Characteristics of PRIMPOL knockout А549 cell response to genоtoxic stress

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Human DNA primase/polymerase PrimPol synthesizes DNA primers de novo after replication fork stalling at damaged DNA sites, contributing to DNA damage tolerance. The contribution of PrimPol in response to the various types of DNA damage is not fully understood. We obtained the lung carcinoma cells A549 with PRIMPOL knockout and characterized its response to DNA damage caused by hydrogen peroxide, methylmethanesulfonate (MMS), cisplatin, bleomycin and ionizing radiation. Knockout of PRIMPOL reduced the number of proliferating cells and cells in G2 phase after treatment with MMS, caused a more pronounced delay of cisplatin-treated cells in S phase. A significant increase in the proportion of apoptotic cells was noted in PRIMPOL-/- cells in response to ionizing radiation at a dose of 10 Gy, while the proportion of cells prone to necroptosis increased significantly in both parental and knockout cells at any radiation dose. Under conditions of oxidative stress stimulated by hydrogen peroxide, PRIMPOL knockout increased cell viability, measured by the MTT method. The data obtained indicate the involvement of PRIMPOL in modulating stress-adaptive responses to various types of genotoxic stress.

Sobre autores

A. Gromova

Institute of Molecular Genetics, National Research Center “Kurchatov Institute”;Institute of Gene Biology, Russian Academy of Sciences

123182 Moscow, Russia;119334 Moscow, Russia

E. Boldinova

Institute of Molecular Genetics, National Research Center “Kurchatov Institute”;Institute of Gene Biology, Russian Academy of Sciences

123182 Moscow, Russia;119334 Moscow, Russia

D. Kim

Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences;Novosibirsk State University

630090 Novosibirsk, Russia;630090 Novosibirsk, Russia

R. Chuprov-netochin

Moscow Institute of Physics and Technology

141700 Dolgoprudny, Moscow Region, Russia

S. Leonov

Moscow Institute of Physics and Technology;Institute of Cell Biophysics of the Russian Academy of Sciences

141700 Dolgoprudny, Moscow Region, Russia;142290 Pushchino, Russia

M. Pustovalova

Moscow Institute of Physics and Technology

141700 Dolgoprudny, Moscow Region, Russia

D. Zharkov

Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences;Novosibirsk State University

Email: dzharkov@niboch.nsc.ru
630090 Novosibirsk, Russia;630090 Novosibirsk, Russia

A. Makarova

Institute of Molecular Genetics, National Research Center “Kurchatov Institute”;Institute of Gene Biology, Russian Academy of Sciences

Email: amakarova-img@yandex.ru
123182 Moscow, Russia;119334 Moscow, Russia

Bibliografia

  1. Игнатов А. В., Бондаренко К. А., Макарова А. В. (2017) Необъемные повреждения ДНК у человека: пути образования, репарации и репликации, Acta Naturae, 9, 13-28, doi: 10.32607/20758251-2017-9-3-12-26.
  2. Vaisman, A., and Woodgate, R. (2017) Translesion DNA polymerases in eukaryotes: what makes them tick? Crit. Rev. Biochem. Mol. Biol., 52, 274-303, doi: 10.1080/10409238.2017.1291576.
  3. Jain, R., Aggarwal, A. K., and Rechkoblit, O. (2018) Eukaryotic DNA polymerases, Curr. Opin. Struct. Biol., 53, 77-87, doi: 10.1016/j.sbi.2018.06.003.
  4. Dash, R. C., and Hadden, K. (2021) Protein-protein interactions in translesion synthesis, Molecules, 26, 5544, doi: 10.3390/molecules26185544.
  5. García-Gómez, S., Reyes, A., Martínez-Jiménez, M. I., Chocrón, S., Mourón, S., et al. (2013) PrimPol, an archaic primase/polymerase operating in human cells, Mol. Cell, 52, 541-553, doi: 10.1016/j.molcel.2013.09.025.
  6. Bianchi, J., Rudd, S. G., Jozwiakowski, S. K., Bailey, L. J., Soura, V., et al. (2013) Primpol bypasses UV photoproducts during eukaryotic chromosomal DNA replication, Mol. Cell, 52, 566-573, doi: 10.1016/j.molcel.2013.10.035.
  7. Wan, L., Lou, J., Xia, Y., Su, B., Liu, T., et al. (2013) HPrimpol1/CCDC111 is a human DNA primase-polymerase required for the maintenance of genome integrity, EMBO Rep., 14, 1104-1112, doi: 10.1038/embor.2013.159.
  8. Iyer, L. M., Koonin, E. V., Leipe, D. D., and Aravind, L. (2005) Origin and evolution of the archaeo-eukaryotic primase superfamily and related palm-domain proteins: Structural insights and new members, Nucleic Acids Res., 33, 3875-3896, doi: 10.1093/nar/gki702.
  9. González-Acosta, D., Blanco-Romero, E., Ubieto-Capella, P., Mutreja, K., Míguez, S., et al. (2021) PrimPol-mediated repriming facilitates replication traverse of DNA interstrand crosslinks, EMBO J., 40, e106355, doi: 10.15252/embj.2020106355.
  10. Piberger, A. L., Bowry, A., Kelly, R., Walker, A. K., Gonzalez, D., Bailey, L. J., et al. (2020) PrimPol-dependent single-stranded gap formation mediates homologous recombination at bulky DNA adducts, Nat. Commun., 11, 5863, doi: 10.1038/s41467-020-19570-7.
  11. Butler, T. J., Estep, K. N., Sommers, J. A., Maul, R. W., Moore, A. Z., Bandinelli, S., et al. (2020) Mitochondrial genetic variation is enriched in G-quadruplex regions that stall DNA synthesis in vitro, Hum. Mol. Genet., 29, 1292-1309, doi: 10.1093/hmg/ddaa043.
  12. Šviković, S., Crisp, A., Tan-Wong, S. M., Guilliam, T. A., Doherty, A. J., Proudfoot, N. J., Guilbaud, G., and Sale, J. E. (2019) R-loop formation during S phase is restricted by PrimPol-mediated repriming, EMBO J., 38, e99793, doi: 10.15252/embj.201899793.
  13. Quinet, A., Tirman, S., Jackson, J., Šviković, S., Lemaçon, D., et al. (2019) PRIMPOL-mediated adaptive response suppresses replication fork reversal in BRCA-deficient cells, Mol. Cell, 77, 461-474.e9, doi: 10.1016/j.molcel.2019.10.008.
  14. Torregrosa-Muñumer, R., Forslund, J., Goffart, S., Pfeiffer, A., Stojkovic, G., et al. (2017) PrimPol is required for replication reinitiation after mtDNA damage, Proc. Natl. Acad. Sci. USA, 114, 11398-11403, doi: 10.1073/pnas.1705367114.
  15. Kobayashi, K., Guilliam, T. A., Tsuda, M., Yamamoto, J., Bailey, L. J., Iwai, S., Takeda, S., Doherty, A. J., and Hirota, K. (2016) Repriming by PrimPol is critical for DNA replication restart downstream of lesions and chain-terminating nucleosides, Cell Cycle, 15, 1997-2008, doi: 10.1080/15384101.2016.1191711.
  16. Taglialatela, A., Leuzzi, G., Sannino, V., Cuella-Martin, R., Huang, J. W., et al. (2021) REV1-Polζ maintains the viability of homologous recombination-deficient cancer cells through mutagenic repair of PRIMPOL-dependent ssDNA gaps, Mol. Cell, 81, 4008-4025.e7, doi: 10.1016/j.molcel.2021.08.016.
  17. Makarova, A. V., Boldinova, E. O., Belousova, E. A., and Lavrik, O. I. (2018) In vitro lesion bypass by human PrimPol, DNA Rep., 70, 18-24, doi: 10.1016/j.dnarep.2018.07.009.
  18. Guilliam, T. A., Jozwiakowski, S. K., Ehlinger, A., Barnes, R. P., Rudd, S. G., et al. (2015) Human PrimPol is a highly error-prone polymerase regulated by single-stranded DNA binding proteins, Nucleic Acids Res., 43, 1056-1068, doi: 10.1093/nar/gku1321.
  19. Zafar, M. K., Ketkar, A., Lodeiro, M. F., Cameron, C. E., and Eoff, R. L. (2014) Kinetic analysis of human PrimPol DNA polymerase activity reveals a generally error-prone enzyme capable of accurately bypassing 7,8-dihydro-8-oxo-2′-deoxyguanosine, Biochemistry, 53, 6584-6594, doi: 10.1021/bi501024u.
  20. Boldinova, E. O., Yudkina, A. V., Shilkin, E. S., Gagarinskaya, D. I., Baranovskiy, A. G., et al. (2021) Translesion activity of PrimPol on DNA with cisplatin and DNA-protein cross-links, Sci. Rep., 11, 17588, doi: 10.1038/s41598-021-96692-y.
  21. Mourón, S., Rodriguez-Acebes, S., Martínez-Jiménez, M. I., García-Gómez, S., Chocrón, S., Blanco, L., and Méndez, J. (2013) Repriming of DNA synthesis at stalled replication forks by human PrimPol, Nat. Struct. Mol. Biol., 20, 1383-1389, doi: 10.1038/nsmb.2719.
  22. Bailey, L. J., Bianchi, J., Hégarat, N., Hochegger, H., and Doherty, A. J. (2016) PrimPol-deficient cells exhibit a pronounced G2 checkpoint response following UV damage, Cell Cycle, 15, 908-918, doi: 10.1080/15384101.2015.1128597.
  23. Schiavone, D., Jozwiakowski, S. K., Romanello, M., Guilbaud, G., Guilliam, T. A., et al. (2016) PrimPol is required for replicative tolerance of G quadruplexes in vertebrate cells, Mol. Cell, 61, 161-169, doi: 10.1016/j.molcel.2015.10.038.
  24. Bailey, L. J., Bianchi, J., and Doherty, A. J. (2019) PrimPol is required for the maintenance of efficient nuclear and mitochondrial DNA replication in human cells, Nucleic Acids Res., 47, 4026-4038, doi: 10.1093/nar/gkz056.
  25. Duong, V. N., Zhou, L., Martínez-Jiménez, M. I., He, L., Cosme, M., et al. (2020) Identifying the role of PrimPol in TDF-induced toxicity and implications of its loss of function mutation in an HIV+ patient, Sci. Rep., 10, 9343, doi: 10.1038/s41598-020-66153-z.
  26. Jamieson, E. R., and Lippard, S. J. (1999) Structure, recognition, and processing of cisplatin - DNA adducts, Chem. Rev., 99, 2467-2498, doi: 10.1021/cr980421n.
  27. Natile, G., and Cannito, F. (2009) Platinum drugs, nucleotides and DNA: the role of interligand interactions, in Metal Complex-DNA Interactions, pp. 135-173, doi: 10.1002/9781444312089.ch5.
  28. Hay, J., Shahzeidi, S., and Laurent, G. (1991) Mechanisms of bleomycin-induced lung damage, Arch. Toxicol., 65, 81-94, doi: 10.1007/BF02034932.
  29. Díaz-Talavera, A., Calvo, P. A., González-Acosta, D., Díaz, M., Sastre-Moreno, G., et al. (2019) A cancer-associated point mutation disables the steric gate of human PrimPol, Sci. Rep., 9, 1121, doi: 10.1038/s41598-018-37439-0.
  30. Kang, Z., Fu, P., Alcivar, A. L., Fu, H., Redon, C., et al. (2021) BRCA2 associates with MCM10 to suppress PRIMPOL-mediated repriming and single-stranded gap formation after DNA damage, Nat. Commun., 12, 5966, doi: 10.1038/s41467-021-26227-6.
  31. Pilzecker, B., Buoninfante, O. A., Pritchard, C., Blomberg, O. S., Huijbers, I. J., Van Den Berk, P. C. M., and Jacobs, H. (2016) PrimPol prevents APOBEC/AID family mediated DNA mutagenesis, Nucleic Acids Res., 44, 4734-4744, doi: 10.1093/nar/gkw123.
  32. Guilliam, T. A., Bailey, L. J., Brissett, N. C., and Doherty, A. J. (2016) PolDIP2 interacts with human PrimPol and enhances its DNA polymerase activities, Nucleic Acids Res., 44, 3317-3329, doi: 10.1093/nar/gkw175.
  33. Keen, B. A., Bailey, L. J., Jozwiakowski, S. K., and Doherty, A. J. (2014) Human PrimPol mutation associated with high myopia has a DNA replication defect, Nucleic Acids Res., 42, 12102-12111, doi: 10.1093/nar/gku879.
  34. Liu, J., Lee, W., Jiang, Z., Chen, Z., Jhunjhunwala, S., et al. (2012) Genome and transcriptome sequencing of lung cancers reveal diverse mutational and splicing events, Genome Res., 22, 2315-2327, doi: 10.1101/gr.140988.112.
  35. Vaisman, A., Masutani, C., Hanaoka, F., and Chaney, S. G. (2000) Efficient translesion replication past oxaliplatin and cisplatin GpG adducts by human DNA polymerase eta, Biochemistry, 39, 4575-4580, doi: 10.1021/bi000130k.
  36. Shen, M., Qi, R., Ren, J., Lv, D., and Yang, H. (2022) Characterization with KRAS mutant is a critical determinant in immunotherapy and other multiple therapies for non-small cell lung cancer, Front. Oncol., 11, 780655, doi: 10.3389/fonc.2021.780655.
  37. Yoon, Y. K., Kim, H. P., Han, S. W., Oh, D. Y., Im, S. A., et al. (2010) KRAS mutant lung cancer cells are differentially responsive to MEK inhibitor due to AKT or STAT3 activation: Implication for combinatorial approach, Mol. Carcinog., 49, 353-362, doi: 10.1002/mc.20607.
  38. Garassino, M. C., Marabese, M., Rusconi, P., Rulli, E., Martelli, O., et al. (2011) Different types of K-Ras mutations could affect drug sensitivity and tumour behaviour in non-small-cell lung cancer, Ann. Oncol., 22, 235-237, doi: 10.2959/logo.2002.13.2.109.
  39. Shepherd, F. A., Domerg, C., Hainaut, P., Jänne, P. A., Pignon, J. P., et al. (2013) Pooled analysis of the prognostic and predictive effects of KRAS mutation status and KRAS mutation subtype in early-stage resected non-small-cell lung cancer in four trials of adjuvant chemotherapy, J. Clin. Oncol., 31, 2173-2181, doi: 10.1200/JCO.2012.48.1390.
  40. Sarin, N., Engel, F., Kalayda, G. V., Mannewitz, M., Cinatl, J., et al. (2017) Cisplatin resistance in non-small cell lung cancer cells is associated with an abrogation of cisplatin-induced G2/M cell cycle arrest, PLoS One, 12, e0181081, doi: 10.1371/journal.pone.0181081.
  41. Gao, Y., Dorn, P., Liu, S., Deng, H., Hall, S. R. R., et al. (2019) Cisplatin-resistant A549 non-small cell lung cancer cells can be identified by increased mitochondrial mass and are sensitive to pemetrexed treatment, Cancer Cell Int., 19, 317, doi: 10.1186/s12935-019-1037-1.
  42. Ray, R., Al Khashali, H., Haddad, B., Wareham, J., Coleman, K. L., et al. (2022) Regulation of cisplatin resistance in lung cancer cells by nicotine, BDNF, and a β-adrenergic receptor blocker, Int. J. Mol. Sci., 23, 12829, doi: 10.3390/ijms232112829.

Declaração de direitos autorais © Russian Academy of Sciences, 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies