Impact of lipid matrix composition on the activity of membranotropic enzymes galactonolactone oxidase from Trypanosoma cruzi and L-galactono-1,4-lactone dehydrogenase from Arabidopsis thaliana in the system of reverse micelles

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The study of many membrane enzymes in an aqueous medium is difficult due to the loss of their catalytic activity, which makes it necessary to use membrane-like systems, such as reverse micelles of surfactants in nonpolar organic solvents. However, it should be taken into account that micelles are a simplified model of natural membranes, since membranes contain many different components, a significant part of which are phospholipids. In this work, we studied the impact of the main phospholipids, phosphatidylcholine (PC) and phosphatidylethanolamine (PE), on the activity of membrane enzymes using galactonolactone oxidase from Trypanosoma cruzi (TcGAL) and L-galactono-1,4-lactone dehydrogenase from Arabidopsis thaliana (AtGALDH) as an examples. Effect of the structure (and charge) of the micelle-forming surfactant itself on the activity of both enzymes has been studied using an anionic surfactant (AOT), a neutral surfactant (Bridge-96), and a mixture of cationic and anionic surfactants (CTAB and AOT) as an examples. The pronounced effect of addition of PC and PE lipids on the activity of AtGALDH and TcGAL has been detected, which manifests as increase in catalytic activity and significant change in the activity profile. This can be explained by formation of the tetrameric form of enzymes and/or protein-lipid complexes. By varying composition and structure of the micelle-forming surfactants (AOT, CTAB, and Brijdge-96 and their combinations) it has been possible to change catalytic properties of the enzyme due to effect of the surfactant on the micelle size, lipid mobility, charge, and rigidity of the matrix itself.

About the authors

A. A Chudin

Faculty of Chemistry, Lomonosov Moscow State University

119991 Moscow, Russia

E. V Kudryashova

Faculty of Chemistry, Lomonosov Moscow State University

Email: helenakoudriachova@yandex.ru
119991 Moscow, Russia

References

  1. Kudryashova, E. V., Leferink, N. G. H., Slot, I. G. M., and Van Berkel, W. J. H. (2011) Galactonolactone oxidoreductase from Trypanosoma cruzi employs a FAD cofactor for the synthesis of vitamin C, Biochim. Biophys. Acta, 1814, 545-552, doi: 10.1016/j.bbapap.2011.03.001.
  2. Quiñones, W., Acosta, H., Gonçalves, C. S., Motta, M. C. M., Gualdrón-López, M., and Michels, P. A. M. (2020) Structure, properties, and function of glycosomes in Trypanosoma cruzi, Front. Cell. Infect. Microbiol., 10, 25, doi: 10.3389/fcimb.2020.00025.
  3. Wilkinson, S. R., Prathalingam, S. R., Taylor, M. C., Horn, D., and Kelly, J. M. (2005) Vitamin C biosynthesis in trypanosomes: a role for the glycosome, Proc. Natl. Acad. Sci. USA, 102, 11645-11650, doi: 10.1073/pnas.0504251102.
  4. Logan, F. J., Taylor, M. C., Wilkinson, S. R., Kaur, H., and Kelly, J. M. (2007) The terminal step in vitamin C biosynthesis in Trypanosoma cruzi is mediated by a FMN-dependent galactonolactone oxidase, Biochem. J., 407, 419-426, doi: 10.1042/BJ20070766.
  5. Chudin, A. A., and Kudryashova, E. V. (2022) Improved enzymatic assay and inhibition analysis of redox membranotropic enzymes, AtGALDH and TcGAL, using a reversed micellar system, Analytica, 3, 36-53, doi: 10.3390/analytica3010004.
  6. Leferink, N. G. H., Heuts, D. P. H. M., Fraaije, M. W., and van Berkel, W. J. H. (2008) The growing VAO flavoprotein family, Arch. Biochem. Biophys., 474, 292-301, doi: 10.1016/j.abb.2008.01.027.
  7. Хмельницкий Ю. Л., Левашов А. В., Клячко И. Л., Мартинек К. (1984) Микрогетерогенная среда для химических (ферментативных) реакций на основе коллоидного раствора воды в органическом растворителе, Успехи химии, 53, 545-565.
  8. Klyachko, N. L., Shchedrina, V. A., Efimov, A. V., Kazakov, S. V., Gazaryan, I. G., Kristal, B. S., and Brown, A. M. (2005) pH-dependent substrate preference of pig heart lipoamide dehydrogenase varies with oligomeric state: response to mitochondrial matrix acidification, J. Biol. Chem., 280, 16106-16114, doi: 10.1074/jbc.M414285200.
  9. Kudryashova, E. V., Bronza, V. L., Vinogradov, A. A., Kamyshny, A., Magdassi, S., and Levashov, A. V. (2011) Regulation of acid phosphatase in reverse micellar system by lipids additives: structural aspects, J. Colloid Interface Sci., 353, 490-497, doi: 10.1016/j.jcis.2010.09.072.
  10. De Azevedo-Martins, A. C., Ocaña, K., de Souza, W., de Vasconcelos, A. T. R., Teixeira, M. M. G., Camargo, E. P., Alves, J. M. P., and Motta, M. C. M. (2022) The importance of glycerophospholipid production to the mutualist symbiosis of trypanosomatids, Pathogens, 11, 41, doi: 10.3390/pathogens11010041.
  11. Oliveira, M. M., Timm, S. L., and Costa, S. C. G. (1977) Lipid composition of Trypanosoma cruzi, Comp. Biochem. Physiol. B Comp. Biochem., 58, 195-199, doi: 10.1016/0305-0491(77)90109-2.
  12. Urbina, J. A., Marchan, E., Lazardi, K., Visbal, G., Apitz-Castro, R., Gil, F., Aguirre, T., Piras, M. M., and Piras, R. (1993) Inhibition of phosphatidylcholine biosynthesis and cell proliferation in Trypanosoma cruz by ajoene, an antiplatelet compound isolated from garlic, Biochem. Pharmacol., 45, 2381-2387, doi: 10.1016/0006-2952(93)90217-k.
  13. Shome, A., Roy, S., and Kumar, P. (2007) Nonionic surfactants: a key to enhance the enzyme activity at cationic reverse micellar interface, Langmuir, 23, 4130-4136, doi: 10.1021/la062804j.
  14. Leferink, N. G. H., van den Berg, W. A. M., and van Berkel, W. J. H. (2008) L-Galactono-γ-lactone dehydrogenase from Arabidopsis thaliana, a flavoprotein involved in vitamin C biosynthesis, FEBS J., 275, 713-726, doi: 10.1111/j.1742-4658.2007.06233.x.
  15. Хмельницкий Ю. Л., Левашов А. В., Клячко Н. Л., Черняк В. Я., Мартинек К. (1982) Ферменты, включенные в обращенные мицеллы поверхностно-активных веществ в органических растворителях. Исследование системы белок-аэрозоль OT-H2O-октан методом седиментационного анализа, Биохимия, 47, 86-99.
  16. Levashov, A. V., Khmelnitsky, Y. L., Klyachko, N. L., Chernyak, V. Y., and Martinek, K. (1981) Ultracantrifugation of reversed micelles in organic solvent: new approach to determination of molecular weight and effective size of proteins, Anal. Biochem., 118, 42-46, doi: 10.1016/0003-2697(81)90153-6.
  17. Краснопевцева М. К., Белик В. П., Богданов А. А., Семенова И. В., Смолин А. Г., Васютинский О. С. (2020) Определение времен затухания и анизотропии поляризованной флуоресценции флавинадениндинуклеотида с субнаносекундным разрешением, Письма ЖТФ, 46, 43-46, doi: 10.21883/PJTF.2020.12.49528.18234.
  18. Kudryashova, E. V., Visser, A. J. W. G., and van Berkel, W. J. H. (2008) Monomer formation and function of p-Hydroxybenzoate hydroxylase in reverse micelles and dimethylsulfoxide/water mixtures, ChemBioChem, 9, 413-419, doi: 10.1002/cbic.200700267.
  19. Levashov, A. V. and Klyachko, N. L. (2001) Reverse micellar systems, Methods Biotechnol., 15, 575-586, doi: 10.1385/1-59259-112-4:575.
  20. Tsui, F. C., Ojcius, D. M., and Hubbell, W. L. (1986) The intrinsic pKa values for phosphatidylserine and phosphatidylethanolamine in phosphatidylcholine host bilayers, Biophys. J., 49, 459-468, doi: 10.1016/S0006-3495(86)83655-4.
  21. Levashov, A. V., Ugolnikova, A. V., Ivanov, M. V., and Klyachko, N. L. (1997) Formation of homo- and heterooligomeric supramolecular structures by D-glyceraldehyde-3-phosphate dehydrogenase and lactate dehydrogenase in reversed micelles of aerosol OT in octane, Biochem. Mol. Biol. Int., 42, 527-534, doi: 10.1080/15216549700202931.
  22. Chatterley, A. S., Laity, P., Holland, C., Weidner, T., Woutersen, S., and Giubertoni, G. (2022) Broadband multidimensional spectroscopy identifies the amide II vibrations in silkworm films, Molecules, 27, doi: 10.3390/molecules27196275.
  23. Кудряшова Е. В., Гладилин А. К., Левашов А. В. (2002) Белки в надмолекулярных ансамблях: исследование структуры методом разрешенно-временной флуоресцентной анизотропии, Усп. биол. химии, 42, 257-294.
  24. Jonas, A., and Drengler, S. M. (1977) Fluorescence polarization studies of human and rhesus a-i apolipoproteins and their complexes with phosphatidylcholine, Biochem. Biophys. Res. Commun., 78, 1424-1430, doi: 10.1016/0006-291x(77)91451-6.
  25. Lolkema, J. S., and Slotboom, D. J. (2015) The Hill analysis and co-ion-driven transporter kinetics, J. Gen. Physiol., 145, 565-574, doi: 10.1085/jgp.201411332.
  26. Azimi, M., Nafissi-Varcheh, N., Faramarzi, M. A., and Aboofazeli, R. (2016) Laccase activity in CTAB-based water-in-oil microemulsions, Iran J. Pharm. Res., 15, 441-452.
  27. Kabanov, A. V., Nametkin, S. N., and Levashov, A. V. (1990) The principal difference in regulation of the catalytic activity of water-soluble and membrane forms of enzymes in reversed micelles. γ-Glutamyltransferase and aminopeptidase, FEBS Lett., 267, 236-238, doi: 10.1016/0014-5793(90)80933-a.
  28. Yang, Z., and Robb, D. A. (2005) Tyrosinase activity in reversed micelles, Biocatal. Biotransform., 23, 423-430, doi: 10.1080/10242420500387433.
  29. Gupte, A., Nagarajan, R., and Kilara, A. (1995) Enzymatic oxidation of cholesterol in reverse micelles, Ind. Eng. Chem. Res., 34, 2910-2922, doi: 10.1021/ie00047a045.
  30. Чудин А. А., Злотников И. Д., Крылов С. С., Семенов В. В., Кудряшова Е. В. (2023) Ингибиторы галактонолактоноксидазы из Trypanosoma cruzi на основе аллилполиалкоксибензолов, Биохимия, 88, 97-109, doi: 10.31857/S0320972523010074.

Copyright (c) 2023 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies