Effects of progesterone and selective ligands of membrane progesterone receptors in HepG2 cells of human hepatocellular carcinoma

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Progesterone exerts multiple effects in different tissues through nuclear receptors (nPRs) and through membrane receptors of the adiponectin and progestin receptor (mPRs) family. The effect of progesterone on cells through different types of receptors can vary significantly. At the same time, it affects the processes of proliferation and apoptosis in normal and tumor tissues in a dual way, stimulating proliferation and carcinogenesis in some tissues, suppressing them and stimulating cell death in others. In this study, we have shown the presence of a high level of mRNA and mPRβ protein in HepG2 tumor cells of human hepatocellular carcinoma. Expression of other membrane and classical nuclear receptors was not detected. May be mPRβ has an important function in HepG2 cells. The main goal of the work was to study the function of this protein and the mechanisms of its action in human hepatocellular carcinoma cells. Previously, we have identified selective mPRs ligands, compounds LS-01 and LS-02, which do not interact with nuclear receptors. Their employment allows differentiating the effects of progestins mediated by different types of receptors. The work studied the effects of progesterone, LS-01 and LS-02 on the proliferation and death of HepG2 cells, as well as the activating phosphorylation of two kinases, p38 MAPK and JNK, under the action of three steroids. It was shown that all three progestins after 72 hours of incubation with cells suppressed their viability and stimulated the appearance of phosphatidylserine on the outer surface of membranes, which was detected by binding to V-FITC annexin, but they did not affect DNA fragmentation of cell nuclei. Progesterone significantly reduced the expression of proliferation marker genes and stimulated the expression of the p21 protein gene, but had a suppressive effect on the expression of some proapoptotic factor genes. All three steroids activated JNK in these cells, but had no effect on p38 MAPK activity. The effects of progesterone and selective mPRs ligands in HepG2 cells were the same in terms of suppression of proliferation and stimulation of apoptotic changes in outer membranes, therefore, they were mediated through interaction with mPRβ. JNK is a member of the signaling cascade activated in these cells by the studied steroids.

作者简介

T. Shchelkunova

Faculty of Biology, Lomonosov Moscow State University

Email: schelkunova-t@mail.ru
119234 Moscow, Russia

I. Levina

Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences

119991 Moscow, Russia

I. Morozov

Engelhardt Institute of Molecular Biology, Russian Academy of Sciences

119991 Moscow, Russia

P. Rubtsov

Engelhardt Institute of Molecular Biology, Russian Academy of Sciences

119991 Moscow, Russia

A. Goncharov

Faculty of Biology, Lomonosov Moscow State University

119234 Moscow, Russia

Yu. Kuznetsov

Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences

119991 Moscow, Russia

I. Zavarzin

Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences

119991 Moscow, Russia

O. Smirnova

Faculty of Biology, Lomonosov Moscow State University

119234 Moscow, Russia

参考

  1. Щелкунова Т. А., Морозов И. А. (2015) Молекулярные основы и тканевая специфичность действия прогестинов, Мол. Биол., 49, 728-748, doi: 10.7868/S0026898415050158.
  2. González-Orozcoa, J. C., Hansberg-Pastorb, V., Valadez-Cosmesa, P., Nicolas-Ortegaa, W., Bastida-Beristaina, Y., Fuente-Granada, M., González-Arenas, A., and Camacho-Arroyo, I. (2018) Activation of membrane progesterone receptor-alpha increases proliferation, migration, and invasion of human glioblastoma cells, Mol. Cell. Endocrinol., 477, 81-89, doi: 10.1016/j.mce.2018.06.004.
  3. Xiao, J., Chen, X., Lu, X., Xie, M., He, B., He, S, You, S, and Chen, Q. (2020) Progesterone/Org inhibits lung adenocarcinoma cell growth via membrane progesterone receptor alpha, Thorac. Cancer, 11, 2209-2223, doi: 10.1111/1759_7714.13528.
  4. Diep, C. H., Daniel, A. R., Mauro, L. J., Knutson, T. P., and Lange, C. A. (2015) Progesterone action in breast, uterine, and ovarian cancers, J. Mol. Endocrinol., 54, R31-R53, doi: 10.1530/jme-14-0252.
  5. Gustafsson, J. A., (2016) Historical overview of nuclear receptors, J. Steroid Biochem. Mol. Biol., 157, 3-6, doi: 10.1016/j.jsbmb.2015.03.004.
  6. Zhu, Y., Bond, J., and Thomas, P. (2003) Identification, classification, and partial characterization of genes in humans and other vertebrates homologous to a fish membrane progestin receptor, Proc. Natl. Acad. Sci. USA, 100, 2237-2242, doi: 10.1073/pnas.0436133100.
  7. Thomas, P., Pang, Y., Camilletti, M. A., and Castelnovo, L. F. (2022) Functions of membrane progesterone receptors (mPRs, PAQRs) in nonreproductive tissues, Endocrinology, 163, bqac147, doi: 10.1210/endocr/bqac147.
  8. Thomas, P. (2022) Membrane progesterone receptors (mPRs, PAQRs): review of structural and signaling characteristics, Cells, 11, 1785, doi: 10.3390/cells11111785.
  9. Kelder, J., Pang, Y., Dong, J., Schaftenaar, G., and Thomas, P. (2022) Molecular modeling, mutational analysis and steroid specificity of the ligand binding pocket of mPRα (PAQR7): shared ligand binding with AdipoR1 and its structural basis, J. Steroid Biochem. Mol. Biol., 219, 106082, doi: 10.1016/j.jsbmb.2022.106082.
  10. Jyoti, M. M. S., Rana, M. R., Ali, M. H., and Tokumoto, T. (2022) Establishment of a steroid binding assay for membrane progesterone receptor alpha (PAQR7) by using graphene quantum dots (GQDs), Biochem. Biophys. Res. Commun., 592, 1-6, doi: 10.1016/j.bbrc.2022.01.002.
  11. Acharjee, M., Ali, M. H., Jyoti, M. M. S., Rezanujjaman, M., Hassan, M. M., Rana, M. R., Hossain, M. F., Kodani, S., and Tokumoto, T. (2022) The antagonistic activity of Padina arborescens extracts on mPRα, Nat. Prod. Res., 37, 1872-1876, doi: 10.1080/14786419.2022.2120873.
  12. Levina, I. S., Kuznetsov, Y. V., Shchelkunova, T. A., and Zavarzin, I. V. (2021) Selective ligands of membrane progesterone receptors as a key to studying their biological functions in vitro and in vivo, J. Steroid Biochem. Mol. Biol., 207, 105827, doi: 10.1016/j.jsbmb.2021.105827.
  13. Goncharov, A. I., Maslakova, A. A., Polikarpova, A. V., Bulanova, E. A., Guseva, A. A., Morozov, I. A., Rubtsov, P. M., Smirnova, O. V., and Shchelkunova, T. A. (2017) Progesterone inhibits proliferation and modulates expression of proliferation-Related genes in classical progesterone receptor-negative human BxPC3 pancreatic adenocarcinoma cells, J. Steroid Biochem. Mol. Biol., 165, 293-304, doi: 10.1016/j.jsbmb.2016.07.007.
  14. Polikarpova, A. V., Maslakova, A. A., Levina, I. S., Kulikova, L. E., Kuznetsov, Y. V., Guseva, A. A., Shchelkunova, T. A., Zavarzin, I. V., and Smirnova, O. V. (2017) Selection of progesterone derivatives specific to membrane progesterone receptors, Biochemistry (Moscow), 82, 140-148, doi: 10.1134/S0006297917020055.
  15. Левина И. С., Щелкунова Т. А., Поликарпова А. В., Кузнецов Ю. В., Заварзин И. В. (2021) Синтез 19-гидроксипрегн-4-ен-20-она и 19-гидрокси-5β-прегн-3-ен-20-она, селективно связывающихся с мембранными рецепторами прогестерона, и оценка их иммуномодуляторных эффектов, Изв. АН Сер. Хим., 11, 2227-2232, doi: 10.1007/s11172-021-3337-6.
  16. Гончаров А. И., Левина И. С., Шляпина В. Л., Морозов И. А., Рубцов П. М., Заварзин И. В., Смирнова О. В., Щелкунова Т. А. (2021) Цитотоксические эффекты селективных лигандов мембранных рецепторов прогестерона в клетках ВхРС3 аденокарциномы поджелудочной железы человека, Биохимия, 86, 1702-1718, doi: 10.31857/S0320972521110087.
  17. Kasubuchi, M., Watanabe, K., Hirano, K., Inoue, D., Li, X., Terasawa, K., Konishi, M., Itoh, N., and Kimura, I. (2017) Membrane progesterone receptor beta (mPRβ/Paqr8) promotes progesterone-dependent neurite outgrowth in PC12 neuronal cells via non-G protein-coupled receptor (GPCR) signaling, Sci. Rep., 7, 5168, doi: 10.1038/s41598-017-05423-9.
  18. Karteris, E., Zervou, S., Pang, Y., Dong, J., Hillhouse, E. W., Randeva, H. S., and Thomas, P. (2006) Progesterone signaling in human myometrium through two novel membrane G protein-coupled receptors: potential role in functional progesterone withdrawal at term, Mol. Endocrinol., 20, 1519-1534, doi: 10.1210/me.2005-0243.
  19. Sinreih, M., Knific, T., Thomas, P., Grazio, S. F., and Rižner, T. L. (2018) Membrane progesterone receptors β and γ have potential as prognostic biomarkers of endometrial cancer, J. Steroid. Biochem. Mol. Biol., 178, 303-311, doi: 10.1016/j.jsbmb.2018.01.011.
  20. Büscher, U., Chen, F. C., Kentenich, H., and Schmiady, H. (1999) Cytokines in the follicular fluid of stimulated and nonstimulated human ovaries; is ovulation a suppressed inflammatory reaction? Hum. Reprod., 14, 162-166, doi: 10.1093/humrep/14.1.162.
  21. Atif, F., Yousuf, S., and Stein, D. G. (2015) Anti-tumor effects of progesterone in human glioblastoma multiforme: role of PI3K/Akt/mTOR signaling, J. Steroid Biochem. Mol. Biol., 146, 62-73, doi: 10.1016/j.jsbmb.2014.04.007.
  22. Bailly-Maitre, B., Souse, G., Boulukos, K., Gugenheim, J., and Rahmani, R. (2001) Dexamethasone inhibits spontaneous apoptosis in primary cultures of human and rat hepatocytes via Bcl-2 and Bcl-xL induction, Cell Death Differ., 8, 279-288, doi: 10.1038/sj.cdd.4400815.
  23. Oh, H.-Y., Namkoong, S., Lee, S.-J., Por, E., Kim, C.-K., Billiar, T. R., Han, J. A., Ha, K. S., Chung, H. T., Kwon, Y. G., Lee, H., and Kim, Y. M. (2006) Dexamethasone protects primary cultured hepatocytes from death receptor-mediated apoptosis by upregulation of cFLIP, Cell Death Differ., 13, 512-523, doi: 10.1038/sj.cdd.4401771.
  24. Williams, S. P., and Sigler, P. B. (1998) Atomic structure of progesterone complexed with its receptor, Nature, 393, 392-396, doi: 10.1038/30775.
  25. Tanenbaum, D. M., Wang, Y., Williams, S. P., and Sigler, P. B. (1998) Crystallographic comparison of the estrogen and progesterone receptor's ligand binding domains, Proc. Natl. Acad. Sci. USA, 95, 5998-6003, doi: 10.1073/pnas.95.11.5998.
  26. Moldoveanu, T., and Czabotar, P. E. (2020) BAX, BAK, and BOK: a coming of age for the BCL-2 family effector proteins, Cold Spring Harb. Perspect. Biol., 12, a036319, doi: 10.1101/cshperspect.a036319.
  27. Kale, J., Osterlund, E. J., and Andrews, D. W. (2018) BCL-2 family proteins: changing partners in the dance towards death, Cell Death Differ., 25, 65-80, doi: 10.1038/cdd.2017.186.
  28. Morley, S. J., Coldwell, M. J., and Clemens, M. J. (2005) Initiation factor modifications in the preapoptotic phase, Cell Death Differ., 12, 571-584, doi: 10.1038/sj.cdd.4401591.
  29. Roberts, J. Z., Crawford, N., and Longley, D. B. (2022) The role of ubiquitination in apoptosis and necroptosis, Cell Death Differ., 29, 272-284, doi: 10.1038/s41418-021-00922-9.

版权所有 © Russian Academy of Sciences, 2023

##common.cookie##