Opposing effects of CRABP1 and CRABP2 homologs on the proliferation of breast cancer cells and their sensitivity to retinoic acid

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Resistance of tumor cells to retinoic acid (RA), a promising therapeutic agent, is the major factor limiting the use of RA in clinical practice. The mechanisms of RA resistance are still poorly understood. Cellular Retinoic Acid Binding Proteins, CRABP1 and CRABP2, are essential mediators of RA signaling, but the role of the two CRABP homologs in regulating cellular sensitivity to RA has not been well studied. In addition, the effects of CRABP1 and CRABP2 on cell proliferation have not been compared. Here, using a broad panel of breast cancer cell lines with different levels of RA sensitivity/resistance, we show for the first time that in RA-sensitive cells, CRABP1 expression is restricted by methylation and protein levels are highly variable. In moderately RA-resistant lines, a high level of CRABP1 is observed both at the mRNA and protein levels, unchanged by inhibition of DNA methylation. The maximally resistant cell lines are characterized by complete repression of CRABP1 implemented at transcriptional and posttranscriptional levels, and exogenous expression of each of CRABP homologs has no effect on the studied characteristics. CRABP1 and CRABP2 proteins have opposing effects on proliferation and sensitivity to RA. Specifically, in initially RA-sensitive cells CRABP1 stimulates and CRABP2 reduces proliferation and resistance to RA, while in more resistant cells the role of each homolog in both of these indications is reversed. Overall, we have shown for the first time that CRABP proteins exert different effects on the growth and sensitivity to RA of breast cancer cells (stimulation, suppression, or no effect) depending on the baseline level of RA-sensitivity, with the effects of CRABP1 and CRABP2 homologs on the studied properties always being opposite.

About the authors

A. D Enikeev

N.N. Blokhin National Medical Research Center of Oncology of Ministry of Health of Russian Federation

115522 Moscow, Russia

P. M Abramov

N.N. Blokhin National Medical Research Center of Oncology of Ministry of Health of Russian Federation

115522 Moscow, Russia

D. S Elkin

N.N. Blokhin National Medical Research Center of Oncology of Ministry of Health of Russian Federation

115522 Moscow, Russia

A. V Komelkov

N.N. Blokhin National Medical Research Center of Oncology of Ministry of Health of Russian Federation

115522 Moscow, Russia

A. A Belyaeva

N.N. Blokhin National Medical Research Center of Oncology of Ministry of Health of Russian Federation

115522 Moscow, Russia

D. M Sylantieva

Pirogov Russian National Research Medical University

117997 Moscow, Russia

E. M Tchevkina

N.N. Blokhin National Medical Research Center of Oncology of Ministry of Health of Russian Federation

Email: tchevkina@mail.ru
115522 Moscow, Russia

References

  1. Yilmaz, M., Kantarjian, H., and Ravandi, F. (2021) Acute promyelocytic leukemia current treatment algorithms, Blood Cancer J., 11, 123, doi: 10.1038/s41408-021-00514-3.
  2. Siddikuzzaman, Guruvayoorappan, C., and Berlin Grace, V. M. (2011) All trans retinoic acid and cancer, Immunopharmacol. Immunotoxicol., 33, 241-249, doi: 10.3109/08923973.2010.521507.
  3. Choi, Y., Kim, S. Y., Kim, S. H., Yang, J., Park, K., and Byun, Y. (2003) Inhibition of tumor growth by biodegradable microspheres containing all-trans-retinoic acid in a human head-and-neck cancer xenograft, Int. J. Cancer, 107, 145-148, doi: 10.1002/ijc.11354.
  4. Reynolds, C. P., Matthay, K. K., Villablanca, J. G., and Maurer, B. J. (2003) Retinoid therapy of high-risk neuroblastoma, Cancer Lett., 197, 185-192, doi: 10.1016/S0304-3835(03)00108-3.
  5. David, M., Hodak, E., and Lowe, N. J. (1988) Adverse effects of retinoids, Med. Toxicol. Adverse Drug Exp., 3, 273-288, doi: 10.1007/BF03259940.
  6. Campos, B., Weisang, S., Osswald, F., Ali, R., Sedlmeier, G., Bageritz, J., Mallm, J. P., Hartmann, C., von Deimling, A., Popanda, O., Goidts, V., Plass, C., Unterberg, A., Schmezer, P., Burhenne, J., and Herold-Mende, C. (2015) Retinoid resistance and multifaceted impairment of retinoic acid synthesis in glioblastoma, Glia, 63, 1850-1859, doi: 10.1002/glia.22849.
  7. Schug, T. T., Berry, D. C., Shaw, N. S., Travis, S. N., and Noy, N. (2007) Opposing effects of retinoic acid on cell growth result from alternate activation of two different nuclear receptors, Cell, 129, 723-733, doi: 10.1016/j.cell.2007.02.050.
  8. Veerkamp, J. H., and Maatman, R. G. (1995) Cytoplasmic fatty acid-binding proteins: their structure and genes, Prog. Lipid Res., 34, 17-52, doi: 10.1016/0163-7827(94)00005-7.
  9. Dong, D., Ruuska, S. E., Levinthal, D. J., and Noy, N. (1999) Distinct roles for cellular retinoic acid-binding proteins I and II in regulating signaling by retinoic acid, J. Biol. Chem., 274, 23695-23698, doi: 10.1074/JBC.274.34.23695.
  10. Jing, Y., Waxman, S., and Mira-y-Lopez, R. (1997) The cellular retinoic acid binding protein II is a positive regulator of retinoic acid signaling in breast cancer cells, Cancer Res., 57, 1668-1672.
  11. Tang, X.-H., Vivero, M., and Gudas, L. J. (2008) Overexpression of CRABPI in suprabasal keratinocytes enhances the proliferation of epidermal basal keratinocytes in mouse skin topically treated with all-trans retinoic acid, Exp. Cell Res., 314, 38-51, doi: 10.1016/j.yexcr.2007.07.016.
  12. Persaud, S. D., Lin, Y. W., Wu, C. Y., Kagechika, H., and Wei, L. N. (2013) Cellular retinoic acid binding protein I mediates rapid non-canonical activation of ERK1/2 by all-trans retinoic acid, Cell. Signalling, 25, 19-25, doi: 10.1016/j.cellsig.2012.09.002.
  13. Boylan, J. F., and Gudas, L. J. (1992) The level of CRABP-I expression influences the amounts and types of all-trans-retinoic acid metabolites in F9 teratocarcinoma stem cells, J. Biol. Chem., 267, 21486-21491, doi: 10.1016/s0021-9258(19)36635-9.
  14. Napoli, J. L. (1999) Interactions of retinoid binding proteins and enzymes in retinoid metabolism, Biochim. Biophys. Acta, 1440, 139-162, doi: 10.1016/S1388-1981(99)00117-1.
  15. Boylan, J. F., and Gudas, L. J. (1991) Overexpression of the cellular retinoic acid binding protein-I (CRABP-I) results in a reduction in differentiation-specific gene expression in F9 teratocarcinoma cells, J. Cell Biol., 112, 965-979, doi: 10.1083/jcb.112.5.965.
  16. Liu, R. Z., Garcia, E., Glubrecht, D. D., Poon, H. Y., Mackey, J. R., and Godbout, R. (2015) CRABP1 is associated with a poor prognosis in breast cancer: adding to the complexity of breast cancer cell response to retinoic acid, Mol. Cancer, 14, 129, doi: 10.1186/s12943-015-0380-7.
  17. Yang, Q., Wang, R., Xiao, W., Sun, F., Yuan, H., and Pan, Q. (2016) Cellular retinoic acid binding protein 2 is strikingly downregulated in human esophageal squamous cell carcinoma and functions as a tumor suppressor, PLoS One, 11, e0148381, doi: 10.1371/journal.pone.0148381.
  18. Gupta, A., Williams, B. R. G., Hanash, S. M., and Rawwas, J. (2006) Cellular retinoic acid-binding protein II is a direct transcriptional target of MycN in neuroblastoma, Cancer Res., 66, 8100-8108, doi: 10.1158/0008-5472.CAN-05-4519.
  19. Liu, R. Z., Li, S., Garcia, E., Glubrecht, D. D., Yin Poon, H., Easaw, J. C., and Godbout, R. (2016) Association between cytoplasmic CRABP2, altered retinoic acid signaling, and poor prognosis in glioblastoma, Glia, 64, 963-976, doi: 10.1002/glia.22976.
  20. Chen, Q., Tan, L., Jin, Z., Liu, Y., and Zhang, Z. (2020) Downregulation of CRABP2 inhibit the tumorigenesis of hepatocellular carcinoma in vivo and in vitro, BioMed Res. Int., 2020, 3098327, doi: 10.1155/2020/3098327.
  21. Feng, X., Zhang, M., Wang, B., Zhou, C., Mu, Y., Li, J., Liu, X., Wang, Y., Song, Z., and Liu, P. (2019) CRABP2 regulates invasion and metastasis of breast cancer through hippo pathway dependent on ER status, J. Exp. Clin. Cancer Res., 38, 361, doi: 10.1186/s13046-019-1345-2.
  22. Favorskaya, I., Kainov, Y., Chemeris, G., Komelkov, A., Zborovskaya, I., and Tchevkina, E. (2014) Expression and clinical significance of CRABP1 and CRABP2 in non-small cell lung cancer, Tumor Biol., 35, 10295-10300, doi: 10.1007/s13277-014-2348-4.
  23. Lu, Y., Lemon, W., Liu, P. Y., Yi, Y., Morrison, C., Yang, P., Sun, Z., Szoke, J., Gerald, W. L., Watson, M., Govindan, R., and You, M. (2006) A gene expression signature predicts survival of patients with stage I non-small cell lung cancer, PLoS Med., 3, 2229-2243, doi: 10.1371/journal.pmed.0030467.
  24. Hawthorn, L., Stein, L., Varma, R., Wiseman, S., Loree, T., and Tan, D. F. (2004) TIMP1 and SERPIN-A overexpression and TFF3 and CRABP1 underexpression as biomarkers for papillary thyroid carcinoma, Head Neck, 26, 1069-1083, doi: 10.1002/hed.20099.
  25. Tanaka, K., Imoto, I., Inoue, J., Kozaki, K., Tsuda, H., Shimada, Y., Aiko, S., Yoshizumi, Y., Iwai, T., Kawano, T., and Inazawa, J. (2007) Frequent methylation-associated silencing of a candidate tumor-suppressor, CRABP1, in esophageal squamous-cell carcinoma, Oncogene, 26, 6456-6468, doi: 10.1038/sj.onc.1210459.
  26. Huang, Y., De la Chapelle, A., and Pellegata, N. S. (2003) Hypermethylation, but not LOH, is associated with the low expression of MT1G and CRABP1 in papillary thyroid carcinoma, Int. J. Cancer, 104, 735-744, doi: 10.1002/ijc.11006.
  27. Blaese, M. A., Santo-Hoeltje, L., and Rodemann, H. P. (2003) CRABP I expression and the mediation of the sensitivity of human tumour cells to retinoic acid and irradiation, Int. J. Radiat. Biol., 79, 981-991, doi: 10.1080/09553000310001632949.
  28. Choi, W.-S., Liu, R.-Z., and Godbout, R. (2021) Abstract 1401: MYC mediates retinoic acid resistance by suppressing cellular retinoic acid-binding protein (CRABP2) transcription in HER2-enriched breast cancers, Cancer Res., 81, 1401-1401, doi: 10.1158/1538-7445.am2021-1401.
  29. Enikeev, A. D., Komelkov, A. V., Axelrod, M. E., Galetsky, S. A., Kuzmichev, S. A., and Tchevkina, E. M. (2021) CRABP1 and CRABP2 protein levels correlate with each other but do not correlate with sensitivity of breast cancer cells to retinoic acid, Biochemistry (Moscow), 86, 217-229, doi: 10.1134/S0006297921020103.
  30. Kainov, Y., Favorskaya, I., Delektorskaya, V., Chemeris, G., Komelkov, A., Zhuravskaya, A., Trukhanova, L., Zueva, E., Tavitian, B., Dyakova, N., Zborovskaya, I., and Tchevkina, E. (2014) CRABP1 provides high malignancy of transformed mesenchymal cells and contributes to the pathogenesis of mesenchymal and neuroendocrine tumors, Cell Cycle, 13, 1530-1539, doi: 10.4161/cc.28475.
  31. Enikeev, A. D., Komelkov, A. V., Axelrod, M. E., Galetsky, S. A., and Tchevkina, E. M. (2020) Effect of CRABP1 expression on the proliferation and the sensitivity to retionoic acid of breast cancer cells of different origin, Usp. Mol. Oncol., 7, 46-50, doi: 10.17650/2313-805X-2020-7-4-46-50.
  32. Vreeland, A. C., Levi, L., Zhang, W., Berry, D. C., and Noy, N. (2014) Cellular retinoic acid-binding protein 2 inhibits tumor growth by two distinct mechanisms, J. Biol. Chem., 289, 34065-34073, doi: 10.1074/jbc.M114.604041.
  33. Chen, A. C., Yu, K., Lane, M. A., and Gudas, L. J. (2003) Homozygous deletion of the CRABPI gene in AB1 embryonic stem cells results in increased CRABPII gene expression and decreased intracellular retinoic acid concentration, Arch. Biochem. Biophys., 411, 159-173, doi: 10.1016/S0003-9861(02)00732-4.
  34. Vaessen, M. J., Meijers, J. H. C., Bootsma, D., and Van Kessel, G. (1990) The cellular retinoic-acid-binding protein is expressed in tissues associated with retinoic-acid-induced malformations, Development, 110, 371-378, doi: 10.1242/dev.110.2.371.
  35. Perez-Castro, A. V., Tran, V. T., and Nguyen-Huu, M. C. (1993) Defective lens fiber differentiation and pancreatic tumorigenesis caused by ectopic expression of the cellular retinoic acid-binding protein I, Development, 119, 363-375, doi: 10.1242/dev.119.2.363.
  36. Pavone, M. E., Reierstad, S., Sun, H., Milad, M., Bulun, S. E., and Cheng, Y. H. (2010) Altered retinoid uptake and action contributes to cell survival in endometriosis, J. Clin. Endocrinol. Metab., 95, E300-E309, doi: 10.1210/jc.2010-0459.
  37. Zhang, W., Levi, L., Banerjee, P., Jain, M., and Noy, N. (2015) Kruppel-like factor 2 suppresses mammary carcinoma growth by regulating retinoic acid signaling, Oncotarget, 6, 35830-35842, doi: 10.18632/oncotarget.5767.
  38. Tchevkina, E. M. (2017) Retinoic acid binding proteins and cancer: similarity or polarity? Cancer Ther. Oncol. Int. J., 8, 555733, doi: 10.19080/ctoij.2017.08.555733.
  39. Еникеев А. Д., Комельков А. В., Беляева А. А., Галецкий С. А., Чевкина Е. М. (2023) Экспрессия белка CRABP1 связана с уровнем резистентности к ретиноевой кислоте клеток злокачественных опухолей различного происхождения, Рецепторы Внутриклет. Сигнал., 2, 668-675.
  40. Budyak, I. L., Krishnan, B., Marcelino-Cruz, A. M., Ferrolino, M. C., Zhuravleva, A., and Gierasch, L. M. (2013) Early folding events protect aggregation-prone regions of a β-rich protein, Structure, 21, 476-485, doi: 10.1016/j.str.2013.01.013.
  41. Ferrolino, M. C., Zhuravleva, A., Budyak, I. L., Krishnan, B., and Gierasch, L. M. (2013) Delicate balance between functionally required flexibility and aggregation risk in a β-rich protein, Biochemistry, 52, 8843-8854, doi: 10.1021/bi4013462.
  42. Ignatova, Z., and Gierasch, L. M. (2004) Monitoring protein stability and aggregation in vivo by real-time fluorescent labeling, Proc. Natl. Acad. Sci. USA, 101, 523-528, doi: 10.1073/pnas.0304533101.
  43. Thakur, A. K., Meng, W., and Gierasch, L. M. (2018) Local and non-local topological information in the denatured state ensemble of a β-barrel protein, Protein Sci., 27, 2062-2072, doi: 10.1002/pro.3516.
  44. Donato, L. J., Suh, J. H., and Noy, N. (2007) Suppression of mammary carcinoma cell growth by retinoic acid: the cell cycle control gene Btg2 is a direct target for retinoic acid receptor signaling, Cancer Res., 67, 609-615, doi: 10.1158/0008-5472.CAN-06-0989.
  45. Vreeland, A. C., Yu, S., Levi, L., de Barros Rossetto, D., and Noy, N. (2014) Transcript stabilization by the RNA-binding protein HuR is regulated by cellular retinoic acid-binding protein 2, Mol. Cell. Biol., 34, 2135-2146, doi: 10.1128/mcb.00281-14.
  46. Делекторская В. В., Чемерис Г. Ю., Каинов Я. А., Козлов Н. А., Зборовская И. Б. (2013) Экспрессия белка, связывающего ретиноевую кислоту, и пролиферативная активность клеток в нейроэндокринных опухолях поджелудочной железы, Мол. Мед., 2013, 38-43.
  47. Строганова А. М., Чемерис Г. Ю., Чевкина Е. М., Сендерович А. И., Карселадзе А. И. (2016) Белок CRABP1 и его роль в процессе дифференцировки нейробластомы, Вестник РОНЦ им. Н. Н. Блохина МЗ РФ, 27, 157-164.
  48. Celestino, R., Nome, T., Pestana, A., Hoff, A. M., Gonçalves, A. P., Pereira, L., Cavadas, B., Eloy, C., Bjøro, T., Sobrinho-Simões, M., Skotheim, R. I., and Soares, P. (2018) CRABP1, C1QL1 and LCN2 are biomarkers of differentiated thyroid carcinoma, and predict extrathyroidal extension, BMC Cancer, 18, 68, doi: 10.1186/s12885-017-3948-3.
  49. Ahlquist, T., Lind, G. E., Costa, V. L., Meling, G. I., Vatn, M., Hoff, G. S., Rognum, T. O., Skotheim, R. I., Thiis-Evensen, E., and Lothe, R. A. (2008) Gene methylation profiles of normal mucosa, and benign and malignant colorectal tumors identify early onset markers, Mol. Cancer, 7, 94, doi: 10.1186/1476-4598-7-94.
  50. Noy, N., Morgan, E., and Kannan-Thulasiraman, P. (2010) Involvement of fatty acid binding protein 5 and PPAR β/δ in prostate cancer cell growth, PPAR Res., 2010, 234629, doi: 10.1155/2010/234629.
  51. Levi, L., Lobo, G., Doud, M. K., Von Lintig, J., Seachrist, D., Tochtrop, G. P., and Noy, N. (2013) Genetic ablation of the fatty acid-binding protein FABP5 suppresses HER2-induced mammary tumorigenesis, Cancer Res., 73, 4770-4780, doi: 10.1158/0008-5472.CAN-13-0384.
  52. Enikeev, A. D., Komelkov, A. V., Elkina, N. V., Akselrod, M. E., Kuzmichev, S. A., and Tchevkina, E. M. (2022) Resistance of breast cancer cells to all-trans retinoic acid is associated with a decrease in the basal level of nuclear receptor RARa expression and induction of cytochrome CYP26A1 and CYP26B1 expression, Usp. Mol. Oncol., 9, 66-78, doi: 10.17650/2313-805X-2022-9-2-66-78.

Copyright (c) 2023 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies