Role of mitochondrial DNA in yeast replicative aging

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Despite the variety of manifestations of aging, there are some common features and underlying mechanisms. In particular, mitochondria appears to be one of the most vulnerable systems in both metazoa and fungi. In this review, we discuss how mitochondrial dysfunction is related to replicative aging in the simplest eukaryotic model, the baker’s yeast Saccharomyces cerevisiae. We discuss a chain of events that starts from asymmetric inheritance of mitochondria by mother and daughter cells. With age, yeast mother cells start to experience a decrease in mitochondrial transmembrane potential and, consequently, a decrease in mitochondrial protein import efficiency. This induces mitochondrial protein precursors accumulation in the cytoplasm, the loss of mitochondrial DNA, and at the later stages - cell death. Interestingly, yeast strains without mitochondrial DNA can have both increased and increased lifespan compared to their counterparts with mtDNA. The direction of the effect depends on their ability to activate compensatory mechanisms preventing or mitigating negative consequences of mitochondrial dysfunction. The central role of mitochondria in yeast aging and death indicates that it is one of the most complex and, therefore, deregulation-prone systems in eukaryotic cells.

About the authors

A. V Azbarova

Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University;Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University

119991 Moscow, Russia;119991 Moscow, Russia

D. A Knorre

Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University

Email: knorre@belozersky.msu.ru
119991 Moscow, Russia

References

  1. Kirkwood, T. B., and Austad, S. N. (2000) Why do we age? Nature, 408, 233-238, doi: 10.1038/35041682.
  2. Flatt, T., and Partridge, L. (2018) Horizons in the evolution of aging, BMC Biol., 16, 93, doi: 10.1186/s12915-018-0562-z.
  3. Wensink, M. J., and Cohen, A. A. (2021) The danaid theory of aging, Front. Cell Dev. Biol., 9, 671208, doi: 10.3389/fcell.2021.671208.
  4. Mortimer, R. K., and Johnston, J. R. (1959) Life span of individual yeast cells, Nature, 183, 1751-1752, doi: 10.1038/1831751a0.
  5. Barker, M. G., and Walmsley, R. M. (1999) Replicative ageing in the fission yeast Schizosaccharomyces pombe, Yeast, 15, 1511-1518, doi: 10.1002/(SICI)1097-0061(199910)15:14<1511::AID-YEA482>3.0.CO;2-Y.
  6. Ackermann, M., Stearns, S. C., and Jenal, U. (2003) Senescence in a bacterium with asymmetric division, Science, 300, 1920, doi: 10.1126/science.1083532.
  7. Bouklas, T., and Fries, B. C. (2015) Aging as an emergent factor that contributes to phenotypic variation in Cryptococcus neoformans, Fungal Genet. Biol., 78, 59-64, doi: 10.1016/j.fgb.2014.10.004.
  8. Laun, P., Bruschi, C. V., Dickinson, J. R., Rinnerthaler, M., Heeren, G., Schwimbersky, R., Rid, R., and Breitenbach, M. (2007) Yeast mother cell-specific ageing, genetic (in)stability, and the somatic mutation theory of ageing, Nucleic Acids Res., 35, 7514-7526, doi: 10.1093/nar/gkm919.
  9. Barros, M. H., da Cunha, F. M., Oliveira, G. A., Tahara, E. B., and Kowaltowski, A. J. (2010) Yeast as a model to study mitochondrial mechanisms in ageing, Mech. Ageing Dev., 131, 494-502, doi: 10.1016/j.mad.2010.04.008.
  10. Jazwinski, S. M., Jiang, J. C., and Kim, S. (2018) Adaptation to metabolic dysfunction during aging: making the best of a bad situation, Exp. Gerontol., 107, 87-90, doi: 10.1016/j.exger.2017.07.013.
  11. Botstein, D., and Fink, G. R. (2011) Yeast: an experimental organism for 21st Century biology, Genetics, 189, 695-704, doi: 10.1534/genetics.111.130765.
  12. Campos, S. E., and DeLuna, A. (2019) Functional genomics of dietary restriction and longevity in yeast, Mech. Ageing Dev., 179, 36-43, doi: 10.1016/j.mad.2019.02.003.
  13. Novarina, D., Janssens, G. E., Bokern, K., Schut, T., van Oerle, N. C., Kazemier, H. G., Veenhoff, L. M., and Chang, M. (2020) A genome-wide screen identifies genes that suppress the accumulation of spontaneous mutations in young and aged yeast cells, Aging Cell, 19, e13084, doi: 10.1111/acel.13084.
  14. Howitz, K. T., Bitterman, K. J., Cohen, H. Y., Lamming, D. W., Lavu, S., Wood, J. G., Zipkin, R. E., Chung, P., Kisielewski, A., Zhang, L.-L., Scherer, B., and Sinclair, D. A. (2003) Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan, Nature, 425, 191-196, doi: 10.1038/nature01960.
  15. Okamoto, N., Sato, Y., Kawagoe, Y., Shimizu, T., and Kawamura, K. (2022) Short-term resveratrol treatment restored the quality of oocytes in aging mice, Aging, 14, 5628-5640, doi: 10.18632/aging.204157.
  16. McCormick, M. A., Delaney, J. R., Tsuchiya, M., Tsuchiyama, S., Shemorry, A., Sim, S., Chou, A. C.-Z., Ahmed, U., Carr, D., Murakami, C. J., Schleit, J., Sutphin, G. L., Wasko, B. M., Bennett, C. F., Wang, A. M., Olsen, B., Beyer, R. P., Bammler, T. K., Prunkard, D., Johnson, S. C., Pennypacker, J. K., An, E., Anies, A., Castanza, A. S., Choi, E., Dang, N., Enerio, S., Fletcher, M., Fox, L., Goswami, S., Higgins, S. A., Holmberg, M. A., Hu, D., Hui, J., Jelic, M., Jeong, K.-S., Johnston, E., Kerr, E. O., Kim, J., Kim, D., Kirkland, K., Klum, S., Kotireddy, S., Liao, E., Lim, M., Lin, M. S., Lo, W. C., Lockshon, D., Miller, H. A., Moller, R. M., Muller, B., Oakes, J., Pak, D. N., Peng, Z. J., Pham, K. M., Pollard, T. G., Pradeep, P., Pruett, D., Rai, D., Robison, B., Rodriguez, A. A., Ros, B., Sage, M., Singh, M. K., Smith, E. D., Snead, K., Solanky, A., Spector, B. L., Steffen, K. K., Tchao, B. N., Ting, M. K., Vander Wende, H., Wang, D., Welton, K. L., Westman, E. A., Brem, R. B., Liu, X. G., Suh, Y., Zhou, Z., Kaeberlein, M., and Kennedy, B. K. (2015) A comprehensive analysis of replicative lifespan in 4,698 single-gene deletion strains uncovers conserved mechanisms of aging, Cell. Metab., 22, 895-906, doi: 10.1016/j.cmet.2015.09.008.
  17. Smith, E. D., Tsuchiya, M., Fox, L. A., Dang, N., Hu, D., Kerr, E. O., Johnston, E. D., Tchao, B. N., Pak, D. N., Welton, K. L., Promislow, D. E. L., Thomas, J. H., Kaeberlein, M., and Kennedy, B. K. (2008) Quantitative evidence for conserved longevity pathways between divergent eukaryotic species, Genome Res., 18, 564-570, doi: 10.1101/gr.074724.107.
  18. He, C., Zhou, C., and Kennedy, B. K. (2018) The yeast replicative aging model, Biochim. Biophys. Acta Mol. Basis Dis., 1864, 2690-2696, doi: 10.1016/j.bbadis.2018.02.023.
  19. Ashrafi, K., Sinclair, D., Gordon, J. I., and Guarente, L. (1999) Passage through stationary phase advances replicative aging in Saccharomyces cerevisiae, Proc. Natl. Acad. Sci. USA, 96, 9100-9105, doi: 10.1073/pnas.96.16.9100.
  20. Knorre, D. A., Azbarova, A. V., Galkina, K. V., Feniouk, B. A., and Severin, F. F. (2018) Replicative aging as a source of cell heterogeneity in budding yeast, Mech. Ageing Dev., 176, 24-31, doi: 10.1016/j.mad.2018.09.001.
  21. Janssens, G. E., Meinema, A. C., González, J., Wolters, J. C., Schmidt, A., Guryev, V., Bischoff, R., Wit, E. C., Veenhoff, L. M., and Heinemann, M. (2015) Protein biogenesis machinery is a driver of replicative aging in yeast, Elife, 4, e08527, doi: 10.7554/eLife.08527.
  22. Orner, E. P., Zhang, P., Jo, M. C., Bhattacharya, S., Qin, L., and Fries, B. C. (2019) High-throughput yeast aging analysis for Cryptococcus (HYAAC) microfluidic device streamlines aging studies in Cryptococcus neoformans, Commun. Biol., 2, 256, doi: 10.1038/s42003-019-0504-5.
  23. Yu, R., Jo, M. C., and Dang, W. (2020) Measuring the replicative lifespan of Saccharomyces cerevisiae using the HYAA microfluidic platform, Methods Mol. Biol., 2144, 1-6, doi: 10.1007/978-1-0716-0592-9_1.
  24. Jin, M., Li, Y., O'Laughlin, R., Bittihn, P., Pillus, L., Tsimring, L. S., Hasty, J., and Hao, N. (2019) Divergent aging of isogenic yeast cells revealed through single-cell phenotypic dynamics, Cell Syst., 8, 242-253.e3, doi: 10.1016/j.cels.2019.02.002.
  25. Li, Y., Jiang, Y., Paxman, J., O'Laughlin, R., Klepin, S., Zhu, Y., Pillus, L., Tsimring, L. S., Hasty, J., and Hao, N. (2020) A programmable fate decision landscape underlies single-cell aging in yeast, Science, 369, 325-329, doi: 10.1126/science.aax9552.
  26. Atamna, H., Killilea, D. W., Killilea, A. N., and Ames, B. N. (2002) Heme deficiency may be a factor in the mitochondrial and neuronal decay of aging, Proc. Natl. Acad. Sci. USA, 99, 14807-14812, doi: 10.1073/pnas.192585799.
  27. Xie, Z., Zhang, Y., Zou, K., Brandman, O., Luo, C., Ouyang, Q., and Li, H. (2012) Molecular phenotyping of aging in single yeast cells using a novel microfluidic device, Aging Cell, 11, 599-606, doi: 10.1111/j.1474-9726.2012.00821.x.
  28. Krämer, L., Dalheimer, N., Räschle, M., Storchová, Z., Pielage, J., Boos, F., and Herrmann, J. M. (2023) MitoStores: chaperone-controlled protein granules store mitochondrial precursors in the cytosol, EMBO J., 42, e112309, doi: 10.15252/embj.2022112309.
  29. Seppä, L., Hänninen, A.-L., and Makarow, M. (2004) Upregulation of the Hsp104 chaperone at physiological temperature during recovery from thermal insult, Mol. Microbiol., 52, 217-225, doi: 10.1111/j.1365-2958.2003.03959.x.
  30. Zhou, Z., Liu, Y., Feng, Y., Klepin, S., Tsimring, L. S., Pillus, L., Hasty, J., and Hao, N. (2023) Engineering longevity-design of a synthetic gene oscillator to slow cellular aging, Science, 380, 376-381, doi: 10.1126/science.add7631.
  31. Yang, J., McCormick, M. A., Zheng, J., Xie, Z., Tsuchiya, M., Tsuchiyama, S., El-Samad, H., Ouyang, Q., Kaeberlein, M., Kennedy, B. K., and Li, H. (2015) Systematic analysis of asymmetric partitioning of yeast proteome between mother and daughter cells reveals "aging factors" and mechanism of lifespan asymmetry, Proc. Natl. Acad. Sci. USA, 112, 11977-11982, doi: 10.1073/pnas.1506054112.
  32. Zhou, C., Slaughter, B. D., Unruh, J. R., Guo, F., Yu, Z., Mickey, K., Narkar, A., Ross, R. T., McClain, M., and Li, R. (2014) Organelle-based aggregation and retention of damaged proteins in asymmetrically dividing cells, Cell, 159, 530-542, doi: 10.1016/j.cell.2014.09.026.
  33. Hill, S. M., Hanzén, S., and Nyström, T. (2017) Restricted access: spatial sequestration of damaged proteins during stress and aging, EMBO Rep., 18, 377-391, doi: 10.15252/embr.201643458.
  34. Kumar, S., de Boer, R., and van der Klei, I. J. (2018) Yeast cells contain a heterogeneous population of peroxisomes that segregate asymmetrically during cell division, J. Cell Sci., 131, jcs207522, doi: 10.1242/jcs.207522.
  35. Förtsch, J., Hummel, E., Krist, M., and Westermann, B. (2011) The myosin-related motor protein Myo2 is an essential mediator of bud-directed mitochondrial movement in yeast, J. Cell Biol., 194, 473-488, doi: 10.1083/jcb.201012088.
  36. Itoh, T., Toh-E, A., and Matsui, Y. (2004) Mmr1p is a mitochondrial factor for Myo2p-dependent inheritance of mitochondria in the budding yeast, EMBO J., 23, 2520-2530, doi: 10.1038/sj.emboj.7600271.
  37. Klecker, T., Scholz, D., Förtsch, J., and Westermann, B. (2013) The yeast cell cortical protein Num1 integrates mitochondrial dynamics into cellular architecture, J. Cell Sci., 126, 2924-2930, doi: 10.1242/jcs.126045.
  38. Pernice, W. M., Vevea, J. D., and Pon, L. A. (2016) A role for Mfb1p in region-specific anchorage of high-functioning mitochondria and lifespan in Saccharomyces cerevisiae, Nat. Commun., 7, 10595, doi: 10.1038/ncomms10595.
  39. Pernice, W. M., Swayne, T. C., Boldogh, I. R., and Pon, L. A. (2017) Mitochondrial tethers and their impact on lifespan in budding yeast, Front. Cell. Dev. Biol., 5, 120, doi: 10.3389/fcell.2017.00120.
  40. McFaline-Figueroa, J. R., Vevea, J., Swayne, T. C., Zhou, C., Liu, C., Leung, G., Boldogh, I. R., and Pon, L. A. (2011) Mitochondrial quality control during inheritance is associated with lifespan and mother-daughter age asymmetry in budding yeast, Aging Cell, 10, 885-895, doi: 10.1111/j.1474-9726.2011.00731.x.
  41. Manzano-López, J., Matellán, L., Álvarez-Llamas, A., Blanco-Mira, J. C., and Monje-Casas, F. (2019) Asymmetric inheritance of spindle microtubule-organizing centres preserves replicative lifespan, Nat. Cell. Biol., 21, 952-965, doi: 10.1038/s41556-019-0364-8.
  42. Hughes, A. L., and Gottschling, D. E. (2012) An early age increase in vacuolar pH limits mitochondrial function and lifespan in yeast, Nature, 492, 261-265, doi: 10.1038/nature11654.
  43. Azbarova, A. V., Galkina, K. V., Sorokin, M. I., Severin, F. F., and Knorre, D. A. (2017) The contribution of Saccharomyces cerevisiae replicative age to the variations in the levels of Trx2p, Pdr5p, Can1p and Idh isoforms, Sci. Rep., 7, 13220, doi: 10.1038/s41598-017-13576-w.
  44. Galkina, K. V., Zyrina, A. N., Golyshev, S. A., Kashko, N. D., Markova, O. V., Sokolov, S. S., Severin, F. F., and Knorre, D. A. (2020) Mitochondrial dynamics in yeast with repressed adenine nucleotide translocator AAC2, Eur. J. Cell Biol., 99, 151071, doi: 10.1016/j.ejcb.2020.151071.
  45. Nguyen, T. T. M., Iwaki, A., Ohya, Y., and Izawa, S. (2014) Vanillin causes the activation of Yap1 and mitochondrial fragmentation in Saccharomyces cerevisiae, J. Biosci. Bioeng., 117, 33-38, doi: 10.1016/j.jbiosc.2013.06.008.
  46. Rogov, A. G., Ovchenkova, A. P., Goleva, T. N., Kireev, I. I., and Zvyagilskaya, R. A. (2017) New yeast models for studying mitochondrial morphology as affected by oxidative stress and other factors, Anal. Biochem., 552, 24-29, doi: 10.1016/j.ab.2017.04.003.
  47. Scheckhuber, C. Q., Erjavec, N., Tinazli, A., Hamann, A., Nyström, T., and Osiewacz, H. D. (2007) Reducing mitochondrial fission results in increased life span and fitness of two fungal ageing models, Nat. Cell Biol., 9, 99-105, doi: 10.1038/ncb1524.
  48. Poveda-Huertes, D., Taskin, A. A., Dhaouadi, I., Myketin, L., Marada, A., Habernig, L., Büttner, S., and Vögtle, F.-N. (2021) Increased mitochondrial protein import and cardiolipin remodelling upon early mtUPR, PLoS Genet., 17, e1009664, doi: 10.1371/journal.pgen.1009664.
  49. Liu, Q., Chang, C. E., Wooldredge, A. C., Fong, B., Kennedy, B. K., and Zhou, C. (2022) Tom70-based transcriptional regulation of mitochondrial biogenesis and aging, Elife, 11, e75658, doi: 10.7554/eLife.75658.
  50. Veatch, J. R., McMurray, M. A., Nelson, Z. W., and Gottschling, D. E. (2009) Mitochondrial dysfunction leads to nuclear genome instability via an iron-sulfur cluster defect, Cell, 137, 1247-1258, doi: 10.1016/j.cell.2009.04.014.
  51. Giaever, G., Chu, A. M., Ni, L., Connelly, C., Riles, L., Véronneau, S., Dow, S., Lucau-Danila, A., Anderson, K., André, B., Arkin, A. P., Astromoff, A., El-Bakkoury, M., Bangham, R., Benito, R., Brachat, S., Campanaro, S., Curtiss, M., Davis, K., Deutschbauer, A., Entian, K.-D., Flaherty, P., Foury, F., Garfinkel, D. J., Gerstein, M., Gotte, D., Güldener, U., Hegemann, J. H., Hempel, S., Herman, Z., Jaramillo, D. F., Kelly, D. E., Kelly, S. L., Kötter, P., LaBonte, D., Lamb, D. C., Lan, N., Liang, H., Liao, H., Liu, L., Luo, C., Lussier, M., Mao, R., Menard, P., Ooi, S. L., Revuelta, J. L., Roberts, C. J., Rose, M., Ross-Macdonald, P., Scherens, B., Schimmack, G., Shafer, B., Shoemaker, D. D., Sookhai-Mahadeo, S., Storms, R. K., Strathern, J. N., Valle, G., Voet, M., Volckaert, G., Wang, C.-Y., Ward, T. R., Wilhelmy, J., Winzeler, E. A., Yang, Y., Yen, G., Youngman, E., Yu, K., Bussey, H., Boeke, J. D., Snyder, M., Philippsen, P., Davis, R. W., and Johnston, M. (2002) Functional profiling of the Saccharomyces cerevisiae genome, Nature, 418, 387-391, doi: 10.1038/nature00935.
  52. Janouškovec, J., Tikhonenkov, D. V., Burki, F., Howe, A. T., Rohwer, F. L., Mylnikov, A. P., and Keeling, P. J. (2017) A new lineage of eukaryotes illuminates early mitochondrial genome reduction, Curr. Biol., 27, 3717-3724.e5, doi: 10.1016/j.cub.2017.10.051.
  53. Kirchman, P. A., Kim, S., Lai, C. Y., and Jazwinski, S. M. (1999) Interorganelle signaling is a determinant of longevity in Saccharomyces cerevisiae, Genetics, 152, 179-190, doi: 10.1093/genetics/152.1.179.
  54. Borghouts, C., Benguria, A., Wawryn, J., and Jazwinski, S. M. (2004) Rtg2 protein links metabolism and genome stability in yeast longevity, Genetics, 166, 765-777, doi: 10.1093/genetics/166.2.765.
  55. Woo, D. K., and Poyton, R. O. (2009) The absence of a mitochondrial genome in rho0 yeast cells extends lifespan independently of retrograde regulation, Exp. Gerontol., 44, 390-397, doi: 10.1016/j.exger.2009.03.001.
  56. Miceli, M. V., Jiang, J. C., Tiwari, A., Rodriguez-Quiñones, J. F., and Jazwinski, S. M. (2011) Loss of mitochondrial membrane potential triggers the retrograde response extending yeast replicative lifespan, Front. Genet., 2, 102, doi: 10.3389/fgene.2011.00102.
  57. Jiang, J. C., Stumpferl, S. W., Tiwari, A., Qin, Q., Rodriguez-Quiñones, J. F., and Jazwinski, S. M. (2016) Identification of the target of the retrograde response that mediates replicative lifespan extension in Saccharomyces cerevisiae, Genetics, 204, 659-673, doi: 10.1534/genetics.116.188086.
  58. Heeren, G., Jarolim, S., Laun, P., Rinnerthaler, M., Stolze, K., Perrone, G. G., Kohlwein, S. D., Nohl, H., Dawes, I. W., and Breitenbach, M. (2004) The role of respiration, reactive oxygen species and oxidative stress in mother cell-specific ageing of yeast strains defective in the RAS signalling pathway, FEMS Yeast Res., 5, 157-167, doi: 10.1016/j.femsyr.2004.05.008.
  59. Kaeberlein, M., Hu, D., Kerr, E. O., Tsuchiya, M., Westman, E. A., Dang, N., Fields, S., and Kennedy, B. K. (2005) Increased life span due to calorie restriction in respiratory-deficient yeast, PLoS Genet., 1, e69, doi: 10.1371/journal.pgen.0010069.
  60. Kaeberlein, M., Kirkland, K. T., Fields, S., and Kennedy, B. K. (2005) Genes determining yeast replicative life span in a long-lived genetic background, Mech. Ageing Dev., 126, 491-504, doi: 10.1016/j.mad.2004.10.007.
  61. Traven, A., Wong, J. M., Xu, D., Sopta, M., and Ingles, C. J. (2001) Interorganellar communication. Altered nuclear gene expression profiles in a yeast mitochondrial DNA mutant, J. Biol. Chem., 276, 4020-4027, doi: 10.1074/jbc.M006807200.
  62. Epstein, C. B., Waddle, J. A., Hale, W., Davé, V., Thornton, J., Macatee, T. L., Garner, H. R., and Butow, R. A. (2001) Genome-wide responses to mitochondrial dysfunction, Mol. Biol. Cell, 12, 297-308, doi: 10.1091/mbc.12.2.297.
  63. Liu, S., Liu, S., He, B., Li, L., Li, L., Wang, J., Cai, T., Chen, S., and Jiang, H. (2021) OXPHOS deficiency activates global adaptation pathways to maintain mitochondrial membrane potential, EMBO Rep., 22, e51606, doi: 10.15252/embr.202051606.
  64. Liu, Z., and Butow, R. A. (1999) A transcriptional switch in the expression of yeast tricarboxylic acid cycle genes in response to a reduction or loss of respiratory function, Mol. Cell. Biol., 19, 6720-6728, doi: 10.1128/MCB.19.10.6720.
  65. Starovoytova, A. N., Sorokin, M. I., Sokolov, S. S., Severin, F. F., and Knorre, D. A. (2013) Mitochondrial signaling in Saccharomyces cerevisiae pseudohyphae formation induced by butanol, FEMS Yeast Res., 13, 367-374, doi: 10.1111/1567-1364.12039.
  66. Kwan, E. X., Wang, X. S., Amemiya, H. M., Brewer, B. J., and Raghuraman, M. K. (2016) rDNA copy number variants are frequent passenger mutations in Saccharomyces cerevisiae deletion collections and de novo transformants, G3, 6, 2829-2838, doi: 10.1534/g3.116.030296.
  67. Hotz, M., Thayer, N. H., Hendrickson, D. G., Schinski, E. L., Xu, J., and Gottschling, D. E. (2022) rDNA array length is a major determinant of replicative lifespan in budding yeast, Proc. Natl. Acad. Sci. USA, 119, e2119593119, doi: 10.1073/pnas.2119593119.
  68. Garcia, E. J., de Jonge, J. J., Liao, P.-C., Stivison, E., Sing, C. N., Higuchi-Sanabria, R., Boldogh, I. R., and Pon, L. A. (2019) Reciprocal interactions between mtDNA and lifespan control in budding yeast, Mol. Biol. Cell, 30, 2943-2952, doi: 10.1091/mbc.E18-06-0356.
  69. Morgenstern, M., Stiller, S. B., Lübbert, P., Peikert, C. D., Dannenmaier, S., Drepper, F., Weill, U., Höß, P., Feuerstein, R., Gebert, M., Bohnert, M., van der Laan, M., Schuldiner, M., Schütze, C., Oeljeklaus, S., Pfanner, N., Wiedemann, N., and Warscheid, B. (2017) Definition of a high-confidence mitochondrial Proteome at quantitative scale, Cell Rep., 19, 2836-2852, doi: 10.1016/j.celrep.2017.06.014.
  70. Puddu, F., Herzog, M., Selivanova, A., Wang, S., Zhu, J., Klein-Lavi, S., Gordon, M., Meirman, R., Millan-Zambrano, G., Ayestaran, I., Salguero, I., Sharan, R., Li, R., Kupiec, M., and Jackson, S. P. (2019) Genome architecture and stability in the Saccharomyces cerevisiae knockout collection, Nature, 573, 416-420, doi: 10.1038/s41586-019-1549-9.
  71. Heeren, G., Rinnerthaler, M., Laun, P., von Seyerl, P., Kössler, S., Klinger, H., Hager, M., Bogengruber, E., Jarolim, S., Simon-Nobbe, B., Schüller, C., Carmona-Gutierrez, D., Breitenbach-Koller, L., Mück, C., Jansen-Dürr, P., Criollo, A., Kroemer, G., Madeo, F., and Breitenbach, M. (2009) The mitochondrial ribosomal protein of the large subunit, Afo1p, determines cellular longevity through mitochondrial back-signaling via TOR1, Aging, 1, 622-636, doi: 10.18632/aging.100065.
  72. Caballero, A., Ugidos, A., Liu, B., Öling, D., Kvint, K., Hao, X., Mignat, C., Nachin, L., Molin, M., and Nyström, T. (2011) Absence of mitochondrial translation control proteins extends life span by activating sirtuin-dependent silencing, Mol. Cell, 42, 390-400, doi: 10.1016/j.molcel.2011.03.021.
  73. Foury, F., Roganti, T., Lecrenier, N., and Purnelle, B. (1998) The complete sequence of the mitochondrial genome of Saccharomyces cerevisiae, FEBS Lett., 440, 325-331, doi: 10.1016/S0014-5793(98)01467-7.
  74. Bykov, Y. S., Flohr, T., Boos, F., Zung, N., Herrmann, J. M., and Schuldiner, M. (2022) Widespread use of unconventional targeting signals in mitochondrial ribosome proteins, EMBO J., 41, e109519, doi: 10.15252/embj.2021109519.
  75. Piper, P. W., Jones, G. W., Bringloe, D., Harris, N., MacLean, M., and Mollapour, M. (2002) The shortened replicative life span of prohibitin mutants of yeast appears to be due to defective mitochondrial segregation in old mother cells, Aging Cell, 1, 149-157, doi: 10.1046/j.1474-9728.2002.00018.x.
  76. Yi, D.-G., Hong, S., and Huh, W.-K. (2018) Mitochondrial dysfunction reduces yeast replicative lifespan by elevating RAS-dependent ROS production by the ER-localized NADPH oxidase Yno1, PLoS One, 13, e0198619, doi: 10.1371/journal.pone.0198619.
  77. Stenger, M., Le, D. T., Klecker, T., and Westermann, B. (2020) Systematic analysis of nuclear gene function in respiratory growth and expression of the mitochondrial genome in S. cerevisiae, Microb. Cell, 7, 234-249, doi: 10.15698/mic2020.09.729.
  78. Erjavec, N., Bayot, A., Gareil, M., Camougrand, N., Nystrom, T., Friguet, B., and Bulteau, A.-L. (2013) Deletion of the mitochondrial Pim1/Lon protease in yeast results in accelerated aging and impairment of the proteasome, Free Radic. Biol. Med., 56, 9-16, doi: 10.1016/j.freeradbiomed.2012.11.019.
  79. Barros, M. H., Bandy, B., Tahara, E. B., and Kowaltowski, A. J. (2004) Higher respiratory activity decreases mitochondrial reactive oxygen release and increases life span in Saccharomyces cerevisiae, J. Biol. Chem., 279, 49883-49888, doi: 10.1074/jbc.M408918200.
  80. Galkina, K. V., Finkelberg, J. M., Markova, O. V., Azbarova, A. V., Banerjee, A., Kumari, S., Sokolov, S. S., Severin, F. F., Prasad, R., and Knorre, D. A. (2020) Protonophore FCCP provides fitness advantage to PDR-deficient yeast cells, J. Bioenerg. Biomembr., 52, 383-395, doi: 10.1007/s10863-020-09849-1.
  81. Jiang, J. C., Jaruga, E., Repnevskaya, M. V., and Jazwinski, S. M. (2000) An intervention resembling caloric restriction prolongs life span and retards aging in yeast, FASEB J., 14, 2135-2137, doi: 10.1096/fj.00-0242fje.
  82. Stöckl, P., Zankl, C., Hütter, E., Unterluggauer, H., Laun, P., Heeren, G., Bogengruber, E., Herndler-Brandstetter, D., Breitenbach, M., and Jansen-Dürr, P. (2007) Partial uncoupling of oxidative phosphorylation induces premature senescence in human fibroblasts and yeast mother cells, Free Radic. Biol. Med., 43, 947-958, doi: 10.1016/j.freeradbiomed.2007.06.005.
  83. Dupont, C.-H., Mazat, J. P., and Guerin, B. (1985) The role of adenine nucleotide translocation in the energization of the inner membrane of mitochondria isolated from ϱ+ and ϱo strains of Saccharomyces cerevisiae, Biochem. Biophys. Res. Commun., 132, 1116-1123, doi: 10.1016/0006-291X(85)91922-9.
  84. Antonenko, Y. N., Avetisyan, A. V., Cherepanov, D. A., Knorre, D. A., Korshunova, G. A., Markova, O. V., Ojovan, S. M., Perevoshchikova, I. V., Pustovidko, A. V., Rokitskaya, T. I., Severina, I. I., Simonyan, R. A., Smirnova, E. A., Sobko, A. A., Sumbatyan, N. V., Severin, F. F., and Skulachev, V. P. (2011) Derivatives of rhodamine 19 as mild mitochondria-targeted cationic uncouplers, J. Biol. Chem., 286, 17831-17840, doi: 10.1074/jbc.M110.212837.
  85. Leupold, S., Hubmann, G., Litsios, A., Meinema, A. C., Takhaveev, V., Papagiannakis, A., Niebel, B., Janssens, G., Siegel, D., and Heinemann, M. (2019) Saccharomyces cerevisiae goes through distinct metabolic phases during its replicative lifespan, Elife, 8, e41046, doi: 10.7554/eLife.41046.

Copyright (c) 2023 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies