ashapkin, V. V., Luchkina, O. S., and Markov, A. V. (2017) Coefficient of variation of lifespan across the tree of life: is it a signature of programmed aging? Biochemistry (Moscow), 82, 1480-1492, https://doi.org/10.1134/S0006297917120070.
  54. Gavrilova, N. S., Gavrilov, L. A., Severin, F. F., and Skulachev, V. P. (2012) Testing predictions of the programmed and stochastic theories of aging: comparison of variation in age at death, menopause, and sexual maturation, Biochemistry (Moscow), 77, 754-760, https://doi.org/10.1134/S0006297912070085.
  55. Finch, C. E., and Tanzi, R. E. (1997) Genetics of aging, Science, 278, 407-411, https://doi.org/10.1126/science.278.5337.407.
  56. Bronikowski, A. M. (2008) The evolution of aging phenotypes in snakes: a review and synthesis with new data, Age (Dordr), 30, 169-176, https://doi.org/10.1007/s11357-008-9060-5.
  57. Robert, K. A., and Bronikowski, A. M. (2010) Evolution of senescence in nature: physiological evolution in populations of garter snake with divergent life histories, Am. Nat., 175, 147-159, https://doi.org/10.1086/649595.
  58. Olsson, M., Wapstra, E., and Friesen, C. (2018) Ectothermic telomeres: it’s time they came in from the cold, Philos. Trans. R. Soc. Lond. B Biol. Sci., 373, 20160449, https://doi.org/10.1098/rstb.2016.0449.
  59. Holtze, S., Gorshkova, E., Braude, S., Cellerino, A., Dammann, P., Hildebrandt, T. B., Hoeflich, A., Hoffmann, S., Koch, P., Terzibasi Tozzini, E., Skulachev, M., Skulachev, V. P., and Sahm, A. (2021) Alternative animal models of aging research, Front. Mol. Biosci., 8, 660959, https://doi.org/10.3389/fmolb.2021.660959.
  60. Omotoso, O., Gladyshev, V. N., and Zhou, X. (2021) Lifespan extension in long-lived vertebrates rooted in ecological adaptation, Front. Cell. Dev. Biol., 9, 704966, https://doi.org/10.3389/fcell.2021.704966.
  61. Botha, J., Weiss, B. M., Dollman, K., Barrett, P. M., Benson, R. B. J., and Choiniere, J. N. (2023) Origins of slow growth on the crocodilian stem lineage, Curr. Biol., 8, S0960-9822(23)01137-5, https://doi.org/10.1016/j.cub.2023.08.057.
  62. Ripple, W. J., Newsome, T. M., Wolf, C., Dirzo, R., Everatt, K. T., Galetti, M., Hayward, M. W., Kerley, G. I., Levi, T., Lindsey, P. A., Macdonald, D. W., Malhi, Y., Painter, L. E., Sandom, C. J., Terborgh, J., and Van Valkenburgh, B. (2015) Collapse of the world’s largest herbivores, Sci. Adv., 1, e1400103, https://doi.org/10.1126/sciadv.1400103.
  63. Fraser, D., Villasenor, A., Toth, A. B., Balk, M. A., Eronen, J. T., Andrew Barr, W., Behrensmeyer, A. K., Davis, M., Du, A., Tyler Faith, J., Graves, G. R., Gotelli, N. J., Jukar, A. M., Looy, C. V., McGill, B. J., Miller, J. H., Pineda-Munoz, S., Potts, R., Shupinski, A. B., Soul, L. C., and Kathleen Lyons, S. (2022) Late quaternary biotic homogenization of North American mammalian faunas, Nat. Commun., 13, 3940, https://doi.org/10.1038/s41467-022-31595-8.
  64. Stockdale, M. T., Benton, M. J. (2021) Environmental drivers of body size evolution in crocodile-line archosaurs, Commun. Biol., 4, 38, https://doi.org/10.1038/s42003-020-01561-5.
  65. Legendre, L. J., Guénard, G., Botha-Brink, J., and Cubo, J. (2016) Palaeohistological evidence for ancestral high metabolic rate in archosaurs, Syst. Biol., 65, 989-996, https://doi.org/10.1093/sysbio/syw033.
  66. Wiemann, J., Menéndez, I., Crawford, J. M., Fabbri, M., Gauthier, JA., Hull, P. M., Norell, M. A., and Briggs, D. E. G. (2022) Fossil biomolecules reveal an avian metabolism in the ancestral dinosaur, Nature, 606, 522-526, https://doi.org/10.1038/s41586-022-04770-6.
  67. Шмальгаузен И. И. (1982) Организм как целое в индивидуальном и историческом развитии, Избранные труды, Наука, Москва.
  68. Edmonds, D., Dreslik, M. J., Lovich, J. E., Wilson, T. P., and Ernst, C. H. (2021) Growing as slow as a turtle: Unexpected maturational differences in a small, long-lived species, PLoS One, 16, e0259978, https://doi.org/10.1371/journal.pone.0259978.
  69. Omeyer, L. C. M., Fuller, W. J., Godley, B. J, Snape, R. T. E., and Broderick, A. C. (2018) Determinate or indeterminate growth? Revisiting the growth strategy of sea turtles, Marine Ecology Progress Series, 596, 199-211, https://doi.org/10.3354/meps12570.
  70. Hariharan, I. K, Wake D. B, and Wake, M. H. (2015) Indeterminate growth: could it represent the ancestral condition? Cold Spring Harb. Perspect. Biol., 8, a019174, https://doi.org/10.1101/cshperspect.a019174.
  71. Derocher, A. E., and Wiig, O. (2002) Postnatal growth in body length and mass of polar bears (Ursus maritimus) at Svalbard, J. Zool., 256, 343-349, https://doi.org/10.1017/S0952836902000377.
  72. McKenzie, J., Page, B., Goldsworthy, S. D. and Hindell, M. A. (2007) Growth strategies of New Zealand fur seals in southern Australia, J. Zool., 272, 377-389, https://doi.org/10.1111/j.1469-7998.2006.00278.x.
  73. Mumby, H. S., Chapman, S. N., Crawley, J. A. H., Mar, K. U., Htut, W., Soe, A. T., Aung, H. H. and Lummaa, V. (2015) Distinguishing between determinate and indeterminate growth in a long-lived mammal, BMC Evol. Biol., 15, 214, https://doi.org/10.1186/s12862-015-0487-x.
  74. Shine, R, and Charnov, E. L. (1992) Patterns of survival, growth, and maturation in snakes and lizards, Am. Naturalist, 139, 1257-1269, https://doi.org/10.1086/285385.
  75. Shine, R., and Iverson, J. B. (1995) Patterns of survival, growth and maturation in turtles, Oikos, 72, 343-348, https://doi.org/10.2307/3546119.
  76. Harris, R. J., and Arbuckle, K. (2016) Tempo and mode of the evolution of venom and poison in tetrapods, Toxins (Basel), 8, 193, https://doi.org/10.3390/toxins8070193.
  77. Stark, G. (2022) Large and expensive brain comes with a short lifespan: the relationship between brain size and longevity among fish taxa, J. Fish. Biol., 101, 92-99, https://doi.org/10.1111/jfb.15074.
  78. Stark, G., and Pincheira-Donoso, D. (2022) The evolution of brain size in ectothermic tetrapods: large brain mass trades-off with lifespan in reptiles, Evol. Biol., 49, 180-188, https://doi.org/10.1007/s11692-022-09562-4.
  79. Yu, X., Zhong, M. J., Li, D. Y., Jin, L., Liao, W. B., and Kotrschal, A. (2018) Large-brained frogs mature later and live longer, Evolution, 72, 1174-1183, https://doi.org/10.1111/evo.13478.
  80. Skulachev, V. P. (1997) Aging is a specific biological function rather than the result of a disorder in complex living systems: biochemical evidence in support of Weismann’s hypothesis, Biochemistry (Moscow), 62, 1191-1195.
  81. Lidsky, P. V., Yuan, J., Rulison, J. M., and Andino-Pavlovsky, R. (2022) Is aging an inevitable characteristic of organic life or an evolutionary adaptation? Biochemistry (Moscow), 87, 1413-1445, https://doi.org/10.1134/S0006297922120021.
  82. Bronikowski, A., and Vleck, D. (2010) Metabolism, body size and life span: a case study in evolutionarily divergent populations of the garter snake (Thamnophis elegans), Integr. Comp. Biol., 50, 880-887, https://doi.org/10.1093/icb/icq132.
  83. Dammann, P, Šaffa, G, and Šumbera, R. (2022) Longevity of a solitary mole-rat species and its implications for the assumed link between sociality and longevity in African mole-rats (Bathyergidae), Biol. Lett., 18, 20220243, https://doi.org/10.1098/rsbl.2022.0243.
  84. Burgin, C. J., Colella, J. P., Kahn, P. L., and Upham, N. S. (2018) How many species of mammals are there? J. Mammal., 99, 1-14, https://doi.org/10.1093/jmammal/gyx147.
  85. Giaimo, S., and Traulsen, A. (2022) The selection force weakens with age because ageing evolves and not vice versa, Nat. Commun., 13, 686, https://doi.org/10.1038/s41467-022-28254-3.
  86. Prum, R. O., Berv, J. S., Dornburg, A., Field, D. J., Townsend, J. P., Lemmon, E. M., and Lemmon, A. R. (2015) A comprehensive phylogeny of birds (Aves) using targeted next-generation DNA sequencing, Nature, 526, 569-573, https://doi.org/10.1038/nature15697.
  87. Rotger, A., Tenan, S., Igual, J. M., Bonner, S., and Tavecchia, G. (2023) Life span, growth, senescence and island syndrome: Accounting for imperfect detection and continuous growth, J. Anim. Ecol., 9, 183-194, https://doi.org/10.1111/1365-2656.13842.
  88. Van Schaik, C. P., Song, Z., Schuppli, C., Drobniak, S. M., Heldstab, S. A., Griesser, M. (2023) Extended parental provisioning and variation in vertebrate brain sizes, PLoS Biol., 21, e3002016, https://doi.org/10.1371/journal.pbio.3002016.
  89. Sacher, G. A. (1968) Molecular versus systemic theories on the genesis of ageing, Exp. Gerontol., 3, 265-271, https://doi.org/10.1016/0531-5565(68)90011-9.
  90. Knope, M. L., Bush, A. M., Frishkoff, L. O., Heim, N. A., and Payne, J. L. (2020) Ecologically diverse clades dominate the oceans via extinction resistance, Science, 367, 1035-1038, https://doi.org/10.1126/science.aax6398.
  91. Lewis, K. N., Wason, E., Edrey, Y. H., Kristan, D. M., Nevo, E., and Buffenstein, R. (2015) Regulation of Nrf2 signaling and longevity in naturally long-lived rodents, Proc. Natl. Acad. Sci. USA, 112, 3722-3727, https://doi.org/10.1073/pnas.1417566112.
  92. Shilovsky, G. A., Shram, S. I., Morgunova, G. V., and Khokhlov, A. N. (2017) Protein poly(ADP-ribosyl)ation system: Changes in development and aging as well as due to restriction of cell proliferation, Biochemistry (Moscow), 82, 1391-1401, https://doi.org/10.1134/S0006297917110177.
  93. Shilovsky, G. A. (2022) Lability of the Nrf2/Keap/ARE cell defense system in different models of cell aging and age-related pathologies, Biochemistry (Moscow), 87, 70-85, https://doi.org/10.1134/S0006297922010060.
  94. Jové, M., Mota-Martorell, N., Fernàndez-Bernal, A., Portero-Otin, M., Barja, G., and Pamplona R. (2023) Phenotypic molecular features of long-lived animal species, Free Radic. Biol. Med., 208, 728-747, https://doi.org/10.1016/j.freeradbiomed.2023.09.023.
  95. Rafikova, E., Nemirovich-Danchenko, N., Ogmen, A., Parfenenkova, A., Velikanova, A., Tikhonov, S., Peshkin, L., Rafikov, K., Spiridonova, O., Belova, Y., Glinin, T., Egorova, A., and Batin, M. (2023) Open Genes – a new comprehensive database of human genes associated with aging and longevity, Nucleic Acids Res., gkad712, https://doi.org/10.1093/nar/gkad712.
  96. Vyssokikh, M. Y., Holtze, S., Averina, O. A, Lyamzaev, K. G., Panteleeva, A. A., Marey, M. V., Zinovkin, R. A., Severin, F. F., Skulachev, M. V., Fasel, N., Hildebrandt, T. B., and Skulachev, V. P. (2020) Mild depolarization of the inner mitochondrial membrane is a crucial component of an antiaging program, Proc. Natl. Acad. Sci. USA, 117, 64916501, https://doi.org/10.1073/pnas.1916414117.
  97. Odeh, A., Eddini, H., Shawasha, L., Chaban, A., Avivi, A., Shams, I., and Manov, I. (2023) Senescent secretome of blind mole rat Spalax inhibits malignant behavior of human breast cancer cells triggering bystander senescence and targeting inflammatory response, Int. J. Mol. Sci., 24, 5132, https://doi.org/10.3390/ijms24065132.
  98. Yakovleva, E. U., Naimark, E. B., and Markov, A. V. (2016) Adaptation of Drosophila melanogaster to unfavorable growth medium affects lifespan and age-related fecundity, Biochemistry (Moscow), 81, 1445-1460, https://doi.org/10.1134/S0006297916120063.
  99. Jacobs, P. J., Hart, D. W., Merchant, H. N., Voigt, C. and Bennett, N. C. (2023) The evolution and ecology of oxidative and antioxidant status: a comparative approach in African mole-rats, Antioxidants (Basel), 12, 1486, https://doi.org/10.3390/antiox12081486.
  100. Tyshkovskiy, A., Ma, S., Shindyapina, A. V., Tikhonov, S., Lee, S. G., Bozaykut, P., Castro, J. P., Seluanov, A., Schork, N. J., Gorbunova, V., Dmitriev, S. E., Miller, R. A., and Gladyshev, V. N. (2023) Distinct longevity mechanisms across and within species and their association with aging, Cell, 186, 2929-2949.e20, https://doi.org/10.1016/j.cell.2023.05.002.
  101. Grosfeld, E. V., Bidiuk, V. A., Mitkevich, O. V., Ghazy, E. S. M. O., Kushnirov, V. V., and Alexandrov, A. I. (2021) A systematic survey of characteristic features of yeast cell death triggered by external factors, J. Fungi (Basel), 7, 886, https://doi.org/10.3390/jof7110886.
  102. Khan, I., Yousif, A., Chesnokov, M., Hong, L., and Chefetz, I. (2021) A decade of cell death studies: breathing new life into necroptosis, Pharmacol. Ther., 220, 107717, https://doi.org/10.1016/j.pharmthera.2020.107717.

Copyright (c) 2024 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies