Serotonin receptors - a potential target for the treatment of Alzheimer’s disease

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Alzheimer’s disease (AD) is the most common cause of dementia worldwide, having an increasing impact on aging societies. It is known that the serotonin (5-HT) system of the brain, in addition to its critical role in the control of various physiological functions and behaviors, is involved in the regulation of migration, proliferation, differentiation, maturation and programmed death of neurons. At the same time, increasing evidence indicates the involvement of 5-HT neurotransmission in the mechanisms underlying the formation of insoluble aggregates of β-amyloid and tau protein, which are the main histopathological signs of AD. In this review, we focused our attention on the available data on the participation of various 5-HT receptors and the intracellular signaling cascades induced by them in pathological processes leading to the development of AD. First of all, this concerns information about the involvement of 5-HT receptors in the mechanisms of protein aggregation in AD, which indicate that specific changes in the function of certain 5-HT receptors or associated intracellular signal transduction mediators prevent the accumulation of β-amyloid plaques and neurofibrillary tau protein tangles. Based on the accumulated experimental data, it can be assumed that the use of 5-HT receptors as new drug targets may not only be useful for improving cognitive performance in AD, but will also play an important role in treating the causes of AD-related dementia.

Sobre autores

D. Eremin

Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences

Email: dima.969696@mail.ru
630090 Novosibirsk, Russia

E. Kondaurova

Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences

630090 Novosibirsk, Russia

A. Rodny

Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences

630090 Novosibirsk, Russia

K. Molobekova

Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences

630090 Novosibirsk, Russia

D. Kudlay

I. M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University)

119991 Moscow, Russia

V. Naumenko

Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences

630090 Novosibirsk, Russia

Bibliografia

  1. Querfurth, H. W., and LaFerla, F. M. (2010) Alzheimer's disease, New Eng. J. Med., 362, 329-344, doi: 10.1056/NEJMra0909142.
  2. Selkoe, D. J. (2004) Alzheimer disease: mechanistic understanding predicts novel therapies, Ann. Int. Med., 140, 627-638, doi: 10.7326/0003-4819-140-8-200404200-00047.
  3. Tiwari, S., Atluri, V., Kaushik, A., Yndart, A., and Nair, M. (2019) Alzheimer's disease: pathogenesis, diagnostics, and therapeutics, Int. J. Nanomed., 14, 5541-5554, doi: 10.2147/IJN.S200490.
  4. Cacace, R., Sleegers, K., and Van Broeckhoven, C. (2016) Molecular genetics of early-onset Alzheimer's disease revisited, Alzheimers Dement., 12, 733-748, doi: 10.1016/j.jalz.2016.01.012.
  5. Bettens, K., Sleegers, K., and Van Broeckhoven, C. (2010) Current status on Alzheimer's disease molecular genetics: from past, to present, to future, Human Mol. Genet., 19, R4-R11, doi: 10.1093/hmg/ddq142.
  6. Atri, A., Goldfarb, D., Sheard, S., and Shaughnessy, L. (2019) Current and emerging solutions to challenges in the management of Alzheimer's disease, J. Clin. Psychiatry, 80, 6, doi: 10.4088/JCP.MS18002AH3C.
  7. Pollock, N. J., Mirra, S. S., Binder, L. I., Hansen, L. A., and Wood, J. G. (1986) Filamentous aggregates in Pick's disease, progressive supranuclear palsy, and Alzheimer's disease share antigenic determinants with microtubule-associated protein, tau, Lancet, 2, 1211, doi: 10.1016/s0140-6736(86)92212-9.
  8. Grundke-Iqbal, I., Iqbal, K., Tung, Y. C., Quinlan, M., Wisniewski, H. M., and Binder, L. I. (1986) Abnormal phosphorylation of the microtubule-associated protein tau (tau) in Alzheimer cytoskeletal pathology, Proc. Natl. Acad. Sci. USA, 83, 4913-4917, doi: 10.1073/pnas.83.13.4913.
  9. Kosik, K. S., Joachim, C. L., and Selkoe, D. J. (1986) Microtubule-associated protein tau (tau) is a major antigenic component of paired helical filaments in Alzheimer disease, Proc. Natl. Acad. Sci. USA, 83, 4044-4048, doi: 10.1073/pnas.83.11.4044.
  10. Brion, J. P., Couck, A. M., Passareiro, E., and Flament-Durand, J. (1985) Neurofibrillary tangles of Alzheimer's disease: an immunohistochemical study, J. Submicrosc. Cytol., 17, 89-96.
  11. Glenner, G. G., and Wong, C. W. (1984) Alzheimer's disease and Down's syndrome: sharing of a unique cerebrovascular amyloid fibril protein, Biochem. Biophys. Res. Commun., 122, 1131-1135, doi: 10.1016/0006-291x(84)91209-9.
  12. Quiedeville, A., Boulouard, M., Hamidouche, K., Da Silva Costa-Aze, V., Nee, G., Rochais, C., Dallemagne, P., Fabis, F., Freret, T., and Bouet, V. (2015) Chronic activation of 5-HT4 receptors or blockade of 5-HT6 receptors improve memory performances, Behav. Brain Res., 293, 10-17, doi: 10.1016/j.bbr.2015.07.020.
  13. Jahreis, K., Bruge, A., Borsdorf, S., Muller, F. E., Sun, W., Jia, S., Kang, D. M., Boesen, N., Shin, S., Lim, S., Koroleva, A., Satala, G., Bojarski, A. J., Rakusa, E., Fink, A., Doblhammer-Reiter, G., Kim, Y. K., Dityatev, A., Ponimaskin, E., and Labus, J. (2023) Amisulpride as a potential disease-modifying drug in the treatment of tauopathies, Alzheimers Dement., doi: 10.1002/alz.13090.
  14. Kucwaj-Brysz, K., Baltrukevich, H., Czarnota, K., and Handzlik, J. (2021) Chemical update on the potential for serotonin 5-HT6 and 5-HT7 receptor agents in the treatment of Alzheimer's disease, Bioorg. Med. Chem. Lett., 49, 128275, doi: 10.1016/j.bmcl.2021.128275.
  15. Paroni, G., Bisceglia, P., and Seripa, D. (2019) Understanding the amyloid hypothesis in Alzheimer's disease, J. Alzheimer's Dis., 68, 493-510, doi: 10.3233/JAD-180802.
  16. Kametani, F., and Hasegawa, M. (2018) Reconsideration of amyloid hypothesis and tau hypothesis in Alzheimer's disease, Front. Neurosci., 12, 25, doi: 10.3389/fnins.2018.00025.
  17. Ricciarelli, R., and Fedele, E. (2017) The amyloid cascade hypothesis in Alzheimer's disease: it's time to change our mind, Curr. Neuropharmacol., 15, 926-935, doi: 10.2174/1570159X15666170116143743.
  18. Selkoe, D. J., and Hardy, J. (2016) The amyloid hypothesis of Alzheimer's disease at 25 years, EMBO Mol. Med., 8, 595-608, doi: 10.15252/emmm.201606210.
  19. Zhang, H., and Zheng, Y. (2019) β amyloid hypothesis in Alzheimer&'s disease: pathogenesis, prevention, and management, Acad. Med. Sin., 41, 702-708, doi: 10.3881/j.issn.1000-503X.10875.
  20. Jang, S. S., and Chung, H. J. (2016) Emerging link between Alzheimer's disease and homeostatic synaptic plasticity, Neural Plasticity, 2016, 7969272, doi: 10.1155/2016/7969272.
  21. Kunkle, B. W., Grenier-Boley, B., Sims, R., Bis, J. C., Damotte, V., Naj, A. C., Boland, A., Vronskaya, M., van der Lee, S. J., Amlie-Wolf, A., Bellenguez, C., Frizatti, A., Chouraki, V., Martin, E. R., Sleegers, K., Badarinarayan, N., Jakobsdottir, J., Hamilton-Nelson, K. L., Moreno-Grau, S., Olaso, R., et al. (2019) Genetic meta-analysis of diagnosed Alzheimer's disease identifies new risk loci and implicates Aβ, tau, immunity and lipid processing, Nat. Genet., 51, 414-430, doi: 10.1038/s41588-019-0358-2.
  22. Bis, J. C., Jian, X., Kunkle, B. W., Chen, Y., Hamilton-Nelson, K. L., Bush, W. S., Salerno, W. J., Lancour, D., Ma, Y., Renton, A. E., Marcora, E., Farrell, J. J., Zhao, Y., Qu, L., Ahmad, S., Amin, N., Amouyel, P., Beecham, G. W., Below, J. E., Campion, D., et al. (2020) Whole exome sequencing study identifies novel rare and common Alzheimer's-Associated variants involved in immune response and transcriptional regulation, Mol. Psychiatry, 25, 1859-1875, doi: 10.1038/s41380-018-0112-7.
  23. Kumar, D. K., Choi, S. H., Washicosky, K. J., Eimer, W. A., Tucker, S., Ghofrani, J., Lefkowitz, A., McColl, G., Goldstein, L. E., Tanzi, R. E., and Moir, R. D. (2016) Amyloid-β peptide protects against microbial infection in mouse and worm models of Alzheimer's disease, Sci. Transl. Med., 8, 340ra372, doi: 10.1126/scitranslmed.aaf1059.
  24. Li, N. M., Liu, K. F., Qiu, Y. J., Zhang, H. H., Nakanishi, H., and Qing, H. (2019) Mutations of beta-amyloid precursor protein alter the consequence of Alzheimer's disease pathogenesis, Neural Regener. Res., 14, 658-665, doi: 10.4103/1673-5374.247469.
  25. Tcw, J., and Goate, A. M. (2017) Genetics of β-amyloid precursor protein in Alzheimer's disease, Cold Spring Harb. Perspect. Med., 7, a024539, doi: 10.1101/cshperspect.a024539.
  26. Maitra, S., and Vincent, B. (2022) Cdk5-p25 as a key element linking amyloid and tau pathologies in Alzheimer's disease: mechanisms and possible therapeutic interventions, Life Sci., 308, 120986, doi: 10.1016/j.lfs.2022.120986.
  27. Breijyeh, Z., and Karaman, R. (2020) Comprehensive review on Alzheimer's disease: causes and treatment, Molecules, 25, 5789, doi: 10.3390/molecules25245789.
  28. Avila, J., Lucas, J. J., Perez, M., and Hernandez, F. (2004) Role of tau protein in both physiological and pathological conditions, Physiol. Rev., 84, 361-384, doi: 10.1152/physrev.00024.2003.
  29. Jouanne, M., Rault, S., and Voisin-Chiret, A. S. (2017) Tau protein aggregation in Alzheimer's disease: an attractive target for the development of novel therapeutic agents, Eur. J. Med. Chem., 139, 153-167, doi: 10.1016/j.ejmech.2017.07.070.
  30. Ganguly, P., Do, T. D., Larini, L., LaPointe, N. E., Sercel, A. J., Shade, M. F., Feinstein, S. C., Bowers, M. T., and Shea, J. E. (2015) Tau assembly: the dominant role of PHF6 (VQIVYK) in microtubule binding region repeat R3, J. Phys. Chem. B, 119, 4582-4593, doi: 10.1021/acs.jpcb.5b00175.
  31. Martin, L., Latypova, X., Wilson, C. M., Magnaudeix, A., Perrin, M. L., Yardin, C., and Terro, F. (2013) Tau protein kinases: involvement in Alzheimer's disease, Ageing Res. Rev., 12, 289-309, doi: 10.1016/j.arr.2012.06.003.
  32. Tapia-Rojas, C., Cabezas-Opazo, F., Deaton, C. A., Vergara, E. H., Johnson, G. V. W., and Quintanilla, R. A. (2019) It's all about tau, Progress Neurobiol., 175, 54-76, doi: 10.1016/j.pneurobio.2018.12.005.
  33. Ando, K., Oka, M., Ohtake, Y., Hayashishita, M., Shimizu, S., Hisanaga, S., and Iijima, K. M. (2016) Tau phosphorylation at Alzheimer's disease-related Ser356 contributes to tau stabilization when PAR-1/MARK activity is elevated, Biochem. Biophys. Res. Commun., 478, 929-934, doi: 10.1016/j.bbrc.2016.08.053.
  34. Dickey, C. A., Kamal, A., Lundgren, K., Klosak, N., Bailey, R. M., Dunmore, J., Ash, P., Shoraka, S., Zlatkovic, J., Eckman, C. B., Patterson, C., Dickson, D. W., Nahman, N. S. Jr., Hutton, M., Burrows, F., and Petrucelli, L. (2007) The high-affinity HSP90-CHIP complex recognizes and selectively degrades phosphorylated tau client proteins, J. Clin. Invest., 117, 648-658, doi: 10.1172/JCI29715.
  35. Schneider, A., Biernat, J., von Bergen, M., Mandelkow, E., and Mandelkow, E. M. (1999) Phosphorylation that detaches tau protein from microtubules (Ser262, Ser214) also protects it against aggregation into Alzheimer paired helical filaments, Biochemistry, 38, 3549-3558, doi: 10.1021/bi981874p.
  36. Wang, Y., and Mandelkow, E. (2016) Tau in physiology and pathology, Nat. Rev. Neurosci., 17, 5-21, doi: 10.1038/nrn.2015.1.
  37. Morsch, R., Simon, W., and Coleman, P. D. (1999) Neurons may live for decades with neurofibrillary tangles, J. Neuropathol. Exp. Neurol., 58, 188-197, doi: 10.1097/00005072-199902000-00008.
  38. Labus, J., Rohrs, K. F., Ackmann, J., Varbanov, H., Muller, F. E., Jia, S., Jahreis, K., Vollbrecht, A. L., Butzlaff, M., Schill, Y., Guseva, D., Bohm, K., Kaushik, R., Bijata, M., Marin, P., Chaumont-Dubel, S., Zeug, A., Dityatev, A., and Ponimaskin, E. (2021) Amelioration of Tau pathology and memory deficits by targeting 5-HT7 receptor, Progr. Neurobiol., 197, 101900, doi: 10.1016/j.pneurobio.2020.101900.
  39. Clavaguera, F., Bolmont, T., Crowther, R. A., Abramowski, D., Frank, S., Probst, A., Fraser, G., Stalder, A. K., Beibel, M., Staufenbiel, M., Jucker, M., Goedert, M., and Tolnay, M. (2009) Transmission and spreading of tauopathy in transgenic mouse brain, Nat. Cell Biol., 11, 909-913, doi: 10.1038/ncb1901.
  40. Kolarova, M., Garcia-Sierra, F., Bartos, A., Ricny, J., and Ripova, D. (2012) Structure and pathology of tau protein in Alzheimer's disease, Int. J. Alzheimer's Dis., 2012, 731526, doi: 10.1155/2012/731526.
  41. Takashima, A., Noguchi, K., Michel, G., Mercken, M., Hoshi, M., Ishiguro, K., and Imahori, K. (1996) Exposure of rat hippocampal neurons to amyloid beta peptide (25-35) induces the inactivation of phosphatidyl inositol-3 kinase and the activation of tau protein kinase I/glycogen synthase kinase-3 beta, Neurosci. Lett., 203, 33-36, doi: 10.1016/0304-3940(95)12257-5.
  42. Costa, L., Tempio, A., Lacivita, E., Leopoldo, M., and Ciranna, L. (2021) Serotonin 5-HT7 receptors require cyclin-dependent kinase 5 to rescue hippocampal synaptic plasticity in a mouse model of Fragile X syndrome, Eur. J. Neurosci., 54, 4124-4132, doi: 10.1111/ejn.15246.
  43. Shukla, V., Skuntz, S., and Pant, H. C. (2012) Deregulated Cdk5 activity is involved in inducing Alzheimer's disease, Arch. Med. Res., 43, 655-662, doi: 10.1016/j.arcmed.2012.10.015.
  44. Cruz, J. C., Tseng, H. C., Goldman, J. A., Shih, H., and Tsai, L. H. (2003) Aberrant Cdk5 activation by p25 triggers pathological events leading to neurodegeneration and neurofibrillary tangles, Neuron, 40, 471-483, doi: 10.1016/s0896-6273(03)00627-5.
  45. Simic, G., Babic Leko, M., Wray, S., Harrington, C. R., Delalle, I., Jovanov-Milosevic, N., Bazadona, D., Buee, L., de Silva, R., Di Giovanni, G., Wischik, C. M., and Hof, P. R. (2017) Monoaminergic neuropathology in Alzheimer's disease, Progr. Neurobiol., 151, 101-138, doi: 10.1016/j.pneurobio.2016.04.001.
  46. Morgese, M. G., and Trabace, L. (2019) Monoaminergic system modulation in depression and Alzheimer's disease: a new standpoint? Front. Pharmacol., 10, 483, doi: 10.3389/fphar.2019.00483.
  47. Murley, A. G., and Rowe, J. B. (2018) Neurotransmitter deficits from frontotemporal lobar degeneration, Brain J. Neurol., 141, 1263-1285, doi: 10.1093/brain/awx327.
  48. Huey, E. D., Putnam, K. T., and Grafman, J. (2006) A systematic review of neurotransmitter deficits and treatments in frontotemporal dementia, Neurology, 66, 17-22, doi: 10.1212/01.wnl.0000191304.55196.4d.
  49. Mufson, E. J., Kelley, C., and Perez, S. E. (2021) Chronic traumatic encephalopathy and the nucleus basalis of Meynert, Handbook Clin. Neurol., 182, 9-29, doi: 10.1016/B978-0-12-819973-2.00002-2.
  50. Vertes, R. P., Fortin, W. J., and Crane, A. M. (1999) Projections of the median raphe nucleus in the rat, J. Compar. Neurol., 407, 555-582, doi: 10.1002/(SICI)1096-9861(19990517)407:4<555::AID-CNE7>3.0.CO;2-E.
  51. Vertes, R. P. (1991) A PHA-L analysis of ascending projections of the dorsal raphe nucleus in the rat, J. Compar. Neurol., 313, 643-668, doi: 10.1002/cne.903130409.
  52. Audet, M. A., Descarries, L., and Doucet, G. (1989) Quantified regional and laminar distribution of the serotonin innervation in the anterior half of adult rat cerebral cortex, J. Chem. Neuroanat., 2, 29-44.
  53. Rodriguez, J. J., Noristani, H. N., and Verkhratsky, A. (2012) The serotonergic system in ageing and Alzheimer's disease, Progr. Neurobiol., 99, 15-41, doi: 10.1016/j.pneurobio.2012.06.010.
  54. Jankowska, A., Wesolowska, A., Pawlowski, M., and Chlon-Rzepa, G. (2018) Multi-target-directed ligands affecting serotonergic neurotransmission for Alzheimer's disease therapy: advances in chemical and biological research, Curr. Med. Chem., 25, 2045-2067, doi: 10.2174/0929867324666170529122802.
  55. Tajeddinn, W., Persson, T., Calvo-Garrido, J., Seed Ahmed, M., Maioli, S., Vijayaraghavan, S., Kazokoglu, M. S., Parrado-Fernandez, C., Yoshitake, T., Kehr, J., Francis, P., Winblad, B., Hoglund, K., Cedazo-Minguez, A., and Aarsland, D. (2016) Pharmacological modulations of the serotonergic system in a cell-model of familial Alzheimer's disease, J. Alzheimer's Dis., 53, 349-361, doi: 10.3233/JAD-160046.
  56. Lyness, S. A., Zarow, C., and Chui, H. C. (2003) Neuron loss in key cholinergic and aminergic nuclei in Alzheimer disease: a meta-analysis, Neurobiol. Aging, 24, 1-23, doi: 10.1016/s0197-4580(02)00057-x.
  57. Aletrino, M. A., Vogels, O. J., Van Domburg, P. H., and Ten Donkelaar, H. J. (1992) Cell loss in the nucleus raphes dorsalis in Alzheimer's disease, Neurobiol. Aging, 13, 461-468, doi: 10.1016/0197-4580(92)90073-7.
  58. Thomas, A. J., Hendriksen, M., Piggott, M., Ferrier, I. N., Perry, E., Ince, P., and O'Brien, J. T. (2006) A study of the serotonin transporter in the prefrontal cortex in late-life depression and Alzheimer's disease with and without depression, Neuropathol. Appl. Neurobiol., 32, 296-303, doi: 10.1111/j.1365-2990.2006.00728.x.
  59. Palmer, A. M., Francis, P. T., Bowen, D. M., Benton, J. S., Neary, D., Mann, D. M., and Snowden, J. S. (1987) Catecholaminergic neurones assessed ante-mortem in Alzheimer's disease, Brain Res., 414, 365-375, doi: 10.1016/0006-8993(87)90018-7.
  60. Palmer, A. M., Wilcock, G. K., Esiri, M. M., Francis, P. T., and Bowen, D. M. (1987) Monoaminergic innervation of the frontal and temporal lobes in Alzheimer's disease, Brain Res., 401, 231-238, doi: 10.1016/0006-8993(87)91408-9.
  61. Palmer, A. M., Francis, P. T., Benton, J. S., Sims, N. R., Mann, D. M., Neary, D., Snowden, J. S., and Bowen, D. M. (1987) Presynaptic serotonergic dysfunction in patients with Alzheimer's disease, J. Neurochem., 48, 8-15, doi: 10.1111/j.1471-4159.1987.tb13120.x.
  62. Tajeddinn, W., Fereshtehnejad, S. M., Seed Ahmed, M., Yoshitake, T., Kehr, J., Shahnaz, T., Milovanovic, M., Behbahani, H., Hoglund, K., Winblad, B., Cedazo-Minguez, A., Jelic, V., Jaremo, P., and Aarsland, D. (2016) Association of platelet serotonin levels in Alzheimer's disease with clinical and cerebrospinal fluid markers, J. Alzheimer's Dis., 53, 621-630, doi: 10.3233/JAD-160022.
  63. Prokselj, T., Jerin, A., Muck-Seler, D., and Kogoj, A. (2014) Decreased platelet serotonin concentration in Alzheimer's disease with involuntary emotional expression disorder, Neurosci. Lett., 578, 71-74, doi: 10.1016/j.neulet.2014.06.034.
  64. Ehrhardt, S., Porsteinsson, A. P., Munro, C. A., Rosenberg, P. B., Pollock, B. G., Devanand, D. P., Mintzer, J., Rajji, T. K., Ismail, Z., Schneider, L. S., Baksh, S. N., Drye, L. T., Avramopoulos, D., Shade, D. M., Lyketsos, C. G., and Group, S. C. R. (2019) Escitalopram for agitation in Alzheimer's disease (S-CitAD): Methods and design of an investigator-initiated, randomized, controlled, multicenter clinical trial, Alzheimers Dement., 15, 1427-1436, doi: 10.1016/j.jalz.2019.06.4946.
  65. Porsteinsson, A. P., Keltz, M. A., and Smith, J. S. (2014) Role of citalopram in the treatment of agitation in Alzheimer's disease, Neurodegener. Dis. Management., 4, 345-349, doi: 10.2217/nmt.14.35.
  66. Porsteinsson, A. P., Drye, L. T., Pollock, B. G., Devanand, D. P., Frangakis, C., Ismail, Z., Marano, C., Meinert, C. L., Mintzer, J. E., Munro, C. A., Pelton, G., Rabins, P. V., Rosenberg, P. B., Schneider, L. S., Shade, D. M., Weintraub, D., Yesavage, J., and Lyketsos, C. G. for the CitAD Research Group (2014) Effect of citalopram on agitation in Alzheimer disease: the CitAD randomized clinical trial, Jama, 311, 682-691, doi: 10.1001/jama.2014.93.
  67. Xie, Y., Liu, P. P., Lian, Y. J., Liu, H. B., and Kang, J. S. (2019) The effect of selective serotonin reuptake inhibitors on cognitive function in patients with Alzheimer's disease and vascular dementia: focusing on fluoxetine with long follow-up periods, Signal Transduct. Target. Ther., 4, 30, doi: 10.1038/s41392-019-0064-7.
  68. Sharp, T., and Barnes, N. M. (2020) Central 5-HT receptors and their function; present and future, Neuropharmacology, 177, 108155, doi: 10.1016/j.neuropharm.2020.108155.
  69. Humphrey, P. P., and Barnard, E. A. (1998) International Union of Pharmacology. XIX. The IUPHAR receptor code: a proposal for an alphanumeric classification system, Pharmacol. Rev., 50, 271-277.
  70. Pauwels, P. J. (2000) Diverse signalling by 5-hydroxytryptamine (5-HT) receptors, Biochem. Pharmacol., 60, 1743-1750, doi: 10.1016/s0006-2952(00)00476-7.
  71. Rojas, P. S., Aguayo, F., Neira, D., Tejos, M., Aliaga, E., Munoz, J. P., Parra, C. S., and Fiedler, J. L. (2017) Dual effect of serotonin on the dendritic growth of cultured hippocampal neurons: Involvement of 5-HT1A and 5-HT7 receptors, Mol. Cell. Neurosci., 85, 148-161, doi: 10.1016/j.mcn.2017.09.009.
  72. Papoucheva, E., Dumuis, A., Sebben, M., Richter, D. W., and Ponimaskin, E. G. (2004) The 5-hydroxytryptamine(1A) receptor is stably palmitoylated, and acylation is critical for communication of receptor with Gi protein, J. Biol. Chem., 279, 3280-3291, doi: 10.1074/jbc.M308177200.
  73. Barnes, N. M., and Sharp, T. (1999) A review of central 5-HT receptors and their function, Neuropharmacology, 38, 1083-1152, doi: 10.1016/S0028-3908(99)00010-6.
  74. Albert, P. R., and Vahid-Ansari, F. (2019) The 5-HT1A receptor: signaling to behavior, Biochimie, 161, 34-45, doi: 10.1016/j.biochi.2018.10.015.
  75. Ogren, S. O., Eriksson, T. M., Elvander-Tottie, E., D'Addario, C., Ekstrom, J. C., Svenningsson, P., Meister, B., Kehr, J., and Stiedl, O. (2008) The role of 5-HT1A receptors in learning and memory, Behav. Brain Res., 195, 54-77, doi: 10.1016/j.bbr.2008.02.023.
  76. Carhart-Harris, R. L., and Nutt, D. J. (2017) Serotonin and brain function: a tale of two receptors, J. Psychopharmacol., 31, 1091-1120, doi: 10.1177/0269881117725915.
  77. Verdurand, M., Chauveau, F., Daoust, A., Morel, A. L., Bonnefoi, F., Liger, F., Berod, A., and Zimmer, L. (2016) Differential effects of amyloid-beta 1-40 and 1-42 fibrils on 5-HT1A serotonin receptors in rat brain, Neurobiol. Aging, 40, 11-21, doi: 10.1016/j.neurobiolaging.2015.12.008.
  78. Verdurand, M., Berod, A., Le Bars, D., and Zimmer, L. (2011) Effects of amyloid-beta peptides on the serotoninergic 5-HT1A receptors in the rat hippocampus, Neurobiol. Aging, 32, 103-114, doi: 10.1016/j.neurobiolaging.2009.01.008.
  79. Afshar, S., Shahidi, S., Rohani, A. H., Komaki, A., and Asl, S. S. (2018) The effect of NAD-299 and TCB-2 on learning and memory, hippocampal BDNF levels and amyloid plaques in Streptozotocin-induced memory deficits in male rats, Psychopharmacology (Berl), 235, 2809-2822, doi: 10.1007/s00213-018-4973-x.
  80. Afshar, S., Shahidi, S., Rohani, A. H., Soleimani Asl, S., and Komaki, A. (2019) Protective effects of 5-HT1A receptor antagonist and 5-HT2A receptor agonist on the biochemical and histological features in a rat model of Alzheimer's disease, J. Chem. Neuroanat., 96, 140-147, doi: 10.1016/j.jchemneu.2019.01.008.
  81. Wang, M., Zong, H. F., Chang, K. W., Han, H., Yasir Rizvi, M., Iffat Neha, S., Li, Z. Y., Yang, W. N., and Qian, Y. H. (2020) 5-HT1AR alleviates Aβ-induced cognitive decline and neuroinflammation through crosstalk with NF-κB pathway in mice, Int. Immunopharmacol., 82, 106354, doi: 10.1016/j.intimp.2020.106354.
  82. Shruster, A., and Offen, D. (2014) Targeting neurogenesis ameliorates danger assessment in a mouse model of Alzheimer's disease, Behav. Brain Res., 261, 193-201, doi: 10.1016/j.bbr.2013.12.028.
  83. Wang, Y. J., Ren, Q. G., Gong, W. G., Wu, D., Tang, X., Li, X. L., Wu, F. F., Bai, F., Xu, L., and Zhang, Z. J. (2016) Escitalopram attenuates beta-amyloid-induced tau hyperphosphorylation in primary hippocampal neurons through the 5-HT1A receptor mediated Akt/GSK-3beta pathway, Oncotarget, 7, 13328-13339, doi: 10.18632/oncotarget.7798.
  84. Ren, Q. G., Wang, Y. J., Gong, W. G., Zhou, Q. D., Xu, L., and Zhang, Z. J. (2015) Escitalopram ameliorates forskolin-induced tau hyperphosphorylation in HEK239/tau441 cells, J. Mol. Neurosci., 56, 500-508, doi: 10.1007/s12031-015-0519-4.
  85. Park, Y. S., and Sung, K. W. (2019) Selective serotonin reuptake inhibitor escitalopram inhibits 5-HT3 receptor currents in NCB-20 cells, Korean J. Physiol. Pharmacol., 23, 509-517, doi: 10.4196/kjpp.2019.23.6.509.
  86. Werner, F. M., and Covenas, R. (2016) Serotonergic drugs: agonists/antagonists at specific serotonergic subreceptors for the treatment of cognitive, depressant and psychotic symptoms in Alzheimer's disease, Curr. Pharmaceut. Design, 22, 2064-2071, doi: 10.2174/1381612822666160127113524.
  87. Odagaki, Y., Kinoshita, M., Ota, T., Javier Meana, J., Callado, L. F., and Garcia-Sevilla, J. A. (2017) Functional activation of Gαq coupled to 5-HT2A receptor and M1 muscarinic acetylcholine receptor in postmortem human cortical membranes, J. Neural Transm., 124, 1123-1133, doi: 10.1007/s00702-017-1749-0.
  88. Zifa, E., and Fillion, G. (1992) 5-Hydroxytryptamine receptors, Pharmacol. Rev., 44, 401-458.
  89. Blin, J., Baron, J. C., Dubois, B., Crouzel, C., Fiorelli, M., Attar-Levy, D., Pillon, B., Fournier, D., Vidailhet, M., and Agid, Y. (1993) Loss of brain 5-HT2 receptors in Alzheimer's disease. In vivo assessment with positron emission tomography and [18F]setoperone, Brain, 116, 497-510, doi: 10.1093/brain/116.3.497.
  90. Holm, P., Ettrup, A., Klein, A. B., Santini, M. A., El-Sayed, M., Elvang, A. B., Stensbol, T. B., Mikkelsen, J. D., Knudsen, G. M., and Aznar, S. (2010) Plaque deposition dependent decrease in 5-HT2A serotonin receptor in AbetaPPswe/PS1dE9 amyloid overexpressing mice, J. Alzheimer's Dis., 20, 1201-1213, doi: 10.3233/JAD-2010-100117.
  91. Lai, M. K., Tsang, S. W., Alder, J. T., Keene, J., Hope, T., Esiri, M. M., Francis, P. T., and Chen, C. P. (2005) Loss of serotonin 5-HT2A receptors in the postmortem temporal cortex correlates with rate of cognitive decline in Alzheimer's disease, Psychopharmacology (Berl), 179, 673-677, doi: 10.1007/s00213-004-2077-2.
  92. Marner, L., Frokjaer, V. G., Kalbitzer, J., Lehel, S., Madsen, K., Baare, W. F., Knudsen, G. M., and Hasselbalch, S. G. (2012) Loss of serotonin 2A receptors exceeds loss of serotonergic projections in early Alzheimer's disease: a combined [11C]DASB and [18F]altanserin-PET study, Neurobiol. Aging, 33, 479-487, doi: 10.1016/j.neurobiolaging.2010.03.023.
  93. Nitsch, R. M., Deng, M., Growdon, J. H., and Wurtman, R. J. (1996) Serotonin 5-HT2a and 5-HT2c receptors stimulate amyloid precursor protein ectodomain secretion, J. Biol. Chem., 271, 4188-4194, doi: 10.1074/jbc.271.8.4188.
  94. Lu, J., Zhang, C., Lv, J., Zhu, X., Jiang, X., Lu, W., Lu, Y., Tang, Z., Wang, J., and Shen, X. (2021) Antiallergic drug desloratadine as a selective antagonist of 5HT2A receptor ameliorates pathology of Alzheimer's disease model mice by improving microglial dysfunction, Aging Cell, 20, e13286, doi: 10.1111/acel.13286.
  95. Busceti, C. L., Di Pietro, P., Riozzi, B., Traficante, A., Biagioni, F., Nistico, R., Fornai, F., Battaglia, G., Nicoletti, F., and Bruno, V. (2015) 5-HT2C serotonin receptor blockade prevents tau protein hyperphosphorylation and corrects the defect in hippocampal synaptic plasticity caused by a combination of environmental stressors in mice, Pharmacol. Res., 99, 258-268, doi: 10.1016/j.phrs.2015.06.017.
  96. Bockaert, J., Claeysen, S., Compan, V., and Dumuis, A. (2004) 5-HT4 receptors, Curr. Drug Targets, 3, 39-51, doi: 10.2174/1568007043482615.
  97. Fisher, J. R., Wallace, C. E., Tripoli, D. L., Sheline, Y. I., and Cirrito, J. R. (2016) Redundant Gs-coupled serotonin receptors regulate amyloid-beta metabolism in vivo, Mol. Neurodegener., 11, 45, doi: 10.1186/s13024-016-0112-5.
  98. King, M. V., Marsden, C. A., and Fone, K. C. (2008) A role for the 5-HT1A, 5-HT4 and 5-HT6 receptors in learning and memory, Trends Pharmacol. Sci., 29, 482-492, doi: 10.1016/j.tips.2008.07.001.
  99. Rebholz, H., Friedman, E., and Castello, J. (2018) Alterations of expression of the serotonin 5-HT4 receptor in brain disorders, Int. J. Mol. Sci., 19, 3581, doi: 10.3390/ijms19113581.
  100. Madsen, K., Neumann, W. J., Holst, K., Marner, L., Haahr, M. T., Lehel, S., Knudsen, G. M., and Hasselbalch, S. G. (2011) Cerebral serotonin 4 receptors and amyloid-beta in early Alzheimer's disease, J. Alzheimer's Dis., 26, 457-466, doi: 10.3233/JAD-2011-110056.
  101. Baranger, K., Giannoni, P., Girard, S. D., Girot, S., Gaven, F., Stephan, D., Migliorati, M., Khrestchatisky, M., Bockaert, J., Marchetti-Gauthier, E., Rivera, S., Claeysen, S., and Roman, F. S. (2017) Chronic treatments with a 5-HT4 receptor agonist decrease amyloid pathology in the entorhinal cortex and learning and memory deficits in the 5xFAD mouse model of Alzheimer's disease, Neuropharmacology, 126, 128-141, doi: 10.1016/j.neuropharm.2017.08.031.
  102. Lecoutey, C., Hedou, D., Freret, T., Giannoni, P., Gaven, F., Since, M., Bouet, V., Ballandonne, C., Corvaisier, S., Malzert Freon, A., Mignani, S., Cresteil, T., Boulouard, M., Claeysen, S., Rochais, C., and Dallemagne, P. (2014) Design of donecopride, a dual serotonin subtype 4 receptor agonist/acetylcholinesterase inhibitor with potential interest for Alzheimer's disease treatment, Proc. Natl. Acad. Sci. USA, 111, E3825-E3830, doi: 10.1073/pnas.1410315111.
  103. Lalut, J., Karila, D., Dallemagne, P., and Rochais, C. (2017) Modulating 5-HT4 and 5-HT6 receptors in Alzheimer's disease treatment, Fut. Med. Chem., 9, 781-795, doi: 10.4155/fmc-2017-0031.
  104. Nirogi, R., Mohammed, A. R., Shinde, A. K., Gagginapally, S. R., Kancharla, D. M., Ravella, S. R., Bogaraju, N., Middekadi, V. R., Subramanian, R., Palacharla, R. C., Benade, V., Muddana, N., Abraham, R., Medapati, R. B., Thentu, J. B., Mekala, V. R., Petlu, S., Lingavarapu, B. B., Yarra, S., Kagita, N., et al. (2021) Discovery and Preclinical Characterization of Usmarapride (SUVN-D4010): A potent, selective 5-HT4 receptor partial agonist for the treatment of cognitive deficits associated with Alzheimer's disease, J. Med. Chem., 64, 10641-10665, doi: 10.1021/acs.jmedchem.1c00703.
  105. Wichur, T., Pasieka, A., Godyn, J., Panek, D., Goral, I., Latacz, G., Honkisz-Orzechowska, E., Bucki, A., Siwek, A., Gluch-Lutwin, M., Knez, D., Brazzolotto, X., Gobec, S., Kolaczkowski, M., Sabate, R., Malawska, B., and Wieckowska, A. (2021) Discovery of 1-(phenylsulfonyl)-1H-indole-based multifunctional ligands targeting cholinesterases and 5-HT6 receptor with anti-aggregation properties against amyloid-beta and tau, Eur. J. Med. Chem., 225, 113783, doi: 10.1016/j.ejmech.2021.113783.
  106. Hashemi-Firouzi, N., Shahidi, S., Soleimani-Asl, S., and Komaki, A. (2018) 5-Hydroxytryptamine receptor 6 antagonist, SB258585 exerts neuroprotection in a rat model of Streptozotocin-induced Alzheimer's disease, Metab. Brain Dis., 33, 1243-1253, doi: 10.1007/s11011-018-0228-0.
  107. Ivachtchenko, A. V., Lavrovsky, Y., and Okun, I. (2016) AVN-101: a multi-target drug candidate for the treatment of CNS disorders, J. Alzheimer's Dis., 53, 583-620, doi: 10.3233/JAD-151146.
  108. Ivachtchenko, A. V., Lavrovsky, Y., and Ivanenkov, Y. A. (2016) AVN-211, novel and highly selective 5-HT6 receptor small molecule antagonist, for the treatment of Alzheimer's disease, Mol. Pharmaceut., 13, 945-963, doi: 10.1021/acs.molpharmaceut.5b00830.
  109. Meneses, A. (2017) Neural activity, memory, and dementias: serotonergic markers, Behav. Pharmacol., 28, 132-141, doi: 10.1097/FBP.0000000000000279.
  110. Crews, L., and Masliah, E. (2010) Molecular mechanisms of neurodegeneration in Alzheimer's disease, Human Mol. Genet., 19, R12-R20, doi: 10.1093/hmg/ddq160.
  111. Lee, J., Avramets, D., Jeon, B., and Choo, H. (2021) Modulation of serotonin receptors in neurodevelopmental disorders: focus on 5-HT7 receptor, Molecules, 26, 3348, doi: 10.3390/molecules26113348.
  112. Solas, M., Van Dam, D., Janssens, J., Ocariz, U., Vermeiren, Y., De Deyn, P. P., and Ramirez, M. J. (2021) 5-HT7 receptors in Alzheimer's disease, Neurochem. Int., 150, 105185, doi: 10.1016/j.neuint.2021.105185.
  113. Hedlund, P. B. (2009) The 5-HT7 receptor and disorders of the nervous system: an overview, Psychopharmacology (Berl), 206, 345-354, doi: 10.1007/s00213-009-1626-0.
  114. Naumenko, V. S., Kondaurova, E. M., and Popova, N. K. (2011) On the role of brain 5-HT7 receptor in the mechanism of hypothermia: comparison with hypothermia mediated via 5-HT1A and 5-HT3 receptor, Neuropharmacology, 61, 1360-1365, doi: 10.1016/j.neuropharm.2011.08.022.
  115. Rodnyy, A. Y., Kondaurova, E. M., Bazovkina, D. V., Kulikova, E. A., Ilchibaeva, T. V., Kovetskaya, A. I., Baraboshkina, I. A., Bazhenova, E. Y., Popova, N. K., and Naumenko, V. S. (2022) Serotonin 5-HT7 receptor overexpression in the raphe nuclei area produces antidepressive effect and affects brain serotonin system in male mice, J. Neurosci. Res., 100, 1506-1523, doi: 10.1002/jnr.25055.
  116. Renner, U., Zeug, A., Woehler, A., Niebert, M., Dityatev, A., Dityateva, G., Gorinski, N., Guseva, D., Abdel-Galil, D., Frohlich, M., Doring, F., Wischmeyer, E., Richter, D. W., Neher, E., and Ponimaskin, E. G. (2012) Heterodimerization of serotonin receptors 5-HT1A and 5-HT7 differentially regulates receptor signalling and trafficking, J. Cell Sci., 125, 2486-2499, doi: 10.1242/jcs.101337.
  117. Naumenko, V. S., Popova, N. K., Lacivita, E., Leopoldo, M., and Ponimaskin, E. G. (2014) Interplay between serotonin 5-HT1A and 5-HT7 receptors in depressive disorders, CNS Neurosci. Ther., 20, 582-590, doi: 10.1111/cns.12247.
  118. Speranza, L., Labus, J., Volpicelli, F., Guseva, D., Lacivita, E., Leopoldo, M., Bellenchi, G. C., di Porzio, U., Bijata, M., Perrone-Capano, C., and Ponimaskin, E. (2017) Serotonin 5-HT7 receptor increases the density of dendritic spines and facilitates synaptogenesis in forebrain neurons, J. Neurochem., 141, 647-661, doi: 10.1111/jnc.13962.
  119. Kvachnina, E., Liu, G., Dityatev, A., Renner, U., Dumuis, A., Richter, D. W., Dityateva, G., Schachner, M., Voyno-Yasenetskaya, T. A., and Ponimaskin, E. G. (2005) 5-HT7 receptor is coupled to G alpha subunits of heterotrimeric G12-protein to regulate gene transcription and neuronal morphology, J. Neurosci., 25, 7821-7830, doi: 10.1523/JNEUROSCI.1790-05.2005.
  120. Hashemi-Firouzi, N., Komaki, A., Soleimani Asl, S., and Shahidi, S. (2017) The effects of the 5-HT7 receptor on hippocampal long-term potentiation and apoptosis in a rat model of Alzheimer's disease, Brain Res. Bull., 135, 85-91, doi: 10.1016/j.brainresbull.2017.10.004.
  121. Shahidi, S., Asl, S. S., Komaki, A., and Hashemi-Firouzi, N. (2018) The effect of chronic stimulation of serotonin receptor type 7 on recognition, passive avoidance memory, hippocampal long-term potentiation, and neuronal apoptosis in the amyloid beta protein treated rat, Psychopharmacology (Berl), 235, 1513-1525, doi: 10.1007/s00213-018-4862-3.
  122. Quintero-Villegas, A., and Valdes-Ferrer, S. I. (2019) Role of 5-HT7 receptors in the immune system in health and disease, Mol. Med., 26, 2, doi: 10.1186/s10020-019-0126-x.
  123. Quintero-Villegas, A., and Valdes-Ferrer, S. I. (2022) Central nervous system effects of 5-HT7 receptors: a potential target for neurodegenerative diseases, Mol. Med., 28, 70, doi: 10.1186/s10020-022-00497-2.
  124. Cadirci, E., Halici, Z., Bayir, Y., Albayrak, A., Karakus, E., Polat, B., Unal, D., Atamanalp, S. S., Aksak, S., and Gundogdu, C. (2013) Peripheral 5-HT7 receptors as a new target for prevention of lung injury and mortality in septic rats, Immunobiology, 218, 1271-1283, doi: 10.1016/j.imbio.2013.04.012.
  125. Ong, Q., Guo, S., Duan, L., Zhang, K., Collier, E. A., and Cui, B. (2016) The timing of Raf/ERK and AKT activation in protecting PC12 cells against oxidative stress, PLoS One, 11, e0153487, doi: 10.1371/journal.pone.0153487.
  126. Barnes, N. M., Ahern, G. P., Becamel, C., Bockaert, J., Camilleri, M., Chaumont-Dubel, S., Claeysen, S., Cunningham, K. A., Fone, K. C., Gershon, M., Di Giovanni, G., Goodfellow, N. M., Halberstadt, A. L., Hartley, R. M., Hassaine, G., Herrick-Davis, K., Hovius, R., Lacivita, E., Lambe, E. K., Leopoldo, M., et al. (2021) International union of basic and clinical pharmacology. CX. Classification of receptors for 5-hydroxytryptamine; pharmacology and function, Pharmacol. Rev., 73, 310-520, doi: 10.1124/pr.118.015552.
  127. Khachaturian, Z. S. (1994) Calcium hypothesis of Alzheimer's disease and brain aging, Ann. NY Acad. Sci., 747, 1-11, doi: 10.1111/j.1749-6632.1994.tb44398.x.
  128. O'Day, D. H. (2019) Alzheimer's disease: a short introduction to the calmodulin hypothesis, AIMS Neurosci., 6, 231-239, doi: 10.3934/Neuroscience.2019.4.231.
  129. Chavez, S. E., and O'Day, D. H. (2007) Calmodulin binds to and regulates the activity of beta-secretase (BACE1), in Current Research on Alzheimers Disease, Nova Science Publishers, Inc, Hauppage, NY, pp. 37-47.
  130. Cline, E. N., Bicca, M. A., Viola, K. L., and Klein, W. L. (2018) The amyloid-β oligomer hypothesis: beginning of the third decade, J. Alzheimer's Dis., 64, S567-S610, doi: 10.3233/JAD-179941.
  131. Padilla, R., Maccioni, R. B., and Avila, J. (1990) Calmodulin binds to a tubulin binding site of the microtubule-associated protein tau, Mol. Cell. Biochem., 97, 35-41, doi: 10.1007/BF00231699.
  132. Lee, Y. C., and Wolff, J. (1984) Calmodulin binds to both microtubule-associated protein 2 and tau proteins, J. Biol. Chem., 259, 1226-1230, doi: 10.1016/S0021-9258(17)43592-7.
  133. Ghosh, A., and Giese, K. P. (2015) Calcium/calmodulin-dependent kinase II and Alzheimer's disease, Mol. Brain, 8, 78, doi: 10.1186/s13041-015-0166-2.
  134. O'Day, D. H., Eshak, K., and Myre, M. A. (2015) Calmodulin binding proteins and Alzheimer's disease, J. Alzheimer's Dis., 46, 553-569, doi: 10.3233/JAD-142772.
  135. Reese, L. C., and Taglialatela, G. (2011) A role for calcineurin in Alzheimer's disease, Current neuropharmacology, 9, 685-692, doi: 10.2174/157015911798376316.
  136. Turner, J. H., Gelasco, A. K., and Raymond, J. R. (2004) Calmodulin interacts with the third intracellular loop of the serotonin 5-hydroxytryptamine1A receptor at two distinct sites: putative role in receptor phosphorylation by protein kinase C, J. Biol. Chem., 279, 17027-17037, doi: 10.1074/jbc.M313919200.
  137. Della Rocca, G. J., Mukhin, Y. V., Garnovskaya, M. N., Daaka, Y., Clark, G. J., Luttrell, L. M., Lefkowitz, R. J., and Raymond, J. R. (1999) Serotonin 5-HT1A receptor-mediated Erk activation requires calcium/calmodulin-dependent receptor endocytosis, J. Biol. Chem., 274, 4749-4753, doi: 10.1074/jbc.274.8.4749.
  138. Turner, J. H., and Raymond, J. R. (2005) Interaction of calmodulin with the serotonin 5-hydroxytryptamine2A receptor. A putative regulator of G protein coupling and receptor phosphorylation by protein kinase C, J. Biol. Chem., 280, 30741-30750, doi: 10.1074/jbc.M501696200.
  139. Becamel, C., Figge, A., Poliak, S., Dumuis, A., Peles, E., Bockaert, J., Lubbert, H., and Ullmer, C. (2001) Interaction of serotonin 5-hydroxytryptamine type 2C receptors with PDZ10 of the multi-PDZ domain protein MUPP1, J. Biol. Chem., 276, 12974-12982, doi: 10.1074/jbc.M008089200.
  140. Becamel, C., Gavarini, S., Chanrion, B., Alonso, G., Galeotti, N., Dumuis, A., Bockaert, J., and Marin, P. (2004) The serotonin 5-HT2A and 5-HT2C receptors interact with specific sets of PDZ proteins, J. Biol. Chem., 279, 20257-20266, doi: 10.1074/jbc.M312106200.
  141. Bustos, F. J., Ampuero, E., Jury, N., Aguilar, R., Falahi, F., Toledo, J., Ahumada, J., Lata, J., Cubillos, P., Henriquez, B., Guerra, M. V., Stehberg, J., Neve, R. L., Inestrosa, N. C., Wyneken, U., Fuenzalida, M., Hartel, S., Sena-Esteves, M., Varela-Nallar, L., Rots, M. G., et al. (2017) Epigenetic editing of the Dlg4/PSD95 gene improves cognition in aged and Alzheimer's disease mice, Brain, 140, 3252-3268, doi: 10.1093/brain/awx272.
  142. Kamat, P. K., Kyles, P., Kalani, A., and Tyagi, N. (2016) Hydrogen sulfide ameliorates homocysteine-induced Alzheimer's disease-like pathology, blood-brain barrier disruption, and synaptic disorder, Mol. Neurobiol., 53, 2451-2467, doi: 10.1007/s12035-015-9212-4.
  143. Tu, S., Okamoto, S., Lipton, S. A., and Xu, H. (2014) Oligomeric Aβ-induced synaptic dysfunction in Alzheimer's disease, Mol. Neurodegener., 9, 48, doi: 10.1186/1750-1326-9-48.
  144. Savioz, A., Leuba, G., and Vallet, P. G. (2014) A framework to understand the variations of PSD-95 expression in brain aging and in Alzheimer's disease, Ageing Res. Rev., 18, 86-94, doi: 10.1016/j.arr.2014.09.004.
  145. Dore, K., Carrico, Z., Alfonso, S., Marino, M., Koymans, K., Kessels, H. W., and Malinow, R. (2021) PSD-95 protects synapses from β-amyloid, Cell Rep., 35, 109194, doi: 10.1016/j.celrep.2021.109194.
  146. Saraceno, C., Marcello, E., Di Marino, D., Borroni, B., Claeysen, S., Perroy, J., Padovani, A., Tramontano, A., Gardoni, F., and Di Luca, M. (2014) SAP97-mediated ADAM10 trafficking from Golgi outposts depends on PKC phosphorylation, Cell Death Dis., 5, e1547, doi: 10.1038/cddis.2014.492.
  147. Marcello, E., Gardoni, F., Mauceri, D., Romorini, S., Jeromin, A., Epis, R., Borroni, B., Cattabeni, F., Sala, C., Padovani, A., and Di Luca, M. (2007) Synapse-associated protein-97 mediates alpha-secretase ADAM10 trafficking and promotes its activity, J. Neurosci., 27, 1682-1691, doi: 10.1523/JNEUROSCI.3439-06.2007.
  148. Grolla, A. A., Fakhfouri, G., Balzaretti, G., Marcello, E., Gardoni, F., Canonico, P. L., DiLuca, M., Genazzani, A. A., and Lim, D. (2013) Aβ leads to Ca2+ signaling alterations and transcriptional changes in glial cells, Neurobiol. Aging, 34, 511-522, doi: 10.1016/j.neurobiolaging.2012.05.005.
  149. Ji, S. P., Zhang, Y., Van Cleemput, J., Jiang, W., Liao, M., Li, L., Wan, Q., Backstrom, J. R., and Zhang, X. (2006) Disruption of PTEN coupling with 5-HT2C receptors suppresses behavioral responses induced by drugs of abuse, Nat. Med., 12, 324-329, doi: 10.1038/nm1349.
  150. Knafo, S., Sanchez-Puelles, C., Palomer, E., Delgado, I., Draffin, J. E., Mingo, J., Wahle, T., Kaleka, K., Mou, L., Pereda-Perez, I., Klosi, E., Faber, E. B., Chapman, H. M., Lozano-Montes, L., Ortega-Molina, A., Ordonez-Gutierrez, L., Wandosell, F., Vina, J., Dotti, C. G., Hall, R. A., et al. (2016) PTEN recruitment controls synaptic and cognitive function in Alzheimer's models, Nat. Neurosci., 19, 443-453, doi: 10.1038/nn.4225.
  151. Cao, F., Liu, Z., and Sun, G. (2020) Diagnostic value of miR-193a-3p in Alzheimer's disease and miR-193a-3p attenuates amyloid-beta induced neurotoxicity by targeting PTEN, Exp. Gerontol., 130, 110814, doi: 10.1016/j.exger.2019.110814.
  152. Cui, W., Wang, S., Wang, Z., Wang, Z., Sun, C., and Zhang, Y. (2017) Inhibition of PTEN attenuates endoplasmic reticulum stress and apoptosis via activation of PI3K/AKT pathway in Alzheimer's disease, Neurochem. Res., 42, 3052-3060, doi: 10.1007/s11064-017-2338-1.
  153. Zeng, L., Jiang, H., Ashraf, G. M., Liu, J., Wang, L., Zhao, K., Liu, M., Li, Z., and Liu, R. (2022) Implications of miR-148a-3p/p35/PTEN signaling in tau hyperphosphorylation and autoregulatory feedforward of Akt/CREB in Alzheimer's disease, Mol. Ther. Nucleic Acids, 27, 256-275, doi: 10.1016/j.omtn.2021.11.019.
  154. Coupar, I. M., Desmond, P. V., and Irving, H. R. (2007) Human 5-HT4 and 5-HT7 receptor splice variants: are they important? Curr. Neuropharmacol., 5, 224-231, doi: 10.2174/157015907782793621.
  155. Bockaert, J., Claeysen, S., Compan, V., and Dumuis, A. (2008) 5-HT4 receptors: history, molecular pharmacology and brain functions, Neuropharmacology, 55, 922-931, doi: 10.1016/j.neuropharm.2008.05.013.
  156. Gill, R. K., Saksena, S., Tyagi, S., Alrefai, W. A., Malakooti, J., Sarwar, Z., Turner, J. R., Ramaswamy, K., and Dudeja, P. K. (2005) Serotonin inhibits Na+/H+ exchange activity via 5-HT4 receptors and activation of PKC alpha in human intestinal epithelial cells, Gastroenterology, 128, 962-974, doi: 10.1053/j.gastro.2005.02.011.
  157. Dhawan, G., and Combs, C. K. (2012) Inhibition of Src kinase activity attenuates amyloid associated microgliosis in a murine model of Alzheimer's disease, J. Neuroinflamm., 9, 117, doi: 10.1186/1742-2094-9-117.
  158. Nygaard, H. B., van Dyck, C. H., and Strittmatter, S. M. (2014) Fyn kinase inhibition as a novel therapy for Alzheimer's disease, Alzheimers Res. Ther., 6, 8, doi: 10.1186/alzrt238.
  159. Cochet, M., Donneger, R., Cassier, E., Gaven, F., Lichtenthaler, S. F., Marin, P., Bockaert, J., Dumuis, A., and Claeysen, S. (2013) 5-HT4 receptors constitutively promote the non-amyloidogenic pathway of APP cleavage and interact with ADAM10, ACS Chem. Neurosci., 4, 130-140, doi: 10.1021/cn300095t.
  160. Tesseur, I., Pimenova, A. A., Lo, A. C., Ciesielska, M., Lichtenthaler, S. F., De Maeyer, J. H., Schuurkes, J. A., D'Hooge, R., and De Strooper, B. (2013) Chronic 5-HT4 receptor activation decreases Aβ production and deposition in hAPP/PS1 mice, Neurobiol. Aging, 34, 1779-1789, doi: 10.1016/j.neurobiolaging.2013.01.020.
  161. Marcello, E., Borroni, B., Pelucchi, S., Gardoni, F., and Di Luca, M. (2017) ADAM10 as a therapeutic target for brain diseases: from developmental disorders to Alzheimer's disease, Expert Opin. Ther. Targets, 21, 1017-1026, doi: 10.1080/14728222.2017.1386176.
  162. Teixeira, J. P., and Ramalho, T. C. (2021) Regulation of protein synthesis: an approach to treat autism spectrum disorder (ASD), Curr. Med. Chem., 28, 7141-7156, doi: 10.2174/0929867328666210419125634.
  163. Suo, Z., Cox, A. A., Bartelli, N., Rasul, I., Festoff, B. W., Premont, R. T., and Arendash, G. W. (2007) GRK5 deficiency leads to early Alzheimer-like pathology and working memory impairment, Neurobiol. Aging, 28, 1873-1888, doi: 10.1016/j.neurobiolaging.2006.08.013.
  164. Zhao, J., Li, X., Chen, X., Cai, Y., Wang, Y., Sun, W., Mai, H., Yang, J., Fan, W., Tang, P., Ou, M., Zhang, Y., Huang, X., Zhao, B., and Cui, L. (2019) GRK5 influences the phosphorylation of tau via GSK3beta and contributes to Alzheimer's disease, J. Cell. Physiol., 234, 10411-10420, doi: 10.1002/jcp.27709.
  165. Suo, W. Z., and Li, L. (2010) Dysfunction of G protein-coupled receptor kinases in Alzheimer's disease, ScientificWorldJournal, 10, 1667-1678, doi: 10.1100/tsw.2010.154.
  166. Zhang, Y., Zhao, J., Yin, M., Cai, Y., Liu, S., Wang, Y., Zhang, X., Cao, H., Chen, T., Huang, P., Mai, H., Liu, Z., Tao, H., Zhao, B., and Cui, L. (2017) The influence of two functional genetic variants of GRK5 on tau phosphorylation and their association with Alzheimer's disease risk, Oncotarget, 8, 72714-72726, doi: 10.18632/oncotarget.20283.
  167. Zhang, Y., Chen, L., Shen, G., Zhao, Q., Shangguan, L., and He, M. (2014) GRK5 dysfunction accelerates tau hyperphosphorylation in APP (swe) mice through impaired cholinergic activity, Neuroreport, 25, 542-547, doi: 10.1097/WNR.0000000000000142.
  168. Dudova, I., Horackova, K., Hrdlicka, M., and Balastik, M. (2020) Can maternal autoantibodies play an etiological role in ASD development? Neuropsy. Dis. Treatment, 16, 1391-1398, doi: 10.2147/NDT.S239504.
  169. Ziak, J., Weissova, R., Jerabkova, K., Janikova, M., Maimon, R., Petrasek, T., Pukajova, B., Kleisnerova, M., Wang, M., Brill, M. S., Kasparek, P., Zhou, X., Alvarez-Bolado, G., Sedlacek, R., Misgeld, T., Stuchlik, A., Perlson, E., and Balastik, M. (2020) CRMP2 mediates Sema3F-dependent axon pruning and dendritic spine remodeling, EMBO Rep., 21, e48512, doi: 10.15252/embr.201948512.
  170. Hensley, K., and Kursula, P. (2016) Collapsin response mediator protein-2 (CRMP2) is a plausible etiological factor and potential therapeutic target in Alzheimer's disease: comparison and contrast with microtubule-associated protein Tau, J. Alzheimer's Dis., 53, 1-14, doi: 10.3233/JAD-160076.
  171. Brustovetsky, T., Khanna, R., and Brustovetsky, N. (2023) CRMP2 participates in regulating mitochondrial morphology and motility in Alzheimer's disease, Cells, 12, 1287, doi: 10.3390/cells12091287.
  172. Lawal, M. F., Olotu, F. A., Agoni, C., and Soliman, M. E. (2018) Exploring the C-terminal tail dynamics: structural and molecular perspectives into the therapeutic activities of novel CRMP-2 inhibitors, naringenin and Naringenin-7-O-glucuronide, in the treatment of Alzheimer's disease, Chem. Biodivers., 15, e1800437, doi: 10.1002/cbdv.201800437.
  173. Lawal, M., Olotu, F. A., and Soliman, M. E. S. (2018) Across the blood-brain barrier: Neurotherapeutic screening and characterization of naringenin as a novel CRMP-2 inhibitor in the treatment of Alzheimer's disease using bioinformatics and computational tools, Comput. Biol. Med., 98, 168-177, doi: 10.1016/j.compbiomed.2018.05.012.
  174. Williamson, R., van Aalten, L., Mann, D. M., Platt, B., Plattner, F., Bedford, L., Mayer, J., Howlett, D., Usardi, A., Sutherland, C., and Cole, A. R. (2011) CRMP2 hyperphosphorylation is characteristic of Alzheimer's disease and not a feature common to other neurodegenerative diseases, J. Alzheimer's Dis., 27, 615-625, doi: 10.3233/JAD-2011-110617.
  175. Soutar, M. P., Thornhill, P., Cole, A. R., and Sutherland, C. (2009) Increased CRMP2 phosphorylation is observed in Alzheimer's disease; does this tell us anything about disease development? Curr. Alzheimer Res., 6, 269-278, doi: 10.2174/156720509788486572.
  176. Joubert, L., Hanson, B., Barthet, G., Sebben, M., Claeysen, S., Hong, W., Marin, P., Dumuis, A., and Bockaert, J. (2004) New sorting nexin (SNX27) and NHERF specifically interact with the 5-HT4a receptor splice variant: roles in receptor targeting, J. Cell Sci., 117, 5367-5379, doi: 10.1242/jcs.01379.
  177. Ponimaskin, E. G., Profirovic, J., Vaiskunaite, R., Richter, D. W., and Voyno-Yasenetskaya, T. A. (2002) 5-Hydroxytryptamine 4(a) receptor is coupled to the Galpha subunit of heterotrimeric G13 protein, J. Biol. Chem., 277, 20812-20819, doi: 10.1074/jbc.M112216200.
  178. Duhr, F., Deleris, P., Raynaud, F., Seveno, M., Morisset-Lopez, S., Mannoury la Cour, C., Millan, M. J., Bockaert, J., Marin, P., and Chaumont-Dubel, S. (2014) Cdk5 induces constitutive activation of 5-HT6 receptors to promote neurite growth, Nat. Chem. Biol., 10, 590-597, doi: 10.1038/nchembio.1547.
  179. Jessberger, S., Gage, F. H., Eisch, A. J., and Lagace, D. C. (2009) Making a neuron: Cdk5 in embryonic and adult neurogenesis, Trends Neurosci., 32, 575-582, doi: 10.1016/j.tins.2009.07.002.
  180. Lu, T. T., Wan, C., Yang, W., and Cai, Z. (2019) Role of Cdk5 in amyloid-beta pathology of Alzheimer's disease, Curr. Alzheimer Res., 16, 1206-1215, doi: 10.2174/1567205016666191210094435.
  181. Liu, S. L., Wang, C., Jiang, T., Tan, L., Xing, A., and Yu, J. T. (2016) The role of Cdk5 in Alzheimer's disease, Mol. Neurobiol., 53, 4328-4342, doi: 10.1007/s12035-015-9369-x.
  182. Lau, L. F., Seymour, P. A., Sanner, M. A., and Schachter, J. B. (2002) Cdk5 as a drug target for the treatment of Alzheimer's disease, J. Mol. Neurosci., 19, 267-273, doi: 10.1385/JMN:19:3:267.
  183. Yun, H. M., Kim, S., Kim, H. J., Kostenis, E., Kim, J. I., Seong, J. Y., Baik, J. H., and Rhim, H. (2007) The novel cellular mechanism of human 5-HT6 receptor through an interaction with Fyn, J. Biol. Chem., 282, 5496-5505, doi: 10.1074/jbc.M606215200.
  184. Waterhouse, L. (1997) Genes tPA, Fyn, and FAK in autism? J. Autism Dev. Disord., 27, 220-223.
  185. Chin, J., Palop, J. J., Puolivali, J., Massaro, C., Bien-Ly, N., Gerstein, H., Scearce-Levie, K., Masliah, E., and Mucke, L. (2005) Fyn kinase induces synaptic and cognitive impairments in a transgenic mouse model of Alzheimer's disease, J. Neurosci., 25, 9694-9703, doi: 10.1523/JNEUROSCI.2980-05.2005.
  186. Li, C., and Gotz, J. (2017) Somatodendritic accumulation of Tau in Alzheimer's disease is promoted by Fyn-mediated local protein translation, EMBO J., 36, 3120-3138, doi: 10.15252/embj.201797724.
  187. Yang, K., Belrose, J., Trepanier, C. H., Lei, G., Jackson, M. F., and MacDonald, J. F. (2011) Fyn, a potential target for Alzheimer's disease, J. Alzheimer's Dis., 27, 243-252, doi: 10.3233/JAD-2011-110353.
  188. Lee, G., Thangavel, R., Sharma, V. M., Litersky, J. M., Bhaskar, K., Fang, S. M., Do, L. H., Andreadis, A., Van Hoesen, G., and Ksiezak-Reding, H. (2004) Phosphorylation of tau by fyn: implications for Alzheimer's disease, J. Neurosci., 24, 2304-2312, doi: 10.1523/JNEUROSCI.4162-03.2004.
  189. Liang, X., Yao, Y., Lin, Y., Kong, L., Xiao, H., Shi, Y., and Yang, J. (2019) Panaxadiol inhibits synaptic dysfunction in Alzheimer's disease and targets the Fyn protein in APP/PS1 mice and APP-SH-SY5Y cells, Life Sci., 221, 35-46, doi: 10.1016/j.lfs.2019.02.012.
  190. Nygaard, H. B. (2018) Targeting Fyn kinase in Alzheimer's disease, Biol. Psychiatry, 83, 369-376, doi: 10.1016/j.biopsych.2017.06.004.
  191. Roberson, E. D., Halabisky, B., Yoo, J. W., Yao, J., Chin, J., Yan, F., Wu, T., Hamto, P., Devidze, N., Yu, G. Q., Palop, J. J., Noebels, J. L., and Mucke, L. (2011) Amyloid-β/Fyn-induced synaptic, network, and cognitive impairments depend on tau levels in multiple mouse models of Alzheimer's disease, J. Neurosci., 31, 700-711, doi: 10.1523/JNEUROSCI.4152-10.2011.
  192. Stroth, N., and Svenningsson, P. (2015) S100B interacts with the serotonin 5-HT7 receptor to regulate a depressive-like behavior, Eur. Neuropsychopharmacol., 25, 2372-2380, doi: 10.1016/j.euroneuro.2015.10.003.
  193. Shapiro, L. A., Bialowas-McGoey, L. A., and Whitaker-Azmitia, P. M. (2010) Effects of S100B on serotonergic plasticity and neuroinflammation in the hippocampus in down syndrome and Alzheimer's disease: studies in an S100B overexpressing mouse model, Cardiovasc. Psychiatry Neurol., 2010, 153657, doi: 10.1155/2010/153657.
  194. Cirillo, C., Capoccia, E., Iuvone, T., Cuomo, R., Sarnelli, G., Steardo, L., and Esposito, G. (2015) S100B inhibitor pentamidine attenuates reactive gliosis and reduces neuronal loss in a mouse model of Alzheimer's disease, BioMed Res. Int., 2015, 508342, doi: 10.1155/2015/508342.
  195. Leclerc, E., Sturchler, E., and Vetter, S. W. (2010) The S100B/RAGE axis in Alzheimer's disease, Cardiovasc. Psychiatry Neurol., 2010, 539581, doi: 10.1155/2010/539581.
  196. Mori, T., Koyama, N., Arendash, G. W., Horikoshi-Sakuraba, Y., Tan, J., and Town, T. (2010) Overexpression of human S100B exacerbates cerebral amyloidosis and gliosis in the Tg2576 mouse model of Alzheimer's disease, Glia, 58, 300-314, doi: 10.1002/glia.20924.
  197. Mrak, R. E., and Griffinbc, W. S. (2001) The role of activated astrocytes and of the neurotrophic cytokine S100B in the pathogenesis of Alzheimer's disease, Neurobiol. Aging, 22, 915-922, doi: 10.1016/s0197-4580(01)00293-7.
  198. Popova, N. K., and Naumenko, V. S. (2019) Neuronal and behavioral plasticity: the role of serotonin and BDNF systems tandem, Expert Opin. Ther. Targets, 23, 227-239, doi: 10.1080/14728222.2019.1572747.

Declaração de direitos autorais © Russian Academy of Sciences, 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies