RETINOPROTECTIVE EFFECT SkQ1 – VISOMITIN EYE DROPS – IS ASSOCIATED WITH SUPPRESSION p38MAPK AND ERK1/2 SIGNALING PATHWAYS ACTIVITY

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Visomitin eye drops are the first and so far the only drug based on SkQ1 – the mitochondrial antioxidant 10-(6′-plastoquinonyl) decyltriphenylphosphonium, synthesized in the laboratories of Moscow State University under the leadership of Academician V.P. Skulachev. SkQ1 is considered as a potential tool to combat the aging program. We have previously shown that it is able to prevent and/or suppress the development of all manifestations of accelerated senescence in OXYS rats, including retinopathy, similar to age-related macular degeneration (AMD). Here, we assessed the effect of Visomitin instillations (from the age of 9 to 12 months) on the progression of AMD-like pathology and p38MAPK and ERK1/2 activity in OXYS rat retina. Wistar and OXYS rats treated with placebo (with a composition identical to Visomitin with the exception of SkQ1) used as controls. Ophthalmological examination showed that in OXYS rats receiving placebo, retinopathy progressed and the severity of clinical manifestations did not differ from intact OXYS rats. Visomitin suppressed the progression of AMD-like pathology in OXYS rats and significantly improved the structural and functional parameters of retinal pigment epithelium cells and the state of microcirculation in the choroid, which, presumably, contributed to the preservation of photoreceptors, associative and ganglion neurons. It was found that the activity of p38MAPK and ERK1/2 in the retina of 12-month-old OXYS rats is higher than that of Wistar rats of the same age, as indicated by the increased content of phosphorylated forms of p38MAPK and ERK1/2 and their target protein tau (at position T181 and S396). Visomitin decreased the phosphorylation of p38MAPK, ERK1/2 and tau, indicating suppression of the activity of these MAPK signaling cascades. Thus, Visomitin eye drops are able to suppress the progression of AMD-like pathology in OXYS rats and their effect is associated with a decrease in the activity of MAPK signaling cascades.

About the authors

N. A Muraleva

Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences

Email: Myraleva@bionet.nsc.ru
630090 Novosibirsk, Russia

A. A Zhdankina

Siberian State Medical University

634055 Tomsk, Russia

A. Zh Fursova

Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences; Novosibirsk State Medical University; State Novosibirsk Regional Clinical Hospital

630090 Novosibirsk, Russia; 630091 Novosibirsk, Russia; 630087 Novosibirsk, Russia

N. G Kolosova

Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences

630090 Novosibirsk, Russia

References

  1. Skulachev V. P. (2007) A biochemical approach to the problem of aging: “megaproject” on membrane-penetrating ions. The first results and prospects, Biochemistry (Moscow), 72, 1385-1396, https://doi.org/10.1134/s0006297907120139.
  2. Zhdankina, A. A., Fursova, A., Logvinov, S. V., and Kolosova, N. G. (2008) Clinical and morphological characteristics of chorioretinal degeneration in early aging OXYS rats, Bull. Exp. Biol. Med., 146, 455-458, https://doi.org/10.1007/s10517-009-0298-4.
  3. Kozhevnikova, O. S., Korbolina, E. E., Stefanova, N. A., Muraleva, N. A., Orlov, Y. L., and Kolosova, N. G. (2013) Association of AMD-like retinopathy development with an Alzheimer’s disease metabolic pathway in OXYS rats, Biogerontology, 14, 753-762, https://doi.org/10.1007/s10522-013-9439-2.
  4. Neroev, V. V., Archipova, M. M., Bakeeva, L. E., Fursova, A., Grigorian, E. N., Grishanova, A. Y., Iomdina, E. N., Ivashchenko, Z.hN., Katargina, L. A., Khoroshilova-Maslova, I. P., Kilina, O. V., Kolosova, N. G., Kopenkin, E. P., Korshunov, S. S., Kovaleva, N. A., Novikova, Y. P., Philippov, P. P., Pilipenko, D. I., Robustova, O. V., Saprunova, V. B., and Skulachev, V. P. (2008) Mitochondria-targeted plastoquinone derivatives as tools to interrupt execution of the aging program. 4. Age-related eye disease. SkQ1 returns vision to blind animals, Biochemistry (Moscow), 73, 1317-1328, https://doi.org/10.1134/s0006297908120043.
  5. Еричев В. П., Козлова И. В. Рещикова В. С., Алексеев В. Н., Левко М. А., Замятнин А.А., Гудкова Е. Ю., Ковалёва Н. А., Выгодин В. А., Федоркин О. Н., Остапенко В., Сенин И. И., Савченко А. Ю., Попеко Н. А., Скулачёв В. П., Скулачёв М. В. (2016) Клиническое исследование эффективности и безопасности препарата Визомитин®, глазные капли, у пациентов с возрастной катарактой, Национальный журнал Глаукома, 15, 61-69.
  6. Wong, W. L., Su, X., Li, X., Cheung, C. M., Klein, R., Cheng, C. Y., and Wong, T. Y. (2014) Global prevalence of age-related macular degeneration and disease burden projection for 2020 and 2040: a systematic review and meta-analysis, Lancet, 2, e106-e116, https://doi.org/10.1016/S2214-109X(13)70145-1.
  7. Kolosova, N. G., Stefanova, N. A., Korbolina, E. E., Fursova, A. Zh., and Kozhevnikova, O. S. (2014) Senescence-accelerated OXYS rats: A genetic model of premature aging and age-related diseases, Adv. Gerontol., 4, 294-298, https://doi.org/10.1134/S2079057014040146.
  8. Markovets, A. M., Saprunova, V. B., Zhdankina, A. A., Fursova, A. Z.h, Bakeeva, L. E., and Kolosova, N. G. (2011) Alterations of retinal pigment epithelium cause AMD-like retinopathy in senescence-accelerated OXYS rats, Aging, 3, 44-54, https://doi.org/10.18632/aging.100243.
  9. Telegina, D. V., Kozhevnikova, O. S., Bayborodin, S. I., and Kolosova, N. G. (2017) Contributions of agerelated alterations of the retinal pigment epithelium and of glia to the AMD-like pathology in OXYS rats, Sci. Rep., 7, 41533, https://doi.org/10.1038/srep41533.
  10. Skulachev, M. V., Antonenko, Y. N., Anisimov, V. N., Chernyak, B. V., Cherepanov, D. A., Chistyakov, V. A., Egorov, M. V., Kolosova, N. G., Korshunova, G. A., Lyamzaev, K. G., Plotnikov, E. Y., Roginsky, V. A., Savchenko, A. Y., Severina, I. I., Severin, F. F., Shkurat, T. P., Tashlitsky, V. N., Shidlovsky, K. M., Vyssokikh, M. Y., Zamyatnin, A. A., Jr, and Skulachev, V. P. (2011) Mitochondrial-targeted plastoquinone derivatives. Effect on senescence and acute age-related pathologies, Curr. Drug Targets, 12, 800-826, https://doi.org/10.2174/138945011795528859.
  11. Kolosova, N. G., Kozhevnikova, O. S., Muraleva, N. A., Rudnitskaya, E. A., Rumyantseva, Y. V., Stefanova, N. A., Telegina, D. V., Tyumentsev, M. A., and Fursova, A. Z. (2022) SkQ1 as a tool for controlling accelerated senescence program: experiments with OXYS rats, Biochemistry (Moscow), 87, 1552-1562, https://doi.org/10.1134/S0006297922120124.
  12. Saprunova, V. B., Lelekova, M. A., Kolosova, N. G., and Bakeeva, L. E. (2012) SkQ1 slows development of age-dependent destructive processes in retina and vascular layer of eyes of Wistar and OXYS rats, Biochemistry (Moscow), 77, 648-658, https://doi.org/10.1134/S0006297912060120.
  13. Muraleva, N. A., Kozhevnikova, O. S., Zhdankina, A. A., Stefanova, N. A., Karamysheva, T. V., Fursova, A. Z., and Kolosova, N. G. (2014) The mitochondria-targeted antioxidant SkQ1 restores αB-crystallin expression and protects against AMDlike retinopathy in OXYS rats, Cell Cycle, 13, 3499-3505, https://doi.org/10.4161/15384101.2014.958393.
  14. Telegina, D. V., Kozhevnikova, O. S., Fursova, A. Z., and Kolosova, N. G. (2020) Autophagy as a target for the retinoprotective effects of the mitochondria-targeted antioxidant SkQ1, Biochemistry (Moscow), 85, 1640-1649, https://doi.org/10.1134/S0006297920120159.
  15. Muraleva, N. A., Kozhevnikova, O. S., Fursova, A. Z., and Kolosova, N. G. (2019) Suppression of AMD-like pathology by mitochondria-targeted antioxidant SkQ1 is associated with a decrease in the accumulation of amyloid β and in mTOR activity, Antioxidants, 8, 177, https://doi.org/10.3390/antiox8060177.
  16. Tyumentsev, M. A., Stefanova, N. A., Kiseleva, E. V., and Kolosova, N. G. (2018) Mitochondria with morphology characteristic for Alzheimer’s disease patients are found in the brain of OXYS rats, Biochemistry (Moscow), 83, 1083-1088, https://doi.org/10.1134/S0006297918090109.
  17. Stefanova, N. A., Ershov, N. I., and Kolosova, N. G. (2019) Suppression of Alzheimer’s disease-like pathology progression by mitochondria-targeted antioxidant SkQ1: a transcriptome profiling study, Oxid. Med. Cell. Longev., 2019, 3984906, https://doi.org/10.1155/2019/3984906.
  18. Switon, K., Kotulska, K., Janusz-Kaminska, A., Zmorzynska, J., and Jaworski, J. (2017) Molecular neurobiology of mTOR, Neuroscience, 341, 112-153, https://doi.org/10.1016/j.neuroscience.2016.11.017.
  19. Muraleva, N. A., Kolosova, N. G., and Stefanova, N. A. (2019) p38 MAPK-dependent alphaB-crystallin phosphorylation in Alzheimer’s disease-like pathology in OXYS rats, Exp. Gerontol., 119, 45-52, https://doi.org/10.1016/j.exger.2019.01.017.
  20. Muraleva, N. A., Stefanova, N. A., and Kolosova, N. G. (2020) SkQ1 suppresses the p38 MAPK signaling pathway involved in Alzheimer’s disease like pathology in OXYS rats, Antioxidants (Basel), 9, 676, https://doi.org/10.3390/antiox9080676.
  21. Muraleva, N. A., Kolosova, N. G., and Stefanova, N. A. (2021) MEK1/2-ERK pathway alterations as a therapeutic target in sporadic Alzheimer’s disease: a study in senescence-accelerated OXYS rats, Antioxidants (Basel), 10, 1058, https://doi.org/10.3390/antiox10071058.
  22. Muraleva, N. A. and Kolosova, N. G. (2023) P38 MAPK signaling in the retina: effects of aging and age-related macular degeneration, Int. J. Mol. Sci., 24, 11586, https://doi.org/10.3390/ijms241411586.
  23. Muraleva, N. A. and Kolosova, N. G. (2023) Alteration of the MEK1/2-ERK1/2 signaling pathway in the retina associated with age and development of AMD-like retinopathy, Biochemistry (Moscow), 88, 179-188, https://doi.org/10.1134/S0006297923020025.
  24. Kyosseva, S. V. (2016) Targeting MAPK signaling in age-related macular degeneration, Ophthalmol. Eye Dis., 8, 23-30, https://doi.org/10.4137/OED.S32200.
  25. Markovets, A. M., Fursova, A. Z., and Kolosova, N. G. (2011) Therapeutic action of the mitochondriatargeted antioxidant SkQ1 on retinopathy in OXYS rats linked with improvement of VEGF and PEDF gene expression, PLoS One, 6, e21682, https://doi.org/10.1371/journal.pone.0021682.
  26. Kyriakis, J. M., and Avruch, J. (2012) Mammalian MAPK signal transduction pathways activated by stress and inflammation: a 10-year update, Physiol. Rev., 92, 689-737, https://doi.org/10.1152/physrev.00028.2011.
  27. Bhutto, I., and Lutty, G. (2012) Understanding age-related macular degeneration (AMD): relationships between the photoreceptor/retinal pigment epithelium/Bruch’s membrane/choriocapillaris complex, Mol. Aspects Med., 33, 295-317, https://doi.org/10.1016/j.mam.2012.04.005.
  28. Khandhadia, S., Cherry, J., and Lotery, A. J. (2012) Age-related macular degeneration, Adv. Exp. Med. Biol., 724, 15-36, https://doi.org/10.1007/978-1-4614-0653-2_2.
  29. Blasiak, J., Pawlowska, E., Szczepanska, J., and Kaarniranta, K. (2019) Interplay between autophagy and the ubiquitin-proteasome system and its role in the pathogenesis of age-related macular degeneration, Int. J. Mol. Sci., 20, 210, https://doi.org/10.3390/ijms20010210.
  30. Kozhevnikova, O. S., Telegina, D. V., Devyatkin, V. A., and Kolosova, N. G. (2018) Involvement of the autophagic pathway in the progression of AMD-like retinopathy in senescence-accelerated OXYS rats, Biogerontology, 19, 223-235, https://doi.org/10.1007/s10522-018-9751-y.
  31. Kozhevnikova, O. S., Telegina, D. V., Tyumentsev, M. A., and Kolosova, N. G. (2019) Disruptions of autophagy in the rat retina with age during the development of age-related-macular-degeneration-like retinopathy, Int. J. Mol. Sci., 20, 4804, https://doi.org/10.3390/ijms20194804.
  32. Kaarniranta, K., Blasiak, J., Liton, P., Boulton, M., Klionsky, D. J., and Sinha, D. (2023) Autophagy in age-related macular degeneration, Autophagy, 19, 388-400, https://doi.org/10.1080/15548627.2022.2069437.
  33. Tyumentsev, M. A., Stefanova, N. A., Muraleva, N. A., Rumyantseva, Y. V., Kiseleva, E., Vavilin, V. A., and Kolosova, N. G. (2018) Mitochondrial dysfunction as a predictor and driver of Alzheimer’s disease-like pathology in OXYS rats, J. Alzheimer’s Dis., 63, 1075-1088, https://doi.org/10.3233/JAD-180065.
  34. Kolosova, N. G., Tyumentsev, M. A., Muraleva, N. A., Kiseleva, E., Vitovtov, A. O., and Stefanova, N. A. (2017) Antioxidant SkQ1 alleviates signs of Alzheimer’s disease-like pathology in old OXYS rats by reversing mitochondrial deterioration, Curr. Alzheimer’s Res., 14, 1283-1292, https://doi.org/10.2174/1567205014666170621111033.
  35. King, R. E., Kent, K. D., and Bomser, J. A. (2005) Resveratrol reduces oxidation and proliferation of human retinal pigment epithelial cells via extracellular signal-regulated kinase inhibition, Chem. Biol. Interac., 151, 143-149, https://doi.org/10.1016/j.cbi.2004.11.003.
  36. Huang, W. Y., Wu, H., Li, D. J., Song, J. F., Xiao, Y. D., Liu, C. Q., Zhou, J. Z., and Sui, Z. Q. (2018) Protective effects of blueberry anthocyanins against H2O2-induced oxidative injuries in human retinal pigment epithelial cells, J. Agric. Food Chem., 66, 1638-1648, https://doi.org/10.1021/acs.jafc.7b06135.
  37. Milanini, J., Viñals, F., Pouysségur, J., and Pagès, G. (1998) p42/p44 MAP kinase module plays a key role in the transcriptional regulation of the vascular endothelial growth factor gene in fibroblasts, J. Biol. Chem., 273, 18165-18172, https://doi.org/10.1074/jbc.273.29.18165.
  38. Pagès, G., Berra, E., Milanini, J., Levy, A. P., and Pouysségur, J. (2000) Stress-activated protein kinases (JNK and p38/HOG) are essential for vascular endothelial growth factor mRNA stability, J. Biol. Chem., 275, 26484-26491, https://doi.org/10.1074/jbc.M002104200.
  39. Bhutto, I. A., McLeod, D. S., Hasegawa, T., Kim, S. Y., Merges, C., Tong, P., and Lutty, G. A. (2006) Pigment epithelium-derived factor (PEDF) and vascular endothelial growth factor (VEGF) in aged human choroid and eyes with age-related macular degeneration, Exp. Eye Res., 82, 99-110, https://doi.org/10.1016/j.exer.2005.05.007.

Copyright (c) 2024 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies