MITOCENTRICITY

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Worldwide, interest in mitochondria is constantly growing, as evidenced by scientific statistics, and studies of the functioning of these organelles are becoming more prevalent than studies of other cellular structures. In this analytical review, mitochondria are conditionally placed in a certain cellular center, which is responsible for both energy production and other non-energetic functions, without which the existence of not only the eukaryotic cell itself, but also the entire organism is impossible. Taking into account the high multifunctionality of mitochondria, such a fundamentally new scheme of cell functioning organization, including mitochondrial management of processes that determine cell survival and death, may be justified. Considering that this issue is dedicated to the memory of V. P. Skulachev, who can be called mitocentric, due to the history of his scientific activity almost entirely aimed at studying mitochondria, this work examines those aspects of mitochondrial functioning that were directly or indirectly the focus of attention of this outstanding scientist. We list all possible known mitochondrial functions, including membrane potential generation, synthesis of Fe–S clusters, steroid hormones, heme, fatty acids, and CO2. Special attention is paid to the participation of mitochondria in the formation and transport of water, as a powerful biochemical cellular and mitochondrial regulator. The history of research on reactive oxygen species that generate mitochondria is subject to significant analysis. In the section “Mitochondria in the Center of Death”, special emphasis is placed on the analysis of what role and how mitochondria can play and determine the program of death of an organism (phenoptosis) and the contribution made to these studies by V. P. Skulachev.

About the authors

D. B Zorov

Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State University; Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology

Email: zorov@belozersky.msu.ru
119991 Moscow, Russia; 117997 Moscow, Russia

P. A Abramicheva

Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State University

119991 Moscow, Russia

N. V Andrianova

Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State University

119991 Moscow, Russia

V. A Babenko

Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State University; Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology

119991 Moscow, Russia; 117997 Moscow, Russia

L. D Zorova

Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State University; Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology

119991 Moscow, Russia; 117997 Moscow, Russia

S. D Zorov

Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State University; Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University

119991 Moscow, Russia; 119991 Moscow, Russia

I. B Pevzner

Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State University; Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology

119991 Moscow, Russia; 117997 Moscow, Russia

V. A Popkov

Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State University; Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology

119991 Moscow, Russia; 117997 Moscow, Russia

D. S Semenovich

Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State University; Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology

119991 Moscow, Russia; 117997 Moscow, Russia

E. I Yakupova

Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State University

119991 Moscow, Russia

D. N Silachev

Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State University; Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology

119991 Moscow, Russia; 117997 Moscow, Russia

E. Y Plotnikov

Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State University; Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology

119991 Moscow, Russia; 117997 Moscow, Russia

G. T Sukhikh

Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology

117997 Moscow, Russia

References

  1. Zorov, D. B., Isaev, N. K., Plotnikov, E. Yu., Zorova, L. D., Stelmashook, E. V., Vasileva, A. K., Arkhangelskaya, A. A., and Khrjapenkova, T. G. (2007) The mitochondrion as Janus bifrons, Biochemistry (Moscow), 72, 1115-1126, https://doi.org/10.1134/S0006297907100094.
  2. Picard, M., and Shirihai, O. S. (2022) Mitochondrial signal transduction, Cell Metab., 34, 1620-1653, https://doi.org/10.1016/j.cmet.2022.10.008.
  3. Zorov, D. B., Krasnikov, B. F., Kuzminova, A. E., Vysokikh, M. Yu., and Zorova, L. D. (1997) Mitochondria Revisited. Alternative functions of mitochondria, Biosci. Rep., 17, 507-520, https://doi.org/10.1023/A:1027304122259.
  4. Skou, J. C. (1998) The identification of the sodium pump, Biosci. Rep., 18, 155-169, https://doi.org/10.1023/A:1020196612909.
  5. Klingenberg, M. (2008) The ADP and ATP transport in mitochondria and its carrier, Biochim. Biophys. Acta Biomembr., 1778, 1978-2021, https://doi.org/10.1016/j.bbamem.2008.04.011.
  6. Zorova, L. D., Popkov, V. A., Plotnikov, E. Y., Silachev, D. N., Pevzner, I. B., Jankauskas, S. S., Babenko, V. A., Zorov, S. D., Balakireva, A. V., Juhaszova, M., Sollott, S. J., and Zorov, D. B. (2018) Mitochondrial membrane potential, Anal. Biochem., 552, 50-59, https://doi.org/10.1016/j.ab.2017.07.009.
  7. Di Lisa, F., Blank, P. S., Colonna, R., Gambassi, G., Silverman, H. S., Stern, M. D., and Hansford, R. G. (1995) Mitochondrial membrane potential in single living adult rat cardiac myocytes exposed to anoxia or metabolic inhibition, J. Physiol., 486 (Pt 1), 1-13, https://doi.org/10.1113/jphysiol.1995.sp020786.
  8. Weinberg, J. M., Venkatachalam, M. A., Roeser, N. F., and Nissim, I. (2000) Mitochondrial dysfunction during hypoxia/reoxygenation and its correction by anaerobic metabolism of citric acid cycle intermediates, Proc. Natl. Acad. Sci. USA, 97, 2826-2831, https://doi.org/10.1073/pnas.97.6.2826.
  9. Takahashi, E., and Sato, M. (2014) Anaerobic respiration sustains mitochondrial membrane potential in a prolyl hydroxylase pathway-activated cancer cell line in a hypoxic microenvironment, Am. J. Physiol. Cell Physiol., 306, C334-C342, https://doi.org/10.1152/ajpcell.00255.2013.
  10. Jin, S. M., Lazarou, M., Wang, C., Kane, L. A., Narendra, D. P., and Youle, R. J. (2010) Mitochondrial membrane potential regulates PINK1 import and proteolytic destabilization by PARL, J. Cell Biol., 191, 933-942, https://doi.org/10.1083/jcb.201008084.
  11. Mokranjac, D., and Neupert, W. (2008) Energetics of protein translocation into mitochondria, Biochim. Biophys. Acta Bioener., 1777, 758-762, https://doi.org/10.1016/j.bbabio.2008.04.009.
  12. Gunter, T. E., and Pfeiffer, D. R. (1990) Mechanisms by which mitochondria transport calcium, Am. J. Physiol. Cell Physiol., 258, C755-C786, https://doi.org/10.1152/ajpcell.1990.258.5.C755.
  13. Cortassa, S., Juhaszova, M., Aon, M. A., Zorov, D. B., and Sollott, S. J. (2021) Mitochondrial Ca2+, redox environment and ROS emission in heart failure: two sides of the same coin? J. Mol. Cell Cardiol., 151, 113-125, https://doi.org/10.1016/j.yjmcc.2020.11.013.
  14. Liberman, E. A., Topaly, V. P., Tsofina, L. M., Jasaitis, A. A., and Skulachev, V. P. (1969) Mechanism of coupling of oxidative phosphorylation and the membrane potential of mitochondria, Nature, 222, 1076-1078, https://doi.org/10.1038/2221076a0.
  15. Plotnikov, E. Y., Silachev, D. N., Chupyrkina, A. A., Danshina, M. I., Jankauskas, S. S., Morosanova, M. A., Stelmashook, E. V., Vasileva, A. K., Goryacheva, E. S., Pirogov, Y. A., Isaev, N. K., and Zorov, D. B. (2010) New-generation Skulachev ions exhibiting nephroprotective and neuroprotective properties, Biochemistry (Moscow), 75, 145-150, https://doi.org/10.1134/S0006297910020045.
  16. Johnson, D. C., Dean, D. R., Smith, A. D., and Johnson, M. K. (2005) Structure, function, and formation of biological iron-sulfur clusters, Annu. Rev. Biochem., 74, 247-281, https://doi.org/10.1146/annurev.biochem.74.082803.133518.
  17. Wächtershäuser, G. (1988) Before enzymes and templates: theory of surface metabolism, Microbiol. Rev., 52, 452-484, https://doi.org/10.1128/MMBR.52.4.452-484.1988.
  18. Wächtershäuser, G. (1990) Evolution of the first metabolic cycles, Proc. Natl. Acad. Sci. USA, 87, 200-204, https://doi.org/10.1073/pnas.87.1.200.
  19. Tsaousis, A. D. (2019) On the origin of iron/sulfur cluster biosynthesis in eukaryotes, Front. Microbiol., 10, https://doi.org/10.3389/fmicb.2019.02478.
  20. Lill, R., Diekert, K., Kaut, A., Lange, H., Pelzer, W., Prohl, C., and Kispal, G. (1999) The essential role of mitochondria in the biogenesis of cellular iron-sulfur proteins, Biol. Chem., 380, https://doi.org/10.1515/BC.1999.147.
  21. Braymer, J. J., and Lill, R. (2017) Iron-sulfur cluster biogenesis and trafficking in mitochondria, J. Biol. Chem., 292, 12754-12763, https://doi.org/10.1074/jbc.R117.787101.
  22. Rouault, T. A., and Maio, N. (2017) Biogenesis and functions of mammalian iron-sulfur proteins in the regulation of iron homeostasis and pivotal metabolic pathways, J. Biol. Chem., 292, 12744-12753, https://doi.org/10.1074/jbc.R117.789537.
  23. Peña-Diaz, P., and Lukeš, J. (2018) Fe–S cluster assembly in the supergroup Excavata, J. Biol. Inorg. Chem., 23, 521-541, https://doi.org/10.1007/s00775-018-1556-6.
  24. Miller, W. L. (2013) Steroid hormone synthesis in mitochondria, Mol. Cell. Endocrinol., 379, 62-73, https://doi.org/10.1016/j.mce.2013.04.014.
  25. Yeliseev, A. A., and Kaplan, S. (1995) A sensory transducer homologous to the mammalian peripheral-type benzodiazepine receptor regulates photosynthetic membrane complex formation in Rhodobacter sphaeroides 2.4.1, J. Biol. Chem., 270, 21167-21175, https://doi.org/10.1074/jbc.270.36.21167.
  26. Baker, M. E., and Fanestil, D. D. (1991) Mammalian peripheral-type benzodiazepine receptor is homologous to CrtK protein of Rhodobacter capsulatus, a photosynthetic bacterium, Cell, 65, 721-722, https://doi.org/10.1016/0092-8674(91)90379-D.
  27. Zorov, D. B., Andrianova, N. V., Babenko, V. A., Bakeeva, L. E., Zorov, S. D., Zorova, L. D., Pevsner, I. B., Popkov, V. A., Plotnikov, E. Yu., and Silachev, D. N. (2020) Nonphosphorylating oxidation in mitochondria and related processes, Biochemistry (Moscow), 85, 1570-1577, https://doi.org/10.1134/S0006297920120093.
  28. Acin-Perez, R., Salazar, E., Kamenetsky, M., Buck, J., Levin, L. R., and Manfredi, G. (2009) Cyclic AMP produced inside mitochondria regulates oxidative phosphorylation, Cell Metab., 9, 265-276, https://doi.org/10.1016/j.cmet.2009.01.012.
  29. Zeylemaker, W. P., Klaasse, A. D. M., Slater, E. C., and Veeger, C. (1970) Studies on succinate dehydrogenase. VI. Inhibition by monocarboxylic acids, Biochim. Biophys. Acta Enzymol., 198, 415-422, https://doi.org/10.1016/0005-2744(70)90120-8.
  30. Kasho, V. N., and Boyer, P. D. (1984) Relationships of inosine triphosphate and bicarbonate effects on F1 ATPase to the binding change mechanism, J. Bioenerg. Biomembr., 16, 407-419, https://doi.org/10.1007/BF00743235.
  31. Roveri, O. A., and Calcaterra, N. B. (1985) Steady-state kinetics of F1-ATPase, FEBS Lett., 192, 123-127, https://doi.org/10.1016/0014-5793(85)80056-9.
  32. Lodeyro, A. F., Calcaterra, N. B., and Roveri, O. A. (2001) Inhibition of steady-state mitochondrial ATP synthesis by bicarbonate, an activating anion of ATP hydrolysis, Biochim. Biophys. Acta Bioenerg., 1506, 236-243, https://doi.org/10.1016/S0005-2728(01)00221-3.
  33. Khailova, L. S., Vygodina, T. V., Lomakina, G. Y., Kotova, E. A., and Antonenko, Y. N. (2020) Bicarbonate suppresses mitochondrial membrane depolarization induced by conventional uncouplers, Biochem. Biophys. Res. Commun., 530, 29-34, https://doi.org/10.1016/j.bbrc.2020.06.131.
  34. Poňka, P., and Neuwirt, J. (1974) Haem synthesis and iron uptake by reticulocytes, Br. J. Haematol., 28, 1-5, https://doi.org/10.1111/j.1365-2141.1974.tb06634.x.
  35. Kikuchi, G., and Hayashi, N. (1981) Regulation by heme of synthesis and intracellular translocation of δ-aminolevulinate synthase in the liver, Mol. Cell Biochem., 37, 27-41, https://doi.org/10.1007/BF02355885.
  36. Azzi, A. (1984) Mitochondria: the utilization of oxygen for cell life, Experientia, 40, 901-906, https://doi.org/10.1007/BF01946437.
  37. Mead, J. F. (1963) Lipid metabolism, Annu. Rev. Biochem., 32, 241-268, https://doi.org/10.1146/annurev.bi.32.070163.001325.
  38. Severin, F. F., Severina, I. I., Antonenko, Y. N., Rokitskaya, T. I., Cherepanov, D. A., Mokhova, E. N., Vyssokikh, M. Yu., Pustovidko, A. V., Markova, O. V., Yaguzhinsky, L. S., et al. (2010) Penetrating cation/fatty acid anion pair as a mitochondria-targeted protonophore, Proc. Natl. Acad. Sci. USA, 107, 663-668, https://doi.org/10.1073/pnas.0910216107.
  39. Andreyev, A. Yu., Bondareva, T. O., Dedukhova, V. I., Mokhova, E. N., Skulachev, V. P., Tsofina, L. M., Volkov, N. I., and Vygodina, T. V. (1989) The ATP/ADP-antiporter is involved in the uncoupling effect of fatty acids on mitochondria, Eur. J. Biochem., 182, 585-592, https://doi.org/10.1111/j.1432-1033.1989.tb14867.x.
  40. Skulachev, V.P. (1998) Uncoupling: new approaches to an old problem of bioenergetics, Biochim. Biophys. Acta Bioenerg., 1363, 100-124, https://doi.org/10.1016/S0005-2728(97)00091-1.
  41. Zorov, D. B. (1996) Mitochondrial damage as a source of diseases and aging: a strategy of how to fight these, Biochim. Biophys. Acta Bioenerg., 1275, 10-15, https://doi.org/10.1016/0005-2728(96)00042-4.
  42. Schmidt, B., McCracken, J., and Ferguson-Miller, S. (2003) A discrete water exit pathway in the membrane protein cytochrome c oxidase, Proc. Natl. Acad. Sci. USA, 100, 15539-15542, https://doi.org/10.1073/pnas.2633243100.
  43. Buckberg, G. D., Fixler, D. E., Archie, J. P., and Hoffman, J. I. E. (1972) Experimental subendocardial ischemia in dogs with normal coronary arteries, Circ. Res., 30, 67-81, https://doi.org/10.1161/01.RES.30.1.67.
  44. Hoffman, J. I. E., and Buckberg, G. D. (1978) The myocardial supply:demand ratio – a critical review, Am. J Cardiol., 41, 327-332, https://doi.org/10.1016/0002-9149(78)90174-1.
  45. Newsholme, E. A., and Leech, A. R. (1983) Biochemistry for the Medical Sciences, Wiley, p. 952.
  46. Yaniv, Y., Juhaszova, M., Nuss, H. B., Wang, S., Zorov, D. B., Lakatta, E. G., and Sollott, S. J. (2010) Matching ATP supply and demand in mammalian heart, Ann. N Y Acad. Sci., 1188, 133-142, https://doi.org/10.1111/j.1749-6632.2009.05093.x.
  47. Bakeeva, L. E., Grinius, L. L., Jasaitis, A. A., Kuliene, V. V., Levitsky, D. O., Liberman, E. A., Severina, I. I., and Skulachev, V. P. (1970) Conversion of biomembrane-produced energy into electric form. II. Intact mitochondria, Biochim. Biophys. Acta, 216, 13-21, https://doi.org/10.1016/0005-2728(70)90154-4.
  48. Bakeeva, L. E., Chentsov, Y. S., Jasaitis, A. A., and Skulachev, V. P. (1972) The effect of oncotic pressure on heart muscle mitochondria, Biochim. Biophys. Acta, 275, 319-332, https://doi.org/10.1016/0005-2728(72)90213-7.
  49. Hackenbrock, C. R. (1966) Ultrastuctural bases for metabolically-linked mechanical activity in mitochondria, J. Cell. Biol., 30, 269-297, https://doi.org/10.1083/jcb.30.2.269.
  50. Harris, R. A., Penniston, J. T., Asai, J., and Green, D. E. (1986) The conformational basis of energy conservation in membrane systems. II. Correlation between conformational change and functional states, Proc. Natl. Acad. Sci USA, 59, 830-837, https://doi.org/10.1073/pnas.59.3.830.
  51. Wrigglesworth, J. M., and Packer, L. (1968) Optical rotary dispersion and circular dichroism studies on mitochondria: correlation of ultrastructure and metabolic state with molecular conformational changes, Arch. Biochem. Biophys., 128, 790-801, https://doi.org/10.1016/0003-9861(68)90087-8.
  52. Beavis, A. D., Brannan, R. D., and Garlid, K. D. (1985) Swelling and contraction of the mitochondrial matrix. I. A structural interpretation of the relationship between light scattering and matrix volume, J. Biol. Chem., 260, 13424-13433.
  53. Allmann, D. W., Munroe, J., Wakabayashi, T., and Green, D. E. (1970) Studies on the transition of the cristal membrane from the orthodox to the aggregated configuration. III. Loss of coupling ability of adrenal cortex mitochondria in the orthodox configuration, J. Bioenerg., 1, 331-353, https://doi.org/10.1007/BF01654572.
  54. Packer, L. (1963) Size and shape transformations correlated with oxidative phosphorylation in mitochondria, J. Cell. Biol., 18, 487-494, https://doi.org/10.1083/jcb.18.3.487.
  55. Petit, P. X., Zamzami, N., Vayssière, J. L., Mignotte, B., Kroemer, G., and Castedo, M. (1997) Implication of mitochondria in apoptosis, Mol. Cell. Biochem., 174, 185-188.
  56. Petit, P. X., Goubern, M., Diolez, P., Susin, S.A., Zamzami, N., and Kroemer, G. (1998) Disruption of the outer mitochondrial membrane as a result of large amplitude swelling: the impact of irreversible permeability transition, FEBS Lett., 426, 111-116, https://doi.org/10.1016/S0014-5793(98)00318-4.
  57. Lehninger, A. L. (1962) Water uptake and extrusion by mitochondria in relation to oxidative phosphorylation, Physiol. Rev., 42, 467-517, https://doi.org/10.1152/physrev.1962.42.3.467.
  58. Green, D. E., Asai, J., Harris, R. A., and Penniston, J. T. (1968) Conformational basis of energy transformations in membrane systems, Arch. Biochem. Biophys., 125, 684-705, https://doi.org/10.1016/0003-9861(68)90626-7.
  59. Hackenbrock, C. R. (1968) Chemical and physical fixation of isolated mitochondria in low-energy and high-energy states, Proc. Natl. Acad. Sci. USA, 61, 598-605, https://doi.org/10.1073/pnas.61.2.598.
  60. Garlid, K. D. (1976) Aqueous phase structure in cells and organelles, in Proceedings of the Cell-Associated Water, Boston, Massachusetts, pp. 293-362.
  61. Garlid, K. D. (1999) The state of water in biological systems, Int. Rev. Cytol., 192, 281-302.
  62. Srere, P. A. (1981) Protein crystals as a model for mitochondrial matrix proteins, Trends Biochem. Sci., 6, 4-7, https://doi.org/10.1016/0968-0004(81)90003-7.
  63. Fulton, A. B. (1982) How crowded is the cytoplasm? Cell, 30, 345-347, https://doi.org/10.1016/0092-8674(82)90231-8.
  64. Takahashi, S., and Sugimoto, N. (2020) Stability prediction of canonical and non-canonical structures of nucleic acids in various molecular environments and cells, Chem. Soc. Rev., 49, 8439-8468, https://doi.org/10.1039/D0CS00594K.
  65. Minton, A. P. (1983) The effect of volume occupancy upon the thermodynamic activity of proteins: some biochemical consequences, Mol. Cell. Biochem., 55, 119-140, https://doi.org/10.1007/BF00673707.
  66. Minton, A. P. (1990) Holobiochemistry: the effect of local environment upon the equilibria and rates of biochemical reactions, Int. J. Biochem., 22, 1063-1067, https://doi.org/10.1016/0020-711X(90)90102-9.
  67. Bentzel, C. J., and Solomon, A. K. (1967) Osmotic properties of mitochondria, J. Gen. Physiol., 50, 1547-1563, https://doi.org/10.1085/jgp.50.6.1547.
  68. Cooke, R., and Kuntz, I. D. (1974) The properties of water in biological systems, Annu. Rev. Biophys. Bioeng., 3, 95-126, https://doi.org/10.1146/annurev.bb.03.060174.000523.
  69. Drost-Hansen, W. (1969) Structure of water near solid unterfaces, Ind. Eng. Chem., 61, 10-47, https://doi.org/10.1021/ie50719a005.
  70. Juhaszova, M., Zorov, D. B., Kim, S. H., Pepe, S., Fu, Q., Fishbein, K. W., Ziman, B. D., Wang, S., Ytrehus, K., Antos, C. L., Olson, E. N., and Sollott, S. J. (2004) Glycogen synthase kinase-3β mediates convergence of protection signaling to inhibit the mitochondrial permeability transition pore, J. Clin. Invest., 113, 1535-1549, https://doi.org/10.1172/JCI19906.
  71. Srere, P. A. (1980) The infrastructure of the mitochondrial matrix, Trends Biochem. Sci., 5, 120-121, https://doi.org/10.1016/0968-0004(80)90051-1.
  72. Matlib, M. A., and Srere, P. A. (1976) Oxidative properties of swollen rat liver mitochondria, Arch. Biochem. Biophys., 174, 705-712, https://doi.org/10.1016/0003-9861(76)90401-X.
  73. Srere, P. A. (1982) The structure of the mitochondrial inner membrane-matrix compartment, Trends Biochem. Sci., 7, 375-378, https://doi.org/10.1016/0968-0004(82)90119-0.
  74. Srere, P. A., Mattiasson, B., and Mosbach, K. (1973) An immobilized three-enzyme system: a model for microenvironmental compartmentation in mitochondria, Proc. Natl. Acad. Sci. USA, 70, 2534-2538, https://doi.org/10.1073/pnas.70.9.2534.
  75. Letts, J. A., Fiedorczuk, K., and Sazanov, L. A. (2016) The architecture of respiratory supercomplexes, Nature, 537, 644-648, https://doi.org/10.1038/nature19774.
  76. Guo, R., Zong, S., Wu, M., Gu, J., and Yang, M. (2017) Architecture of human mitochondrial respiratory megacomplex I2III2IV2, Cell, 170, 1247-1257.e12, https://doi.org/10.1016/J.CELL.2017.07.050.
  77. Gu, J., Wu, M., Guo, R., Yan, K., Lei, J., Gao, N., and Yang, M. (2016) The architecture of the mammalian respirasome, Nature, 537, 639-643, https://doi.org/10.1038/nature19359.
  78. Ing, G., Hartley, A. M., Pinotsis, N., and Maréchal, A. (2022) Cryo-EM structure of a monomeric yeast S. cerevisiae complex IV isolated with maltosides: implications in supercomplex formation, Biochim. Biophys. Acta Bioenerg., 1863, 148591, https://doi.org/10.1016/J.BBABIO.2022.148591.
  79. Vercellino, I., and Sazanov, L. A. (2022) The assembly, regulation and function of the mitochondrial respiratory chain, Nat. Rev. Mol. Cell. Biol., 23, 141-161, https://doi.org/10.1038/s41580-021-00415-0.
  80. Bhatia, V. K., Hatzakis, N. S., and Stamou, D. (2010) A unifying mechanism accounts for sensing of membrane curvature by BAR domains, amphipathic helices and membrane-anchored proteins, Semin. Cell Dev. Biol., 21, 381-390, https://doi.org/10.1016/j.semcdb.2009.12.004.
  81. Madsen, K. L., Bhatia, V. K., Gether, U., and Stamou, D. (2010) BAR domains, amphipathic helices and membrane‐anchored proteins use the same mechanism to sense membrane curvature, FEBS Lett., 584, 1848-1855, https://doi.org/10.1016/j.febslet.2010.01.053.
  82. Drin, G., and Antonny, B. (2010) Amphipathic helices and membrane curvature, FEBS Lett., 584, 1840-1847, https://doi.org/10.1016/j.febslet.2009.10.022.
  83. Ikon, N., and Ryan, R. O. (2017) Cardiolipin and mitochondrial cristae organization, Biochim. Biophys. Acta Biomembranes, 1859, 1156-1163, https://doi.org/10.1016/j.bbamem.2017.03.013.
  84. Blum, T. B., Hahn, A., Meier, T., Davies, K. M., and Kühlbrandt, W. (2019) Dimers of mitochondrial ATP synthase induce membrane curvature and self-assemble into rows, Proc. Natl. Acad. Sci. USA, 116, 4250-4255, https://doi.org/10.1073/pnas.1816556116.
  85. Ohnishi, T. (1962) Extraction of actin- and myosin-like proteins from erythrocyte membrane, J. Biochem., 52, 307-308, https://doi.org/10.1093/oxfordjournals.jbchem.a127620.
  86. Neifakh, S. A., and Kazakova, T. B. (1963) Actomyosin-like protein in mitochondria of the mouse liver, Nature, 197, 1106-1107, https://doi.org/10.1038/1971106a0.
  87. Bartley, W., Dean, B., and Ferdinand, W. (1969) Maintenance of mitochondrial volume and the effects of phosphate and ATP in producing swelling and shrinking, J. Theor. Biol., 24, 192-202, https://doi.org/10.1016/S0022-5193(69)80045-7.
  88. Zorov, D., Vorobjev, I., Popkov, V., Babenko, V., Zorova, L., Pevzner, I., Silachev, D., Zorov, S., Andrianova, N., and Plotnikov, E. (2019) Lessons from the discovery of mitochondrial fragmentation (fission): a review and update, Cells, 8, 175, https://doi.org/10.3390/cells8020175.
  89. Pihl, E., and Bahr, G. (1970) Matrix structure of critical-point dried mitochondria, Exp. Cell. Res., 63, 391-403, https://doi.org/10.1016/0014-4827(70)90228-4.
  90. Juhaszova, M., Kobrinsky, E., Zorov, D. B., Nuss, H. B., Yaniv, Y., Fishbein, K. W., de Cabo, R., Montoliu, L., Gabelli, S. B., Aon, M. A., Cortassa, S., and Sollott, S. J. (2022) ATP synthase K+- and H+-fluxes drive ATP synthesis and enable mitochondrial K+-“uniporter” function: I. Characterization of ion fluxes, Function, 3, zqab065, https://doi.org/10.1093/function/zqab065.
  91. Juhaszova, M., Kobrinsky, E., Zorov, D. B., Nuss, H. B., Yaniv, Y., Fishbein, K. W., de Cabo, R., Montoliu, L., Gabelli, S. B., Aon, M. A., Cortassa, S., and Sollott, S. J. (2022) ATP synthase K+- and H+-fluxes drive ATP synthesis and enable mitochondrial K+-“uniporter” function: II. Ion and ATP synthase flux regulation, Function, 3, zqac001, https://doi.org/10.1093/function/zqac001.
  92. Sobti, M., Walshe, J. L., Wu, D., Ishmukhametov, R., Zeng, Y. C., Robinson, C. V., Berry, R. M., and Stewart, A. G. (2020) Cryo-EM structures provide insight into how E. coli F1Fo ATP synthase accommodates symmetry mismatch, Nat. Commun., 11, 2615, https://doi.org/10.1038/s41467-020-16387-2.
  93. Lai, Y., Zhang, Y., Zhou, S., Xu, J., Du, Z., Feng, Z., Yu, L., Zhao, Z., Wang, W., Tang, Y., Yang, X., Guddat, L. W., Liu, F., Gao, Y., Rao, Z., and Gong, H. (2023) Structure of the human ATP synthase, Mol. Cell, 83, 2137-2147.e4, https://doi.org/10.1016/j.molcel.2023.04.029.
  94. Pfeffermann, J., and Pohl, P. (2023) Tutorial for stopped-flow water flux measurements: why a report about “ultrafast water permeation through nanochannels with a densely fluorous interior surface” is flawed, Biomolecules, 13, 431, https://doi.org/10.3390/biom13030431.
  95. Boytsov, D., Brescia, S., Chaves, G., Koefler, S., Hannesschlaeger, C., Siligan, C., Goessweiner‐Mohr, N., Musset, B., and Pohl, P. (2023) Trapped pore waters in the open proton channel HV1, Small, 19, https://doi.org/10.1002/smll.202205968.
  96. Pfeffermann, J., Goessweiner-Mohr, N., and Pohl, P. (2021) The energetic barrier to single-file water flow through narrow channels, Biophys. Rev., 13, 913-923, https://doi.org/10.1007/s12551-021-00875-w.
  97. Zeuthen, T., and MacAulay, N. (2012) Transport of water against its concentration gradient: fact or fiction? Wiley Interdiscip. Rev. Membr. Transp. Signal., 1, 373-381, https://doi.org/10.1002/wmts.54.
  98. Loo, D. D. F., Hirayama, B. A., Meinild, A., Chandy, G., Zeuthen, T., and Wright, E. M. (1999) Passive water and ion transport by cotransporters, J. Physiol., 518, 195-202, https://doi.org/10.1111/j.1469-7793.1999.0195r.x.
  99. Скулачев В. П. (1995) Нефосфорилирующее дыхание как механизм, предотвращающий образование активных форм кислорода. Мол. Биол., 29, 1199-1209.
  100. Chance, B. (1965) The respiratory chain as a model for metabolic control in multi-enzyme systems, in Control of Energy Metabolism, Academic Press, pp. 9-12.
  101. Skulachev, V. P. (1996) Role of uncoupled and non-coupled oxidations in maintenance of safely low levels of oxygen and its one-electron reductants, Q. Rev. Biophys., 29, 169-202, https://doi.org/10.1017/S0033583500005795.07.
  102. Edwards, S. W. (1996) The O−2 generating NADPH oxidase of phagocytes: structure and methods of detection, Methods, 9, 563-577, https://doi.org/10.1006/meth.1996.0064.
  103. Skulachev, V. P. (2005) How to clean the dirtiest place in the cell: cationic antioxidants as intramitochondrial ROS scavengers, IUBMB Life, 57, 305-310, https://doi.org/10.1080/15216540500092161.
  104. Dröge, W. (2002) Free radicals in the physiological control of cell function, Physiol. Rev., 82, 47-95, https://doi.org/10.1152/physrev.00018.2001.
  105. Michaelis, L. (1946) Fundamentals of oxidation and respiration, Am. Sci., 34, 573-596.
  106. Gerschman, R., Gilbert, D. L., Nye, S. W., Dwyer, P., and Fenn, W. O. (1954) Oxygen poisoning and X-irradiation: a mechanism in common, Science, 119, 623-626, https://doi.org/10.1126/science.119.3097.623.
  107. Harman, D. (1995) Aging: a theory based on free radical and radiation chemistry, J. Gerontol., 11, 298-300, https://doi.org/10.1093/geronj/11.3.298.
  108. Franceschi, C. (1989) Cell proliferation, cell death and aging, Aging Clin. Exp. Res., 1, 3-15, https://doi.org/10.1007/BF03323871.
  109. Franceschi, C., Bonafe, M., Valensis, S., Oliveri, F., De Luca, M., Ottaviani, E., and De Benedictis, G. (2000) Inflamm-aging: an evolutionary perspective on immunosenescence, Ann. N Y Acad. Sci., 908, 244-254, https://doi.org/10.1111/j.1749-6632.2000.tb06651.x.
  110. Franceschi, C., Garagnani, P., Vitale, G., Capri, M., and Salvioli, S. (2017) Inflammaging and ‘Garb-Aging’, Trends Endocrinol. Metab., 28, 199-212, https://doi.org/10.1016/j.tem.2016.09.005.
  111. Ferrucci, L., and Fabbri, E. (2018) Inflammageing: chronic inflammation in ageing, cardiovascular disease, and frailty, Nat. Rev. Cardiol., 15, 505-522, https://doi.org/10.1038/s41569-018-0064-2.
  112. Zhang, Q., Raoof, M., Chen, Y., Sumi, Y., Sursal, T., Junger, W., Brohi, K., Itagaki, K., and Hauser, C. J. (2010) Circulating mitochondrial DAMPs cause inflammatory responses to injury, Nature, 464, 104-107, https://doi.org/10.1038/nature08780.
  113. Pinti, M., Cevenini, E., Nasi, M., De Biasi, S., Salvioli, S., Monti, D., Benatti, S., Gibellini, L., Cotichini, R., Stazi, M. A., Trenti, T., Franceschi, C., and Cossarizza, A. (2014) Circulating mitochondrial DNA increases with age and is a familiar trait: implications for “inflamm-aging”, Eur. J Immunol., 44, 1552-1562, https://doi.org/10.1002/eji.201343921.
  114. Shimada, K., Crother, T.R., Karlin, J., Dagvadorj, J., Chiba, N., Chen, S., Ramanujan, V. K., Wolf, A. J., Vergnes, L., Ojcius, D. M., et al. (2012) Oxidized mitochondrial DNA activates the NLRP3 inflammasome during apoptosis, Immunity, 36, 401-414, https://doi.org/10.1016/j.immuni.2012.01.009.
  115. Iyer, S. S., He, Q., Janczy, J. R., Elliott, E. I., Zhong, Z., Olivier, A. K., Sadler, J. J., Knepper-Adrian, V., Han, R., Qiao, L., Eisenbarth, S. C., Nauseef, W. M., Cassel, S. L., and Sutterwala, F. S. (2013) Mitochondrial cardiolipin is required for Nlrp3 inflammasome activation, Immunity, 39, 311-323, https://doi.org/10.1016/j.immuni.2013.08.001.
  116. Zorov, D. B., Bannikova, S. Y., Belousov, V. V., Vyssokikh, M. Y., Zorova, L. D., Isaev, N. K., Krasnikov, B. F., and Plotnikov, E. Y. (2005) Reactive oxygen and nitrogen species: friends or foes? Biochemistry (Moscow), 70, 215-221, https://doi.org/10.1007/s10541-005-0103-6.
  117. Boveris, A., Oshino, N., and Chance, B. (1972) The cellular production of hydrogen peroxide, Biochem. J., 128, 617-630, https://doi.org/10.1042/bj1280617.
  118. Korshunov, S. S., Skulachev, V. P., and Starkov, A. A. (1997) High protonic potential actuates a mechanism of production of reactive oxygen species in mitochondria, FEBS Lett., 416, 15-18, https://doi.org/10.1016/S0014-5793(97)01159-9.
  119. Vyssokikh, M. Y., Holtze, S., Averina, O. A., Lyamzaev, K. G., Panteleeva, A. A., Marey, M. V., Zinovkin, R. A., Severin, F. F., Skulachev, M. V., Fasel, N., Hildebrandt, T. B., and Skulachev, V. P. (2020) Mild depolarization of the inner mitochondrial membrane is a crucial component of an anti-aging program, Proc. Natl. Acad. Sci. USA, 117, 6491-6501, https://doi.org/10.1073/pnas.1916414117.
  120. Plotnikov, E. Y., Silachev, D. N., Jankauskas, S. S., Rokitskaya, T. I., Chupyrkina, A. A., Pevzner, I. B., Zorova, L. D., Isaev, N. K., Antonenko, Y. N., Skulachev, V. P., and Zorov, D. B. (2012) Mild uncoupling of respiration and phosphorylation as a mechanism providing nephro- and neuroprotective effects of penetrating cations of the SkQ family, Biochemistry (Moscow), 77, 1029-1037, https://doi.org/10.1134/S0006297912090106.
  121. Skulachev, V. P. (1991) Fatty acid circuit as a physiological mechanism of uncoupling of oxidative phosphorylation, FEBS Lett., 294, 158-162, https://doi.org/10.1016/0014-5793(91)80658-P.
  122. Isaev, N. K., Zorov, D. B., Stelmashook, E. V., Uzbekov, R. E., Kozhemyakin, M. B., and Victorov, I. V. (1996) Neurotoxic Glutamate treatment of cultured cerebellar granule cells induces Ca2+-dependent collapse of mitochondrial membrane potential and ultrastructural alterations of mitochondria, FEBS Lett., 392, 143-147, https://doi.org/10.1016/0014-5793(96)00804-6.
  123. Weidinger, A., Milivojev, N., Hosmann, A., Duvigneau, J. C., Szabo, C., Törö, G., Rauter, L., Vaglio-Garro, A., Mkrtchyan, G. V., Trofimova, L., et al. (2023) Oxoglutarate dehydrogenase complex controls glutamate-mediated neuronal death, Redox Biol., 62, 102669, https://doi.org/10.1016/j.redox.2023.102669.
  124. Li, X., and May, J. M. (2002) Catalase-dependent measurement of H2O2 in intact mitochondria, Mitochondrion, 1, 447-453, https://doi.org/10.1016/S1567-7249(02)00010-7.
  125. Palma, F. R., He, C., Danes, J. M., Paviani, V., Coelho, D. R., Gantner, B. N., and Bonini, M. G. (2020) Mitochondrial superoxide dismutase: what the established, the intriguing, and the novel reveal about a key cellular redox switch, Antioxid. Redox Signal., 32, 701-714, https://doi.org/10.1089/ars.2019.7962.
  126. Kang, S. W., Chae, H. Z., Seo, M. S., Kim, K., Baines, I. C., and Rhee, S. G. (1998) Mammalian peroxiredoxin isoforms can reduce hydrogen peroxide generated in response to growth factors and tumor necrosis factor-α, J. Biol. Chem., 273, 6297-6302, https://doi.org/10.1074/JBC.273.11.6297.
  127. Arnér, E. S. J., and Holmgren, A. (2000) Physiological functions of thioredoxin and thioredoxin reductase, Eur. J Biochem., 267, 6102-6109, https://doi.org/10.1046/j.1432-1327.2000.01701.x.
  128. Sohal, R. S., and Brunk, U. T. (1992) Mitochondrial production of pro-oxidants and cellular senescence, Mutat. Res., 275, 295-304, https://doi.org/10.1016/0921-8734(92)90033-L.
  129. Zorov, D. B., Juhaszova, M., and Sollott, S. J. (2014) Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release, Physiol. Rev., 94, 909-950, https://doi.org/10.1152/physrev.00026.2013.
  130. Silachev, D. N., Plotnikov, E. Y., Pevzner, I. B., Zorova, L. D., Babenko, V. A., Zorov, S. D., Popkov, V. A., Jankauskas, S. S., Zinchenko, V. P., Sukhikh, G. T., and Zorov, D. B. (2014) The mitochondrion as a key regulator of ischaemic tolerance and injury, Heart Lung Circ., 23, 897-904, https://doi.org/10.1016/j.hlc.2014.05.022.
  131. Zorov, D.B., Isaev, N. K., Plotnikov, E. Y., Silachev, D. N., Zorova, L. D., Pevzner, I. B., Morosanova, M. A., Jankauskas, S. S., Zorov, S. D., and Babenko, V. A. (2013) Perspectives of mitochondrial medicine, Biochemistry (Moscow), 78, 979-990, https://doi.org/10.1134/S0006297913090034.
  132. Miller, J. W., Selhub, J., and Joseph, J. A. (1996) Oxidative damage caused by free radicals produced during catecholamine autoxidation: protective effects of O-methylation and melatonin, Free Radic. Biol. Med., 21, 241-249, https://doi.org/10.1016/0891-5849(96)00033-0.
  133. Seiter, C. H. A., Margalit, R., and Perreault, R. A. (1979) The cytochrome c binding site on cytochrome c oxidase, Biochem. Biophys. Res. Commun., 86, 473-477, https://doi.org/10.1016/0006-291X(79)91738-8.
  134. Vyssokikh, M., Zorova, L., Zorov, D., Heimlich, G., Jürgensmeier, J., Schreiner, D., and Brdiczka, D. (2004) The intra-mitochondrial cytochrome c distribution varies correlated to the formation of a complex between VDAC and the adenine nucleotide translocase: this affects Bax-dependent cytochrome c release, Biochim. Biophys. Acta Mol. Cell. Res., 1644, 27-36, https://doi.org/10.1016/j.bbamcr.2003.10.007.
  135. Vyssokikh, M. Y., Zorova, L., Zorov, D., Heimlich, G., Jürgensmeier, J. J., and Brdiczka, D. (2002) Bax releases cytochrome c preferentially from a complex between porin and adenine nucleotide translocator. Hexokinase activity suppresses this effect, Mol. Biol. Rep., 29, 93-96, https://doi.org/10.1023/a:1020383108620.
  136. Kagan, V. E., Bayır, H. A., Belikova, N. A., Kapralov, O., Tyurina, Y. Y., Tyurin, V. A., Jiang, J., Stoyanovsky, D. A., Wipf, P., Kochanek, P. M., Greenberger, J. S., Pitt, B., Shvedova, A. A., and Borisenko, G. (2009) Cytochrome c/cardiolipin relations in mitochondria: a kiss of death, Free Radic. Biol. Med., 46, 1439-1453, https://doi.org/10.1016/j.freeradbiomed.2009.03.004.
  137. Pereverzev, M. O., Vygodina, T. V., Konstantinov, A. A., and Skulachev, V. P. (2003) Cytochrome c, an ideal antioxidant, Biochem. Soc. Trans., 31, 1312-1315, https://doi.org/10.1042/bst0311312.
  138. Skulachev, V. P. (1998) Cytochrome c in the apoptotic and antioxidant cascades, FEBS Lett., 423, 275-280, https://doi.org/10.1016/S0014-5793(98)00061-1.
  139. Abramicheva, P. A., Andrianova, N. V., Babenko, V. A., Zorova, L. D., Zorov, S. D., Pevzner, I. B., Popkov, V. A., Semenovich, D. S., Yakupova, E. I., Silachev, D. N., Plotnikov, E. Y., Sukhikh, G. T., and Zorov, D. B. (2023) Mitochondrial network: electric cable and more, Biochemistry (Moscow), 88, 1596-1607, https://doi.org/10.1134/S0006297923100140.
  140. Skulachev, V. P. (1971) Energy transformations in the respiratory chain, Curr. Top. Bioenergetics, 4, 127-190, https://doi.org/10.1016/B978-0-12-152504-0.50010-1.
  141. Bakeeva, L. E., Chentsov, Y. S., and Skulachev, V. P. (1978) Mitochondrial framework (reticulum mitochondriale) in rat diaphragm muscle, Biochim. Biophys, Acta, 501, 349-369, https://doi.org/10.1016/0005-2728(78)90104-4.
  142. Драчев В. А., Зоров Д. Б. (1986) Митохондрия как электрический кабель. Экспериментальная проверка гипотезы, Докл. Акад. Наук СССР, 287, 1237-1238.
  143. Amchenkova, A. A., Bakeeva, L. E., Chentsov, Y. S., Skulachev, V. P., and Zorov, D. B. (1988) Coupling membranes as energy-transmitting cables. I. Filamentous mitochondria in fibroblasts and mitochondrial clusters in cardiomyocytes, J. Cell. Biol., 107, 481-495, https://doi.org/10.1083/jcb.107.2.481.148.
  144. Vitale, I., Pietrocola, F., Guilbaud, E., Aaronson, S. A., Abrams, J. M., Adam, D., Agostini, M., Agostinis, P., Alnemri, E. S., Altucci, L., et al. (2023) Apoptotic cell death in disease – current understanding of the NCCD 2023, Cell Death Differ., 30, 1097-1154, https://doi.org/10.1038/s41418-023-01153-w.
  145. Zorov, D. B., Popkov, V. A., Zorova, L. D., Vorobjev, I. A., Pevzner, I. B., Silachev, D. N., Zorov, S. D., Jankauskas, S. S., Babenko, V. A., and Plotnikov, E. Y. (2017) Mitochondrial aging: is there a mitochondrial clock? J. Gerontol. A Biol. Sci. Med. Sci., 72, 1171-1179, https://doi.org/10.1093/gerona/glw184.
  146. Twig, G., Elorza, A., Molina, A. J. A., Mohamed, H., Wikstrom, J. D., Walzer, G., Stiles, L., Haigh, S. E., Katz, S., Las, G., et al. (2008) Fission and selective fusion govern mitochondrial segregation and elimination by autophagy, EMBO J., 27, 433-446, https://doi.org/10.1038/sj.emboj.7601963.
  147. Vorobjev, I. A., and Zorov, D. B. (1983) Diazepam inhibits cell respiration and induces fragmentation of mitochondrial reticulum, FEBS Lett., 163, 311-314, https://doi.org/10.1016/0014-5793(83)80842-4.
  148. Plotnikov, E. Y., Vasileva, A. K., Arkhangelskaya, A. A., Pevzner, I. B., Skulachev, V. P., and Zorov, D. B. (2008) Interrelations of mitochondrial fragmentation and cell death under ischemia/reoxygenation and UV-irradiation: protective effects of SkQ1, lithium ions and insulin, FEBS Lett., 582, 3117-3124, https://doi.org/10.1016/j.febslet.2008.08.002.
  149. Hunter, D. R., Haworth, R. A. (1979) The Ca2+-induced membrane transition in mitochondria, Arch. Biochem. Biophys., 195, 453-459, https://doi.org/10.1016/0003-9861(79)90371-0.
  150. Haworth, R. A., and Hunter, D. R. (1979) The Ca2+-induced membrane transition in mitochondria, Arch. Biochem. Biophys., 195, 460-467, https://doi.org/10.1016/0003-9861(79)90372-2.
  151. Hunter, D. R., and Haworth, R. A. (1979) The Ca2+-induced membrane transition in mitochondria, Arch. Biochem. Biophys., 195, 468-477, https://doi.org/10.1016/0003-9861(79)90373-4.
  152. Novgorodov, S. A., Gudz, T. I., Kushnareva, Y. E., Zorov, D. B., and Kudrjashov, Y. B. (1990) Effect of cyclosporine A and oligomycin on non-specific permeability of the inner mitochondrial membrane, FEBS Lett., 270, 108-110, https://doi.org/10.1016/0014-5793(90)81245-j.
  153. Novgorodov, S. A., Gudz, T. I., Kushnareva, Y. E., Zorov, D. B., and Kudrjashov, Y. B. (1990) Effect of ADP/ATP antiporter conformational state on the suppression of the nonspecific permeability of the inner mitochondrial membrane by cyclosporine A, FEBS Lett., 277, 123-126, https://doi.org/10.1016/0014-5793(90)80824-3.
  154. Kinnally, K. W., Zorov, D., Antonenko, Y., and Perini, S. (1991) Calcium modulation of mitochondrial inner membrane channel activity, Biochem. Biophys. Res. Commun., 176, 1183-1188, https://doi.org/10.1016/0006-291x(91)90410-9.
  155. Szabó, I, and Zoratti, M. (1992) The mitochondrial megachannel is the permeability transition pore, J. Bioenerg. Biomembr., 24, 111-117, https://doi.org/10.1007/BF00769537.
  156. Zoratti, M, and Szabò, I. (1995) The mitochondrial permeability transition, Biochim. Biophys. Acta, 1241, 139-176, https://doi.org/10.1016/0304-4157(95)00003-a.
  157. Krasnikov, B. F., Zorov, D. B., Antonenko, Y. N., Zaspa, A. A., Kulikov, I. V., Kristal, B. S., Cooper, A. J., and Brown, A. M. (2005) Comparative kinetic analysis reveals that inducer-specific ion release precedes the mitochondrial permeability transition, Biochim. Biophys. Acta, 1708, 375-392, https://doi.org/10.1016/j.bbabio.2005.05.009.
  158. Zorov, D. B., Juhaszova, M., Yaniv, Y., Nuss, H. B., Wang, S., and Sollott, S. J. (2009) Regulation and pharmacology of the mitochondrial permeability transition pore, Cardiovasc. Res., 83, 213-225, https://doi.org/10.1093/cvr/cvp151.
  159. Skulachev, V. P. (1996) Why are mitochondria involved in apoptosis? Permeability transition pores and apoptosis as selective mechanisms to eliminate superoxide‐producing mitochondria and cell, FEBS Lett., 397, 7-10, https://doi.org/10.1016/0014-5793(96)00989-1.
  160. Kluck, R. M., Esposti, M. D., Perkins, G., Renken, C., Kuwana, T., Bossy-Wetzel, E., Goldberg, M., Allen, T., Barber, M. J., Green, D. R., and Newmeyer, D. D. (1999) The pro-apoptotic proteins, Bid and Bax, cause a limited permeabilization of the mitochondrial outer membrane that is enhanced by cytosol, J. Cell Biol., 147, 809-822, https://doi.org/10.1083/jcb.147.4.809.
  161. Zorov, D. B., Kinnally, K. W., and Tedeschi, H. (1992) Voltage activation of heart inner mitochondrial membrane channels, J. Bioenerg. Biomembr., 24, 119-124, https://doi.org/10.1007/BF00769538.
  162. Lemasters, J. J. (1999) Necrapoptosis and the mitochondrial permeability transition: shared pathways to necrosis and apoptosis, Am. J. Physiol. Gastrointest. Liver Physiol., 276, G1-G6, https://doi.org/10.1152/ajpgi.1999.276.1.G1.
  163. Riedl, S. J., and Salvesen, G. S. (2007) The apoptosome: signalling platform of cell death, Nat. Rev. Mol. Cell Biol., 8, 405-413, https://doi.org/10.1038/nrm2153.
  164. Zorov, D. B., Plotnikov, E. Y., Jankauskas, S. S., Isaev, N. K., Silachev, D. N., Zorova, L. D., Pevzner, I. B., Pulkova, N. V., Zorov, S. D., and Morosanova, M. A. (2012) The phenoptosis problem: what is causing the death of an organism? Lessons from acute kidney injury, Biochemistry (Moscow), 77, 742-753, https://doi.org/10.1134/S0006297912070073.
  165. Plotnikov, E. Y., Morosanova, M. A., Pevzner, I. B., Zorova, L. D., Manskikh, V. N., Pulkova, N. V., Galkina, S. I., Skulachev, V. P., and Zorov, D. B. (2013) Protective effect of mitochondria-targeted antioxidants in an acute bacterial infection, Proc. Natl. Acad. Sci. USA, 110, https://doi.org/10.1073/pnas.1307096110.
  166. Zorov, D. B., Plotnikov, E. Y., Silachev, D. N., Zorova, L. D., Pevzner, I. B., Zorov, S. D., Babenko, V. A., Jankauskas, S. S., Popkov, V. A., and Savina, P. S. (2014) Microbiota and mitobiota. Putting an equal sign between mitochondria and bacteria, Biochemistry (Moscow), 79, 1017-1031, https://doi.org/10.1134/S0006297914100046.
  167. Popkov, V. A., Plotnikov, E. Y., Silachev, D. N., Zorova, L. D., Pevzner, I. B., Jankauskas, S. S., Zorov, S. D., Andrianova, N. V., Babenko, V. A., and Zorov, D. B. (2017) Bacterial therapy and mitochondrial therapy, Biochemistry (Moscow), 82, 1549-1556, https://doi.org/10.1134/S0006297917120148.
  168. Skulachev, V. P. (2012) What is “phenoptosis” and how to fight it? Biochemistry (Moscow), 77, 689-706, https://doi.org/10.1134/S0006297912070012.
  169. Skulachev, V. P. (2002) Programmed death phenomena: from organelle to organism, Ann. N Y Acad. Sci., 959, 214-237, https://doi.org/10.1111/j.1749-6632.2002.tb02095.x.
  170. Skulachev, V. P. (1999) Phenoptosis: programmed death of an organism, Biochemistry (Moscow), 64, 1418-1426.
  171. Skulachev, V. P., Vyssokikh, M. Yu., Chernyak, B. V., Averina, O. A., Andreev-Andrievskiy, A. A., Zinovkin, R. A., Lyamzaev, K. G., Marey, M. V., Egorov, M. V., Frolova, O. J., Zorov, D. B., Skulachev, M. V., and Sadovnichii, V. A. (2023) Mitochondrion-targeted antioxidant SkQ1 prevents rapid animal death caused by highly diverse shocks, Sci. Rep., 13, 4326, https://doi.org/10.1038/s41598-023-31281-9.
  172. Bakeeva, L. E., Barskov, I. V., Egorov, M. V., Isaev, N. K., Kapelko, V. I., Kazachenko, A. V., Kirpatovsky, V. I., Kozlovsky, S. V., Lakomkin, V. L., Levina, S. B., et al. (2008) Mitochondria-targeted plastoquinone derivatives as tools to interrupt execution of the aging program. 2. Treatment of some ROS- and age-related diseases (heart arrhythmia, heart infarctions, kidney ischemia, and stroke), Biochemistry (Moscow), 73, 1288-1299, https://doi.org/10.1134/S000629790812002X.
  173. Skulachev, M. V., N. Antonenko, Y. N., Anisimov, V. V., Chernyak, B. A., Cherepanov, D. A., Chistyakov, V. V., Egorov, M. G., Kolosova, N. A., Korshunova, G. G., Lyamzaev, K., et al. (2011) Mitochondrial-targeted plastoquinone derivatives. Effect on senescence and acute age-related pathologies, Curr. Drug. Targets, 12, 800-826, https://doi.org/10.2174/138945011795528859.
  174. Weismann, A. (1882) About the Duration of Life [in German], Fischer, Jena.

Copyright (c) 2024 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies