Патологические корреляты когнитивных нарушений при болезни Паркинсона: от молекул до нейронных сетей

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Болезнь Паркинсона (БП) - прогрессирующее нейродегенеративное заболевание, возникающее в результате гибели дофаминергических нейронов черной субстанции и появления в телах нейронов белковых агрегатов, состоящих преимущественно из альфа-синуклеина, известных как тельца Леви. БП в настоящее время признана мультисистемным расстройством, характеризующимся тяжелыми нарушениями двигательной функции и различными немоторными симптомами. Снижение когнитивных функций является одним из наиболее распространенных и тревожных немоторных симптомов. Умеренные когнитивные нарушения (КН), диагностируемые уже на ранних стадиях БП, завершаются, как правило, глубокой деменцией. Основные типы КН, наблюдаемые при БП, включают нарушение исполнительных функций, ухудшение внимания и памяти, зрительно-пространственные нарушения и вербальный дефицит. Согласно данным литературы, существенное значение в развитии когнитивных дисфункций при БП имеют следующие механизмы: (1) изменение конформационной структуры синаптических белков; (2) нарушение синаптической передачи; (3) нейровоспаление (патологическая активация нейроглии); (4) дисфункция митохондрий и окислительный стресс; (5) метаболические нарушения; (6) перестройки нейронных сетей. Перечисленные молекулярные и синаптические изменения в мозге способны привести к гибели дофаминсинтезирующих клеток черной субстанции и дисфункции других медиаторных систем, а также частичной клеточной атрофии в неокортексе и подкорковых ядрах. В результате нарушается работа нейронных сетей, участвующих в процессах передачи информации, связанной с регуляцией двигательной активности и когнитивными функциями. Выяснение причин изменений, происходящих при БП, и поиск методов их устранения помогут созданию новых подходов в терапии данного заболевания. Целью обзора является анализ патологических процессов в мозге, лежащих в основе возникновения когнитивных нарушений при БП. В обзоре проанализированы данные, полученные как в исследованиях на БП-пациентах, так и на животных моделях этого заболевания (у грызунов и приматов), применяемых при изучении механизмов этиологии и развития БП у человека.

Об авторах

Н. И Новиков

Институт теоретической и экспериментальной биофизики РАН

142290 Пущино, Московская обл., Россия

Е. С Бражник

Институт теоретической и экспериментальной биофизики РАН

142290 Пущино, Московская обл., Россия

В. Ф Кичигина

Институт теоретической и экспериментальной биофизики РАН

Email: vkitchigina@gmail.com
142290 Пущино, Московская обл., Россия

Список литературы

  1. Левин О. С., Федорова Н. В. (2009) Болезнь Паркинсона, Издательство Orion Pharma, Москва.
  2. Lees, A. J., Hardy, J., and Revesz, T. (2009) Parkinson's disease, Lancet, 373, 2055-2066, doi: 10.1016/s0140-6736(09)60492-x.
  3. Brazhnik, E., Novikov, N., McCoy, A. J., Cruz, A. V., and Walters, J. R. (2014) Functional correlates of exaggerated oscillatory activity in basal ganglia output in hemiparkinsonian rats, Exp. Neurol., 26, 1563-1577, doi: 10.1016/j.expneurol.2014.07.010.
  4. Brazhnik, E., Novikov, N., McCoy, A. J., Ilieva, N. M., Ghraib, M. W., and Walters, J. R. (2021) Early decreases in cortical mid-gamma peaks coincide with the onset of motor deficits and precede exaggerated beta build-up in rat models for Parkinson's disease, Neurobiol. Dis., 155, 105393, doi: 10.1016/j.nbd.2021.105393.
  5. Novikov, N. I., Brazhnik, E. S., and Kichigina, V. F. (2019) Application of opto- and chemogenetic methods to study motor disorders in Parkinson's disease [in Russian], Modern Technologies in Medicine, 11, 150-163, doi: 10.17691/stm2019.11.2.21.
  6. Morozova, M. V., Brazhnik, E. S., Mysin, I. E., Popova, L. B., and Novikov, N. I. (2021) Contribution of the outer part of the pallidum to the oscillatory activity of motor neural networks in experimental model of Parkinson's disease [in Russian], J. Higher Nerve Act., 72, 103-118, doi: 10.31857/S0044467722010063.
  7. Ugryumov, M. V. (2015) Development of preclinical diagnostics and preventive treatment of neurodegenerative diseases, J. Neurol. Psychiatry, 11, 4-14, doi: 10.17116/jnevro20151151114-14.
  8. Volles, M. J., and Lansbury, P. T. Jr. (2003) Zeroing in on the pathogenic form of α-synuclein and its mechanism of neurotoxicity in Parkinson's disease, Biochemistry, 42, 7871-7878, doi: 10.1021/bi030086j.
  9. Dawson, T. M., and Dawson, V. L. (2003) Molecular pathways of neurodegeneration in Parkinson's disease, Science, 302, 819-822, doi: 10.1126/science.1087753.
  10. Pastukhov, Yu. F., Ekimova, I. V., and Chesnokova A. Yu. (2014) Molecular mechanisms of the pathogenesis of Parkinson's disease and prospects for preventive therapy, in: Neurodegenerative Diseases: From the Genome to the Whole Organism (Ugryumov, M. V., ed), Vol. 1, pp. 309-348, Nauka, Moscow.
  11. Liepelt-Scarfone, I., Ophey, A., and Kalbe, E. (2022) Cognition in prodromal Parkinson' disease, Prog. Brain Res., 269, 93-111, doi: 10.1016/bs.pbr.2022.01.003.
  12. Bernheimer, H., Birkmayer, W., Hornykiewicz, O., Jellinger, K., and Seitelberger, F. (1973) Brain dopamine and the syndromes of Parkinson and Hundington. Clinical, morphological and neurochemical correlations, J. Neurol. Sci., 20, 415-455, doi: 10.1016/0022-510x(73)90175-5.
  13. Weil, R. S., Costantini, A. A., and Schrag, A. E. (2018) Mild cognitive impairment in Parkinson's disease-what is it? Curr. Neurol. Neurosci. Rep., 18, 17, doi: 10.1007/s11910-018-0823-9.
  14. Goldman, J. G., and Sieg, E. (2020) Cognitive impairment and dementia in Parkinson's disease, Clin. Geriatr. Med., 36, 365-377, doi: 10.1016/j.cger.2020.01.001.
  15. Aarsland, D., Bronnick, K., and Fladby, T. (2011) Mild cognitive impairment in Parkinson's disease, Curr. Neurol. Neurosci. Rep., 11, 371-378, doi: 10.1007/s11910-011-0203-1.
  16. Svenningsson, P., Westman, E., Ballard, C., and Aarsland, D. (2012) Cognitive impairment in patients with Parkinson's disease: diagnosis, biomarkers, and treatment, Lancet Neurol., 11, 697-707, doi: 10.1016/S1474-4422(12)70152-7.
  17. Blair, C. (2017) Educating executive function, Wiley Interdiscip. Rev. Cogn. Sci., 8, e1403, doi: 10.1002/wcs.1403.
  18. Sagar, H. J., Sullivan, E. V., Gabrieli, J. D. E., Corkin, S., and Growdon, J. H. (1988) Temporal ordering and short-term memory deficits in Parkinson's disease, Brain, 111, 525-539, doi: 10.1093/brain/111.3.525.
  19. Beato, R., Levy, R., Pillon, B., Vidal, C., Du Montcel, S. T., Deweer, B., Bonnet, A. M., Houeto, J. L., Dubois, B., and Cardoso, F. (2008) Working memory in Parkinson's disease patients: clinical features and response to levodopa, Arq. Neuropsiquiatr., 66, 147-151, doi: 10.1590/s0004-282x2008000200001.
  20. Rottschy, C., Kleiman, A., Dogan, I., Langner, R., Mirzazade, S., Kronenbuerger, M., Werner, C., Shah, N. J., Schulz, J. B., Eickhoff, S. B., and Reetz, K. (2013) Diminished activation of motor working memory networks in Parkinson's disease, PLoS One, 8, e61786, doi: 10.1371/journal.pone.0061786.
  21. Cooper, J. A., Sagar, H. J., Jordan, N., Harvey, N. S., and Sullivan, E. V. (1991) Cognitive impairment in early untreated Parkinson's disease and its relationship to motor disability, Brain, 114, 2095-2122, doi: 10.1093/brain/114.5.2095.
  22. Kamei, S. (2012) Electroencephalogram and event-related potential analyses in Parkinson's disease, Brain Nerve, 64, 433-443.
  23. Wang, X. P., Sun, B. M., and Ding, H. L. (2009) Changes of procedural learning in Chinese patients with non-demented Parkinson's disease, Neurosci. Lett., 449, 161-163, doi: 10.1016/j.neulet.2008.10.086.
  24. Mesulam, M.-M. (2002) The frontal lobes: transcending the default mode through contignent encoding, in Principles of Frontal Lobe Function (Stuss, D. T., Knight, R. T., eds), Oxford University Press, Oxford/NewYork, doi: 10.1093/acprof:oso/9780195134971.003.0002.
  25. Muslimovic, D., Post, B., Speelman, J. D., and Schmand, B. (2007) Motor procedural learning in Parkinson's disease, Brain, 130, 2887-2897, doi: 10.1093/brain/awm211.
  26. Pereira, J. B., Svenningsson, P., Weintraub, D., Brønnick, K., Lebedev, A., Westman, E., and Aarsland, D. (2014) Initial cognitive decline is associated with cortical thinning in early Parkinson's disease, Neurology, 82, 2017-2025, doi: 10.1212/WNL.0000000000000483.
  27. Bellucci, A., Mercuri, N. B., Venneri, A., Faustin, G. J., Longhena, F., Pizzi, M., Missale, C., and Spano, P. (2016) Review: Parkinson's disease: from synaptic loss to connectome dysfunction, Neuropathol. Appl. Neurobiol., 42, 77-94, doi: 10.1111/nan.12297.
  28. Deng, I., Corrigan, F., Zhai, G., Zhou, X.-F., and Bobrovskaya, L. (2020) Lipopolysaccharide animal models of Parkinson's disease: recent progress and relevance to clinical disease, Brain Behav. Immun. Health, 4, 100060, doi: 10.1016/j.bbih.2020.100060.
  29. Sun, F., Salinas, A. G., Filser, S., Blumenstock, S., Medina-Luque, J., Herms, J., and Sgobio, C. (2022) Impact of α-synuclein spreading on the nigrostriatal dopaminergic pathway depends on the onset of the pathology, Brain Pathol., 32, e13036, doi: 10.1111/bpa.13036.
  30. Schulz-Schaeffer, W. J. (2010) The synaptic pathology of α-synuclein aggregation in dementia with Lewy bodies, Parkinson's disease and Parkinson's disease dementia, Acta Neuropathol., 120, 131-143, doi: 10.1007/s00401-010-0711-0.
  31. Braak, H., Braak, E., Yilmazer, D., de Vos, R. A., Jansen, E. N., Bohl, J., and Jellinger, K. (1994) Amygdala pathology in Parkinson's disease, Acta Neuropathol., 88, 493-500, doi: 10.1007/BF00296485.
  32. Marui, W., Iseki, E., Nakai, T., Miura, S., Kato, M., Uéda, K., and Kosaka, K. (2002) Progression and staging of Lewy pathology in brains from patients with dementia with Lewy bodies, J. Neurol. Sci., 195, 153-159, doi: 10.1016/S0022-510X(02)00006-0.
  33. Blennow, K., and Zetterberg, H. J. (2015) Amyloid and Tau biomarkers in CSF, Prev. Alzheimers Dis., 2, 46-50, doi: 10.14283/jpad.2015.41.
  34. Cirrito, J. R., Kang, J. E., Lee, J., Stewart, F. R., Verges, D. K., Silverio, L. M., Bu, G., Mennerick, S., and Holtzman, D. M. (2008) Endocytosis is required for synaptic activity-dependent release of amyloid-beta in vivo, Neuron, 58, 42-51, doi: 10.1016/j.neuron.2008.02.003.
  35. Dionísio, P. A., Amaral, J. D., and Rodrigues, C. M. P. (2021) Oxidative stress and regulated cell death in Parkinson's disease, Ageing Res Rev., 67, 101263, doi: 10.1016/j.arr.2021.101263.
  36. Kvartsberg, H., Portelius, E., Andreasson, U., Brinkmalm, G., Hellwig, K., Lelenta, L. N., Kornhuber, J., Hansson, O., Minthon, L., Spitzer, P., Maler, J. M., Zetterberg, H., Blennow, K., and Lewczuk, P. (2015) Characterization of the postsynaptic protein neurogranin in paired cerebrospinal fluid and plasma samples from Alzheimer's disease patients and healthy controls, Alzheimers Res. Ther., 7, 40, doi: 10.1186/s13195-015-0124-3.
  37. Yasuda, T., Nakata, Y., Choong, C.-J., and Mochizuki, H. (2013) Neurodegenerative changes initiated by presynaptic dysfunction, Transl. Neurodegener., 2, 1-5, doi: 10.1186/2047-9158-2-16.
  38. Agliardi, C., Meloni, M., Guerini, F. R., Zanzottera, M., Bolognesi, E., Baglio, F., and Clerici, M. (2021) Oligomeric α-Syn and SNARE complex proteins in peripheral extracellular vesicles of neural origin are biomarkers for Parkinson's disease, Neurobiol. Dis., 148, 105185, doi: 10.1016/j.nbd.2020.105185.
  39. Desikan, R. S., Segonne, F., Fischl, B., Quinn, B. T., Dickerson, B. C., Blacker, D., Buckner, R. L., Dale, A. M., Maguire, R. P., Hyman, B. T., Albert, M. S., and Killiany, R. J. (2006) An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest, NeuroImage, 31, 968-980, doi: 10.1016/j.neuroimage.2006.01.021.
  40. Hessen, E., Stav, A. L., Auning, E., Selnes, P., Blomsø, L., Holmeide, C. E., Johansen, K. K., Eliassen, C. F., Reinvang, I., Fladby, T., and Aarsland, D. J. (2016) Neuropsychological profiles in mild cognitive impairment due to Alzheimer's and Parkinson's diseases, Parkinsons Dis., 6, 413-421, doi: 10.3233/JPD-150761.
  41. Picconi, B., Piccoli, G., and Calabresi, P. (2012) Synaptic dysfunction in Parkinson's disease, Adv. Exp. Med. Biol., 970, 553-572, doi: 10.1007/978-3-7091-0932-8_24.
  42. Feany, M. B., and Bender, W. W. (2000) A Drosophila model of Parkinson's disease, Nature, 404, 394-398, doi: 10.1038/35006074.
  43. Masliah, E., Rockenstein, E., Veinbergs, I., Sagara, Y., Mallory, M., Hashimoto, M., and Mucke, L. (2001) beta-Amyloid peptides enhance alpha-synuclein accumulation and neuronal deficits in a transgenic mouse model linking Alzheimer's disease and Parkinson's disease, Proc. Natl. Acad. Sci. USA, 98, 12245-12250, doi: 10.1073/pnas.211412398.
  44. Zhang, W., Zhang, Q., Yang, Q., Liu, P., Sun, T., Xu, Y., Qian, X., Qiu, W., and Ma, C. (2020) Contribution of Alzheimer's disease neuropathologic change to the cognitive dysfunction in human brains with Lewy body-related pathology, Neurobiol. Aging, 91, 56-65, doi: 10.1016/j.neurobiolaging.2020.02.022.
  45. Ryman, S. G., Yutsis, M., Tian, L., Henderson, V. W., Montine, T. J., Salmon, D. P., Galasko, D., and Poston, K. L. (2021) Cognition at each stage of lewy body disease with co-occurring Alzheimer's disease pathology, J. Alzheimers Dis., 80, 1243-1256, doi: 10.3233/JAD-201187.
  46. Burton, E. J., McKeith, I. G., Burn, D. J., Williams, D., and O'Brien, J. T. (2004) Cerebral atrophy in Parkinson's disease with and without dementia: a comparison with Alzheimer's disease, dementia with Lewy bodies and controls, Brain, 127, 791-800, doi: 10.1093/brain/awh088.
  47. Kulisevsky, J., Avila, A., Barbanoj, M., Antonijoan, R., Berthier, M. L., and Gironell, A. (1996) Acute effects of levodopa on neuropsychological performance in stable and fluctuating Parkinson's disease patients at different levodopa plasma levels, Brain, 119, 2121-2132, doi: 10.1093/brain/119.6.2121.
  48. Halliday, G. M., Leverenz, J. B., Schneider, J. S., and Adler, C. H. (2014) The neurobiological basis of cognitive impairment in Parkinson's disease, Mov. Disord., 29, 634-650, doi: 10.1002/mds.25857.
  49. Bohnen, N. I., Kaufer, D. I., Hendrickson, R., Ivanco, L. S., Lopresti, B. J., Constantine, G. M., Mathis, C. A., Davis, J. G., Moore, R. Y., and DeKosky, S. T. (2006) Cognitive correlates of cortical cholinergic denervation in Parkinson's disease and parkinsonian dementia, J. Neurol., 253, 242-247, doi: 10.1007/s00415-005-0971-0.
  50. Gratwicke, J., Jahanshahi, M., and Foltynie, T. (2015) Parkinson's disease dementia: a neural networks perspective, Brain, 138, 1454-1476, doi: 10.1093/brain/awv104.
  51. Kim, I., Shin, N.-Y., Bak, Y., Lee, P. H., Lee, S.-K., and Lim, S. M. (2017) Early-onset mild cognitive impairment in Parkinson's disease: altered corticopetal cholinergic network, Sci. Rep., 7, 2381, doi: 10.1038/s41598-017-02420-w.
  52. Lee, D. J., Milosevic, L., Gramer, R., Sasikumar, S., Al-Ozzi, T. M., De Vloo, P., Dallapiazza, R. F., Elias, G. J. B., Cohn, M., Kalia, S. K., Hutchison, W. D., Fasano, A., and Lozano, A. M. (2019) Nucleus basalis of Meynert neuronal activity in Parkinson's disease, J. Neurosurg., 132, 574-582, doi: 10.3171/2018.11.JNS182386.
  53. Ehrt, U., Broich, K., Larsen, J. P., Ballard, C., and Aarsland, D. (2010) Use of drugs with anticholinergic effect and impact on cognition in Parkinson's disease: a cohort study, J. Neurol. Neurosurg. Psychiatry., 81, 160-165, doi: 10.1136/jnnp.2009.186239.
  54. Kitchigina, V., Vankov, A., Harley, C., and Sara, S. J. (1997) Novelty-elicited, noradrenaline-dependent enhancement of excitability in the dentate gyrus, Eur. J. Neurosci., 9, 41-47, doi: 10.1111/j.1460-9568.1997.tb01351.x.
  55. Kitchigina, V. F., Kutyreva, E. V., and Brazhnik, E. S. (2003) Modulation of theta rhythmicity in the medial septal neurons and hippocampal EEG in the awake rabbit via actions at noradrenergic α2-receptors, Neuroscience, 120, 509-521, doi: 10.1016/s0306-4522(03)00331-2.
  56. Bari, A., and Robbins, T. W. (2013) Noradrenergic versus dopaminergic modulation of impulsivity, attention and monitoring behaviour in rats performing the stop-signal task: possible relevance to ADHD, Psychopharmacology, 230, 89-111, doi: 10.1007/s00213-013-3141-6.
  57. Callahan, P. M., Callahan, P. M., Plagenhoef, M. R., Blake, D. T., and Terry, A. V. Jr. (2019) Atomoxetine improves memory and other components of executive function in young-adult rats and aged rhesus monkeys, Neuropharmacology, 155, 65-75, doi: 10.1016/j.neuropharm.2019.05.016.
  58. Varrone, A., Svenningsson, P., Marklund, P., Fatouros-Bergman, H., Forsberg, A., Halldin, C., Nilsson, L.-G., and Farde, L. (2015) 5-HT1B receptor imaging and cognition: a positron emission tomography study in control subjects and Parkinson's disease patients, Synapse, 69, 365-374, doi: 10.1002/syn.21823.
  59. Ye, Z., Rae, C. L., Nombela, C., Ham, T., Rittman, T., Jones, P. S., Rodrıguez, P. V., Coyle-Gilchrist, I., Regenthal, R., Altena, E., Housden, C. R., Maxwell, H., Sahakian, B. J., Barker, R. A., Robbins, T. W., and Rowe, J. B. (2016) Predicting beneficial effects of atomoxetine and citalopram on response inhibition in Parkinson's disease with clinical and neuroimaging measures, Hum. Brain Mapp., 37, 1026-1037, doi: 10.1002/hbm.23087.
  60. Mattson, M. P., Gleichmann, M., and Cheng, A. (2008) Mitochondria in neuroplasticity and neurological disorders, Neuron, 60, 748-766, doi: 10.1016/j.neuron.2008.10.010.
  61. Chaturvedi, R. K., and Beal, M. F. (2008) Mitochondrial approaches for neuroprotection, Ann. N. Y. Acad. Sci., 1147, 395-412, doi: 10.1196/annals.1427.027.
  62. Isobe, C., and Abe, T. Y. (2010) Levels of reduced and oxidized coenzyme Q-10 and 8-hydroxy-2′-deoxyguanosine in the cerebrospinal fluid of patients with living Parkinson's disease demonstrate that mitochondrial oxidative damage and/or oxidative DNA damage contributes to the neurodegenerative process, Neurosci. Lett., 469, 159-163, doi: 10.1016/j.neulet.2009.11.065.
  63. Vijayanathan, Y., Lim, F. T., Lim, S. M., Vijayanathan, Y., Lim, F. T., Lim, S. M., Long, C. M., Tan, M. P., Majeed, A. B. A., and Kalavathy, R. (2017) 6-OHDA lesioned adult zebrafish as a useful Parkinson's disease model for dopaminergic neuroregeneration, Neurotoxicity Res., 32, 496-508, doi: 10.1007/s12640-017-9778-x.
  64. Robea, M. A., Balmus, I. M., Ciobica, A., Strungaru, S., Plavan, G., Gorgan, L. D., Savuca, A., and Nicoara, M. (2020) Parkinson's disease-induced zebrafish models: focussing on oxidative stress implications and sleep processes, Oxid. Med. Cell. Longev., 2020, 1370837, doi: 10.1155/2020/1370837.
  65. Monzio Compagnoni, G., Di Fonzo, A., Corti, S., Comi, G. P., Bresolin, N., and Masliah, E. (2020) The role of mitochondria in neurodegenerative diseases: the lesson from Alzheimer's disease and Parkinson's disease, Mol. Neurobiol., 57, 2959-2980, doi: 10.1007/s12035-020-01926-1.
  66. Johnson, J., Mercado-Ayon, E., Mercado-Ayon, Y., Dong, Y. N., Halawani, S., Ngaba, L., and Lynch, D. R. (2021) Mitochondrial dysfunction in the development and progression of neurodegenerative diseases, Arch. Biochem. Biophys., 702, 108698, doi: 10.1016/j.abb.2020.108698.
  67. Gatt, A. P., Duncan, O. F., Attems, J., Francis, P. T., Ballard, C. G., and Bateman, J. M. (2016) Dementia in Parkinson's disease is associated with enhanced mitochondrial complex I deficiency, Movement Disorders, 31, 352-359, doi: 10.1002/mds.26513.
  68. Cagin, U., Duncana, O. F., Gatt, A. P., Dionneb, M. S., Sweeneyc, S. T., and Batemana, J. M. (2015) Mitochondrial retrograde signaling regulates neuronal function, Proc. Natl Acad. Sci. USA, 112, E6000-E6009, doi: 10.1073/pnas.1505036112.
  69. Lozza, C., Baron, J. C., Eidelberg, D., Mentis, M. J., Carbon, M., and Marie, R. M. (2004) Executive processes in Parkinson's disease: FDG-PET and network analysis, Hum Brain Mapp., 22, 236-245, doi: 10.1002/hbm.20033.
  70. Huang, Y.-X., Zhang, Q.-L., Huang, C.-L., Wu, W.-Q., and Sun, J.-W. (2021) Association of decreased serum BDNF with restless legs syndrome in Parkinson's disease patients, Front. Neurol., 12, 734570, doi: 10.3389/fneur.2021.734570.
  71. Eidelberg, D., Moeller, J. R., Dhawan, V., Spetsieris, P., Takikawa, S., Ishikawa, T., Chaly, T., Robeson, W., Margouleff, D., Przedborski, S., and Fahn, S. (1994) The metabolic topography of parkinsonism, J. Cereb. Blood Flow Metab., 14, 783-801, doi: 10.1038/jcbfm.1994.99.
  72. Borghammer, P. (2012) Perfusion and metabolism imaging studies in Parkinson's disease, Dan. Med. J., 59, B4466.
  73. Firbank, M. J., Yarnall, A. J., Lawson, R. A., Duncan, G. W., Khoo, T. K., Petrides, G. S., O'Brien, J. T., Barker, R. A., Maxwell, R. J., Brooks, D. J., and Burn, D. J. (2017) Cerebral glucose metabolism and cognition in newly diagnosed Parkinson's disease: ICICLE-PD study, J. Neurol. Neurosurg. Psychiatry, 88, 310-316, doi: 10.1136/jnnp-2016-313918.
  74. Van Laere, K., Santens, P., Bosman, T., De Reuck, J., Mortelmans, L., and Dierck, R. (2004) Statistical parametric mapping of 99mTc-ECD SPECT in idiopathic Parkinson's disease and multiple system atrophy with predominant parkinsonian features: correlation with clinical parameters, J. Nucl. Med., 24, 933-942.
  75. Nobili, F., Morbelli, S., Arnaldi, D., Ferrara, M., Campus, C., Brugnolo, F., Mazzei, D., Mehrdad, N., Sambuceti, G., and Rodriguez, G. (2011) Radionuclide brain imaging correlates of cognitive impairment in Parkinson's disease, J. Neurol. Sci., 310, 31-35, doi: 10.1016/j.jns.2011.06.053.
  76. Khomenko, Yu. G., Susin, D. S., Kataeva, G. V., Irishina, Yu. A., and Zavolokov, I. G. (2017) Features of cerebral glucose metabolism in patients with cognitive impairment in Parkinson's disease [in Russian], J. Neurol. Psychiatry, 5, 46-51, doi: 10.17116/jnevro20171175146-51.
  77. Rocher, A. B., Chapon, F., Blaizot, X., Baron, J.-C., and Chavoix, C. (2003) Resting-state brain glucose utilization as measured by PET is directly related to regional synaptophysin levels: a study in baboons, NeuroImage, 20, 1894-1898.
  78. Van Aalst, J., Ceccarini, J., Sunaert, S., Dupont, P., Koole, M., and Van Laere, K. (2021) In vivo synaptic density relates to glucose metabolism at rest in healthy subjects, but is strongly modulated by regional differences, J. Cereb. Blood Flow Metab., 41, 1978-1987, doi: 10.1177/0271678X20981502.
  79. Milyukhina, I. V., Khomenko, Yu. G., Gracheva, E. V., Kataeva, G. V., and Gromova, E. A. (2020) Cerebral glucose metabolism and cognitive impairment in trembling and akinetic rigid forms of Parkinson's disease [in Russian], Neurol. Neuropsy. Psychosom., 12, 42-48, doi: 10.14412/2074-2711-2020-6-42-48.
  80. Yao, C., Niu, L., Fu, Y., Zhu, X., Yang, J., Zhao, P., Sun, X., Ma, Y., Li, S., and Li, J. (2022) Cognition, motor symptoms, and glycolipid metabolism in Parkinson's disease with depressive symptoms, J. Neural Transm. (Vienna), 129, 563-573, doi: 10.1007/s00702-021-02437-6.
  81. Athauda, D., and Foltynie, T. (2016) Challenges in detecting disease modification in Parkinson's disease clinical trials, Parkinsonism Relat. Disord., 32, 1-11, doi: 10.1016/j.parkreldis.2016.07.019.
  82. Yang, L., Wang, H., Liu, L., and Xie, A. (2018) The role of insulin/IGF-1/PI3K/Akt/GSK3β signaling in Parkinson's disease dementia, Front. Neurosci., 12, 73, doi: 10.3389/fnins.2018.00073.
  83. Spinelli, M., Fusco, S., and Grassi, C. (2019) Brain insulin resistance and hippocampal plasticity: mechanisms and biomarkers of cognitive decline, Front. Neurosci., 13, 788, doi: 10.3389/fnins.2019.00788.
  84. Hölscher, C. (2019) Insulin signaling impairment in the brain as a risk factor in Alzheimer's disease, Front. Aging Neurosci., 11, 88, doi: 10.3389/fnagi.2019.00088.
  85. Melzer, T. R., Watts, R., Macaskill, M. R., Pitcher, T. L., Livingston, L., Keenan, R. J., Dalrymple-Alford, J. C., and Anderson, T. J. (2012) Grey matter atrophy in cognitively impaired Parkinson's disease, J. Neurol. Neurosurg. Psychiatry, 83, 188-194, doi: 10.1136/jnnp-2011-300828.
  86. Pereira, J. B., Aarsland, D., Ginestet, C. E., Lebedev, A. V., Wahlund, L.-O., Simmons, A., Volpe, G., and Westman, E. (2015) Aberrant cerebral network topology and mild cognitive impairment in early Parkinson's disease, Hum. Brain Mapp., 36, 2980-2995, doi: 10.1002/hbm.22822.
  87. Cummings, J. (1993) Frontal subcortical circuits and human behavior, Arch. Neurol., 50, 873-880, doi: 10.1001/archneur.1993.00540080076020.
  88. Stav, A. L., Johansen, K. K., Auning, E., Kalheim, L. F., Selnes, P., Bjørnerud, A., Hessen, E., Aarsland, D., and Fladby, T. (2016) Hippocampal subfield atrophy in relation to cerebrospinal fluid biomarkers and cognition in early Parkinson's disease: a cross-sectional study, N.P.J. Parkinson's Dis., 2, 15030, doi: 10.1038/npjparkd.2015.30.
  89. Stav, A. L., Aarsland, D., Johansen, K. K., Hessen, E., Auning, E., and Fladby, T. (2015) Amyloid-β and α-synuclein cerebrospinal fluid biomarkers and cognition in early Parkinson's disease, Parkinsonism Relat. Disord., 21, 758-764, doi: 10.1016/j.parkreldis.2015.04.027.
  90. Parnetti, L., Castrioto, A., Chiasserini, D., Persichetti, E., Tambasco, N., El-Agnaf, O., and Calabresi, P. (2013) Cerebrospinal fluid biomarkers in Parkinson disease, Nat. Rev. Neurol., 9, 131-140, doi: 10.1038/nrneurol.2013.10.
  91. Alves, G., Bronnick, K., Aarsland, D., Blennow, K., Zetterberg, H., Ballard, C., Kurz, M. W., Andreasson, U., Tysnes, O.-B., Larsen, J. P., and Mulugeta, E. (2010) CSF amyloid-β and tau proteins, and cognitive performance, in early and untreated Parkinson's Disease: the Norwegian ParkWest study, J. Neurol. Neurosurg. Psychiatry, 81, 1080-1086, doi: 10.1136/jnnp.2009.199950.
  92. Rocha, N. P., Teixeira, A. L., Scalzo, P. L., Barbosa, I. G., de Sousa, M. S., Morato, I. B., Vieira, E. L., Christo, P. P., Palotás, A., and Reis, H. J. (2014) Plasma levels of soluble tumor necrosis factor receptors are associated with cognitive performance in Parkinson's disease, Mov. Disord., 29, 527-531, doi: 10.1002/mds.25752.
  93. Fan, Z., Aman, Y., Ahmed, I., Chetelat, G., Landeau, B., Chaudhuri, K. R., Brooks, D. J., and Edison, P. (2015) Influence of microglial activation on neuronal function in Alzheimer's and Parkinson's disease dementia, Alzheimers Dement., 11, 608-621.e7, doi: 10.1016/j.jalz.2014.06.016.
  94. Lindqvist, D., Hall, S., Surova, Y., Nielsen, H. M., Janelidze, S., Brundin, L., and Hansson, O. (2013) Cerebrospinal fluid inflammatory markers in Parkinson's disease - associations with depression, fatigue, and cognitive impairment, Brain Behav. Immun., 33, 183-189, doi: 10.1016/j.bbi.2013.07.007.
  95. Aviles-Olmos, I., Limousin, P., Lees, A., and Foltynie, T. (2013) Parkinson's disease, insulin resistance and novel agents of neuroprotection, Brain, 136, 374-384, doi: 10.1093/brain/aws009.
  96. Komleva, Y., Chernykh, A., Lopatina, O., Gorina, Y., Lokteva, I., Salmina, A., and Gollasch, M. (2021) Inflamm-aging and brain insulin resistance: new insights and role of life-style strategies on cognitive and social determinants in aging and neurodegeneration, Front. Neurosci., 14, 618395, doi: 10.3389/fnins.2020.618395.
  97. Petrou, M., Davatzikos, C., Hsieh, M., Foerster, B. R., Albin, R. L., Kotagal, V., Müller, M. L., Koeppe, R. A., Herman, W. H., Frey, K. A., and Bohnen, N. I. (2016) Diabetes, gray matter loss, and cognition in the setting of Parkinson disease, Acad. Radiol., 23, 577-581, doi: 10.1016/j.acra.2015.07.014.
  98. Leverenz, J. B., Watson, G. S., Shofer, J., and Zabetian, C. P. (2011) Cerebrospinal fluid biomarkers and cognitive performance in non-demented patients with Parkinson's disease, Parkinsonism Relat. Discord., 17, 61-64, doi: 10.1016/j.parkreldis.2010.10.003.
  99. Lim, N. S., Swanson, C. R., Cherng, H.-R., Unger, T. L., Xie, S. X., Weintraub, D., Marek, K., Stern, M. B., Siderowf, A., Trojanowski, J. Q., and Chen-Plotkin, A. S. (2016) Plasma EGF and cognitive decline in Parkinson's disease and Alzheimer's disease, Ann. Clin. Transl. Neurol., 3, 346-355, doi: 10.1002/acn3.299.
  100. Pramanik, S. K., Sanphui, P., Das, A. K., Banerji, B., and Biswas, S. C. (2023) Small-molecule Cdc25A inhibitors protect neuronal cells from death evoked by NGF deprivation and 6-hydroxydopamine, CS Chem. Neurosci., 14, 1226-1237, doi: 10.1021/acschemneuro.2c00474.
  101. Shimoke, K., and Chiba, H. (2001) Nerve growth factor prevents 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced cell death via the Akt pathway by suppressing caspase-3-like activity using PC12 cells: relevance to therapeutical application for Parkinson's disease, J. Neurosci. Res., 63, 402-409, doi: 10.1002/1097-4547(20010301)63:5<402::AID-JNR1035>3.0.CO;2-F.
  102. Lorigados Pedre, L., Pavón Fuentes, N., Alvarez González, L., McRae, A., Serrano Sánchez, T., Blanco Lescano, L., and Macías González, R. (2002) Nerve growth factor levels in Parkinson's disease and experimental parkinsonian rats, Brain Res., 952, 122-127, doi: 10.1016/s0006-8993(02)03222-5.
  103. Altar, C. A., Boylan, C. B., Jackson, C., Hershenson, S., Miller, J., Wiegand, S. J., Lindsay, R. M., and Hyman, C. (1992) Brain-derived neurotrophic factor augments rotational behavior and nigrostriatal dopamine turnover in vivo, Proc. Natl. Acad. Sci. USA, 89, 11347-11351, doi: 10.1073/pnas.89.23.11347.
  104. Sauer, H., Fischer, W., Nikkhah, G., Wiegand, S. J., Brundin, P., Lindsay, R. M., and Björklund, A. (1993) Brain-derived neurotrophic factor enhances function rather than survival of intrastriatal dopamine cell-rich grafts, Brain Res., 626, 37-44, doi: 10.1016/0006-8993(93)90560-A.
  105. Hernández-Vara, J., Sáez-Francàs, N., Lorenzo-Bosquet, C., Corominas-Roso, M., Cuberas-Borròs, G., Pozo, S. L.-D., Carter, S., Armengol-Bellapart, M., and Castell-Conesa, J. (2020) BDNF levels and nigrostriatal degeneration in "drug naïve" Parkinson's disease patients. An "in vivo" study using I-123-FP-CIT SPECT, Park. Relat. Disord., 78, 31-35, doi: 10.1016/j.parkreldis.2020.06.037.
  106. Huang, Y., Huang, C., and Yun, W. (2019) Peripheral BDNF/TrkB protein expression is decreased in Parkinson's disease but not in essential tremor, J. Clin. Neurosci., 63, 176-181, doi: 10.1016/j.jocn.2019.01.017.
  107. Tessitore, A., Cirillo, M., and De Micco, R. (2019) Functional connectivity signatures of Parkinson's disease, J. Parkinsons Dis., 9, 637-652, doi: 10.3233/JPD-191592.
  108. Peraza, L. R., Nesbitt, D., Lawson, R. A., Duncan, G. W., Yarnall, A. J., Khoo, T. K., Kaiser, M., Firbank, M. J., O'Brien, J. T., Barker, R. A., Brooks, D. J., Burn, D. J., and Taylor, J. P. (2017) Intra- and inter-network functional alterations in Parkinson's disease with mild cognitive impairment, Hum Brain Mapp., 38, 1702-1715, doi: 10.1002/hbm.23499.
  109. Zhou, F., Tan, C., Song, C., Wang, M., Yuan, J., Liu, Y., Cai, S., Liu, Q., Shen, Q., Tang, Y., Li, X., and Liao, H. (2023) Abnormal intra- and inter-network functional connectivity of brain networks in early-onset Parkinson's disease and late-onset Parkinson's disease, Front. Aging Neurosci., 15, 1132723, doi: 10.3389/fnagi.2023.1132723.
  110. Williams-Gray, C. H., Evan, J. R., Goris, A., Foltynie, T., Ban, M., Robbins, T. W., Foltynie, T., Ban, M., Robbins, T. W., Brayne, C., Kolachana, B. S., Weinberger, D. R., Sawcer, S. J., and Blennow, K. (2009) The distinct cognitive syndromes of Parkinson's disease: 5 year follow-up of the CamPaIGN cohort, Brain, 132, 2958-2969.
  111. Kehagia, A. A., Barker, R. A., and Robbins, T. W. (2013) Cognitive impairment in Parkinson's disease: the dual syndrome hypothesis, Neurodegener. Dis., 11, 79-92, doi: 10.1159/000341998.
  112. Devignes, Q., Bordier, C., Viard, R., Defebvre, L., Kuchcinski, G., Leentjens, A. F. G., Lopes, R., and Dujardin, K. (2022) Resting-state functional connectivity in frontostriatal and posterior cortical subtypes in Parkinson's disease-mild cognitive impairment, Mov. Disord., 37, 502-512, doi: 10.1002/mds.28888.
  113. Wiesman, A. I., Heinrichs-Graham, E., McDermott, T. J., Santamaria, P. M., Gendelman, H. E., and Wilson, T. W. (2016) Quiet connections: Reduced fronto-temporal connectivity in nondemented Parkinson's Disease during working memory encoding, Hum. Brain Mapp., 37, 3224-3235, doi: 10.1002/hbm.23237.
  114. Müller-Oehring, E. M., Sullivan, E. V., Pfefferbaum, A., Huang, N. C., Poston, K. L., Bronte-Stewart, H. M., and Schulte, T. (2015) Task-rest modulation of basal ganglia connectivity in mild to moderate Parkinson's disease, Brain Imaging Behav., 9, 619-638, doi: 10.1007/s11682-014-9317-9.
  115. Wolters, A. F., van de Weijer, S. C. F., Leentjens, A. F. G., Duits, A. A., Jacobs, H. I. L., and Kuijf, M. L. (2019) Resting-state fMRI in Parkinson's disease patients with cognitive impairment: A meta-analysis Parkinsonism, Relat. Disord., 62, 16-27, doi: 10.1016/j.parkreldis.2018.12.016.
  116. Oswal, A., Brown, P., and Litvak, V. (2013) Synchronized neural oscillations and the pathophysiology of Parkinson's disease, Curr. Opin. Neurol., 26, 662-670, doi: 10.1097/WCO.0000000000000034
  117. Rosenblum, Y., Shiner, T., Bregman, N., Fahoum, F., Giladi, N., Maidan, I., and Mirelman, A. (2022) Event-related oscillations differentiate between cognitive, motor and visual impairments, J. Neurol., 269, 3529-3540, doi: 10.1007/s00415-021-10953-4.
  118. Peláez Suárez, A. A., Berrillo Batista, S., Pedroso Ibáñez, I., Casabona Fernández, E., Fuentes Campos, M., and Chacón, L. M. (2021) EEG-derived functional connectivity patterns associated with mild cognitive impairment in Parkinson's disease, Behav. Sci., 11, 40, doi: 10.3390/bs11030040.
  119. Mano, T., Kinugawa, K., Ozaki, M., Kataoka, H., and Sugie, K. (2022) Neural synchronization analysis of electroencephalography coherence in patients with Parkinson's disease-related mild cognitive impairment, Clin. Park. Relat. Disord., 6, 100140, doi: 10.1016/j.prdoa.2022.100140.
  120. Freichel, C., Neumann, M., Ballard, T., Müller, V., Woolley, M., Ozmen, L., Borroni, E., Kretzschmar, H. A., Haass, C., Spooren, W., and Kahle, P. J. (2007) Age-dependent cognitive decline and amygdala pathology in alpha-synuclein transgenic mice, Neurobiol. Aging, 28, 1421-1435, doi: 10.1016/j.neurobiolaging.2006.06.013.
  121. LeDoux, J. E. (2000) Emotion circuits in the brain, Annu. Rev. Neurosci., 23, 155-184, doi: 10.1146/annurev.neuro.23.1.155.
  122. Schneider, J. S., and Kovelowski, C. J. 2nd (1990) Chronic exposure to low doses of MPTP. I. Cognitive deficits in motor asymptomatic monkeys, Brain Res., 519, 122-128, doi: 10.1016/0006-8993(90)90069-n.
  123. Brown, R. G., and Marsden, C. D. (1990) Cognitive function in Parkinson's disease: from description to theory, Trends Neurosci., 13, 21-29, doi: 10.1016/0166-2236(90)90058-I.
  124. Schneider, J., Arvanitakis, Z., Yu, L., Boyle, P., Leurgans, S., and Bennett, D. (2012) Cognitive impairment, decline and fluctuations in older community-dwelling subjects with Lewy bodies, Brain, 135, 3005-3014, doi: 10.1093/brain/aws234.
  125. Schneider, J. S., Marshall, C. A., Keibel, L., Snyder, N. W., Hill, M. P., Brotchie, J. M., Johnston, T. H., Waterhouse, B. D., and Kortagere, S. (2021) A novel dopamine D3R agonist SK609 with norepinephrine transporter inhibition promotes improvement in cognitive task performance in rodent and non-human primate models of Parkinson's disease, Exper. Neurol., 335, 1135, doi: 10.1016/j.expneurol.2020.113514.
  126. Klein, C., Rasĭnska, J., Empl, L., Sparenberg, M., Poshtibana, A., Haina, E. G., Iggenaa, D., Rivalanb, M., Winterb, Y., and Steinera, B. (2016) Physical exercise counteracts MPTP-induced changes in neural precursor cell proliferation in the hippocampus and restores spatial learning but not memory performance in the water maze, Behav. Brain Res., 307, 227-238, doi: 10.1016/j.bbr.2016.02.040.
  127. Das, N. R., Gangwal, R. P., Damre, M. V., Sangamwar, A. T. and Sharma, S. S. (2014) A PPAR-β/δ agonist is neuroprotective and decreases cognitive impairment in a rodent model of Parkinson's disease, Curr. Neurovasc. Res., 11, 114-124, doi: 10.2174/1567202611666140318114037.
  128. Jackson-Lewis, V., Jakowec, M., Burke, R. E., and Przedborski, S. (1995) Time course and morphology of dopaminergic neuronal death caused by the neurotoxin1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Neurodegeneration, 4, 257-269, doi: 10.1016/1055-8330(95)90015-2.
  129. Höglinger, G. U., Arias-Carrión, O., Ipach, B., and Oertel, W. H. (2014) Origin of the dopaminergic innervations of adult neurogenic areas, J. Comp. Neurol., 522, 2336-2348, doi: 10.1002/cne.23537.
  130. Prediger, R. D., Batista, L. C., Medeiros, R., Pandolfo, P., Florio, J. C., and Takahashi, R. N. (2006) The risk is in the air: intranasal administration of MPTP to rats reproducing clinical features of Parkinson's disease, Exp. Neurol., 202, 391-403, doi: 10.1016/j.expneurol.2006.07.001.
  131. Castro, A. A., Ghisoni, K., Latini, A., Quevedo, J., Tasca, C. I., and Prediger, R. D., (2012) Lithium and valproate prevent olfactory discrimination and short-term memory impairments in the intranasal 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) rat model of Parkinson's disease, Behav. Brain Res., 229, 208-215, doi: 10.1016/j.bbr.2012.01.016.
  132. Moreira, E. L., Rial, D., AguiarJr, A. S., Figueiredo, C. P., Siqueira, J. M., DalBó, S., Horst, H., deOliveira, J., Mancini, G., dos Santos, T. S., Villarinho, J. G., Pinheiro, F. V., Marino-Neto, J., Ferreira, J., DeBem, A. F., Latini, A., Pizzolatti, M. G., Ribeiro-do-Valle, R. M., and Prediger, R. D., (2010) Proanthocyanidin-rich fraction from Croton celtidifolius Baill confers neuroprotection intheintranasal1-methyl-4-phenyl-1,2,3,6-tetrahydropyrid in rat model of Parkinson's disease, J. Neural Transm., 117, 1337-1351, doi: 10.1007/s00702-010-0464-x.
  133. Williams-Gray, C. H., Foltynie, T., Lewis, S. J., and Barker, R. A. (2006) Cognitive deficits and psychosis in Parkinson's disease: a review of pathophysiology and therapeutic options, CNS Drugs, 20, 477-505, doi: 10.2165/00023210-200620060-00004.
  134. Roy, M. A., Doiron, M., Talon-Croteau, J., Dupré, N., and Simard, M. (2018) Effects of antiparkinson medication on cognition in Parkinson's disease: a systematic review, Can. J. Neurol. Sci., 45, 375-404, doi: 10.1017/cjn.2018.21.
  135. Meng, Y. H., Wang, P. P., Song, Y. X., and Wang, J. H. (2019) Cholinesterase inhibitors and memantine for Parkinson's disease dementia and Lewy body dementia: a meta-analysis, Exp. Ther. Med., 17, 1611-1624.
  136. Zhang, Q., Aldridge, G. M., Narayanan, N. S., Anderson, S. W., and Uc, E. Y. (2020) Approach to cognitive impairment in Parkinson's disease, Neurotherapeutics, 17, 1495-1510, doi: 10.1007/s13311-020-00963-x.
  137. Litvinenko, I. V., Odinak, M. M., Mogil'naia, V. I., and Perstenev, S. V. (2008) Memantine (akatinol) therapy of cognitive impairment in Parkinson's disease complicated by dementia, Zhurn. Nevrol. Psikhiatr. Im. S. S. Korsakova, 108, 37-42.
  138. Frouni, I., Kwan, C., Belliveau, S., and Huot, P. (2022) Cognition and serotonin in Parkinson's disease, Prog Brain Res., 269, 373-403, doi: 10.1016/bs.pbr.2022.01.013.
  139. Mantovani, E., Zucchella, C., Argyriou, A. A., and Tamburin, S. (2023) Treatment for cognitive and neuropsychiatric non-motor symptoms in Parkinson's disease: current evidence and future perspectives, Expert. Rev. Neurother., 23, 25-43, doi: 10.1080/14737175.2023.2173576.
  140. Weintraub, D., Aarsland, D., Biundo, R., Dobkin, R., Goldman, J., and Lewis, S. (2022) Management of psychiatric and cognitive complications in Parkinson's disease, BMJ, 24, e068718, doi: 10.1136/bmj-2021-068718.
  141. Dong, J., Cui, Y., Li, S., and Le, W. (2016) Current pharmaceutical treatments and alternative therapies of Parkinson's disease, Curr. Neuropharmacol., 14, 339-355, doi: 10.2174/1570159x14666151120123025.

© Российская академия наук, 2023

Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах