T-Lymphocyte metabolic features and techniques to modulate them

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

T cells demonstrate a high degree of complexity and a broad range of functions which distinguish them from other immune cells. Throughout life, T lymphocytes experience several functional states: quiescence, activation, proliferation, differentiation, performance of effector and regulatory functions, memory formation, and apoptosis. Metabolism supports all the T cell functions, providing lymphocytes with energy, biosynthetic substrates, and signaling molecules. Therefore, T cells usually restructure their metabolism as they transition from one functional state to another. The strong association between metabolism and T cell function implies that the immune response can be controlled by manipulating metabolic processes within T lymphocytes. This review aims to highlight the main metabolic adaptations necessary for T cell function, as well as the recent progress in techniques to modulate the lymphocyte metabolic features.

Авторлар туралы

V. Vlasova

Institute of Ecology and Genetics of Microorganisms, Perm Federal Research Center of the Ural Branch of the Russian Academy of Sciences

Email: violetbaudelaire73@gmail.com
614081 Perm, Russia

K. Shmagel

Institute of Ecology and Genetics of Microorganisms, Perm Federal Research Center of the Ural Branch of the Russian Academy of Sciences

614081 Perm, Russia

Әдебиет тізімі

  1. Ghosh-Choudhary, S., Liu, J., and Finkel, T. (2020) Metabolic regulation of cell fate and function, Trends Cell Biol., 30, 201-212, doi: 10.1016/j.tcb.2019.12.005.
  2. Gerriets, V. A., and Rathmell, J. C. (2012) Metabolic pathways in T cell fate and function, Trends Immunol., 33, 168-173, doi: 10.1016/j.it.2012.01.010.
  3. Sallusto, F., Lanzavecchia, A., Araki, K., and Ahmed, R. (2010) From vaccines to memory and back, Immunity, 33, 451-463, doi: 10.1016/j.immuni.2010.10.008.
  4. Bettelli, E., Korn, T., and Kuchroo, V. K. (2007) Th17: the third member of the effector T cell trilogy, Curr. Opin. Immunol., 19, 652-657, doi: 10.1016/j.coi.2007.07.020.
  5. Sakaguchi, S. (2004) Naturally arising CD4+ regulatory T cells for immunologic self-tolerance and negative control of immune responses, Annu. Rev. Immunol., 22, 531-562, doi: 10.1146/annurev.immunol.21.120601.141122.
  6. Van der Windt, G. J. W., O'Sullivan, D., Everts, B., Huang, S. C.-C., Buck, M. D., Curtis, J. D., Chang, C. H., Smith, A. M., Ai, T., Faubert, B., Jones, R. G., Pearce, E. J., and Pearce, E. L. (2013) CD8 memory T cells have a bioenergetic advantage that underlies their rapid recall ability, Proc. Natl. Acad. Sci. USA, 110, 14336-14341, doi: 10.1073/pnas.1221740110.
  7. Barbi, J., Pardoll, D., and Pan, F. (2013) Metabolic control of the Treg/Th17 axis, Immunol. Rev., 252, 52-77, doi: 10.1111/imr.12029.
  8. Pennock, N. D., White, J. T., Cross, E. W., Cheney, E. E., Tamburini, B. A., and Kedl, R. M. (2013) T cell responses: naive to memory and everything in between, Adv. Physiol. Educ., 37, 273-283, doi: 10.1152/advan.00066.2013.
  9. Barili, V., Fisicaro, P., Montanini, B., Acerbi, G., Filippi, A., Forleo, G., Romualdi, C., Ferracin, M., Guerrieri, F., Pedrazzi, G., Boni, C., Rossi, M., Vecchi, A., Penna, A., Zecca, A., Mori, C., Orlandini, A., Negri, E., Pesci, M., Massari, M., Missale, G., Levrero, M., Ottonello, S., and Ferrari, C. (2020) Targeting p53 and histone methyltransferases restores exhausted CD8+ T cells in HCV infection, Nat. Commun., 11, 604, doi: 10.1038/s41467-019-14137-7.
  10. Franco, F., Jaccard, A., Romero, P., Yu, Y.-R., and Ho, P.-C. (2020) Metabolic and epigenetic regulation of T-cell exhaustion, Nat. Metab., 2, 1001-1012, doi: 10.1038/s42255-020-00280-9.
  11. Burnet, F. M. (1976) A modification of Jerne's theory of antibody production using the concept of clonal selection, CA Cancer J. Clin., 26, 119-121, doi: 10.3322/canjclin.26.2.119.
  12. Wang, R., and Green, D. R. (2012) Metabolic checkpoints in activated T cells, Nat. Immunol., 13, 907-915, doi: 10.1038/ni.2386.
  13. Patel, D., Salloum, D., Saqcena, M., Chatterjee, A., Mroz, V., Ohh, M., and Foster, D. A. (2017) A late G1 lipid checkpoint that is dysregulated in clear cell renal carcinoma cells, J. Biol. Chem., 292, 936-944, doi: 10.1074/jbc.M116.757864.
  14. Pelletier, J., Riaño-Canalias, F., Almacellas, E., Mauvezin, C., Samino, S., Feu, S., Menoyo, S., Domostegui, A., Garcia-Cajide, M., Salazar, R., Cortés, C., Marcos, R., Tauler, A., Yanes, O., Agell, N., Kozma, S. C., Gentilella, A., and Thomas, G. (2020) Nucleotide depletion reveals the impaired ribosome biogenesis checkpoint as a barrier against DNA damage, EMBO J., 39, e103838, doi: 10.15252/embj.2019103838.
  15. Pardee, A. B. (1974) A restriction point for control of normal animal cell proliferation, Proc. Natl. Acad. Sci. USA, 71, 1286-1290, doi: 10.1073/pnas.71.4.1286.
  16. Ge, T., Yang, J., Zhou, S., Wang, Y., Li, Y., and Tong, X. (2020) The role of the pentose phosphate pathway in diabetes and cancer, Front. Endocrinol., 11, 365, doi: 10.3389/fendo.2020.00365.
  17. Reid, M. A., Allen, A. E., Liu, S., Liberti, M. V., Liu, P., Liu, X., Lai, L., and Locasale, J. W. (2018) Serine synthesis through PHGDH coordinates nucleotide levels by maintaining central carbon metabolism, Nat. Commun., 9, 5442, doi: 10.1038/s41467-018-07868-6.
  18. Grassian, A. R., Metallo, C. M., Coloff, J. L., Stephanopoulos, G., and Brugge, J. S. (2011) Erk regulation of pyruvate dehydrogenase flux through PDK4 modulates cell proliferation, Genes Dev., 25, 1716-1733, doi: 10.1101/gad.16771811.
  19. Lee, J., and Ridgway, N. D. (2020) Substrate channeling in the glycerol-3-phosphate pathway regulates the synthesis, storage and secretion of glycerolipids, Biochim. Biophys. Acta Mol. Cell Biol. Lipids, 1865, 158438, doi: 10.1016/j.bbalip.2019.03.010.
  20. Dimeloe, S., Burgener, A.-V., Grählert, J., and Hess, C. (2017) T-cell metabolism governing activation, proliferation and differentiation; a modular view, Immunology, 150, 35-44, doi: 10.1111/imm.12655.
  21. Adeva-Andany, M., López-Ojén, M., Funcasta-Calderón, R., Ameneiros-Rodríguez, E., Donapetry-García, C., Vila-Altesor, M., and Rodríguez-Seijas, J. (2014) Comprehensive review on lactate metabolism in human health, Mitochondrion, 17, 76-100, doi: 10.1016/j.mito.2014.05.007.
  22. Grist, J. T., Jarvis, L. B., Georgieva, Z., Thompson, S., Kaur Sandhu, H., Burling, K., Clarke, A., Jackson, S., Wills, M., Gallagher, F. A., and Jones, J. L. (2018) Extracellular lactate: a novel measure of T cell proliferation, J. Immunol., 200, 1220-1226, doi: 10.4049/jimmunol.1700886.
  23. Hume, D. A., Radik, J. L., Ferber, E., and Weidemann, M. J. (1978) Aerobic glycolysis and lymphocyte transformation, Biochem. J., 174, 703-709, doi: 10.1042/bj1740703.
  24. DeBerardinis, R. J., Mancuso, A., Daikhin, E., Nissim, I., Yudkoff, M., Wehrli, S., and Thompson, C. B. (2007) Beyond aerobic glycolysis: transformed cells can engage in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis, Proc. Natl. Acad. Sci. USA, 104, 19345-19350, doi: 10.1073/pnas.0709747104.
  25. Lunt, S. Y., and Vander Heiden, M. G. (2011) Aerobic glycolysis: meeting the metabolic requirements of cell proliferation, Annu. Rev. Cell Dev. Biol., 27, 441-464, doi: 10.1146/annurev-cellbio-092910-154237.
  26. Vander Heiden, M. G., Cantley, L. C., and Thompson, C. B. (2009) Understanding the Warburg effect: the metabolic requirements of cell proliferation, Science, 324, 1029-1033, doi: 10.1126/science.1160809.
  27. Catakovic, K., Klieser, E., Neureiter, D., and Geisberger, R. (2017) T cell exhaustion: from pathophysiological basics to tumor immunotherapy, Cell Commun. Signal., 15, 1, doi: 10.1186/s12964-016-0160-z.
  28. Trentham, D. R. (1971) Rate-determining processes and the number of simultaneously active sties of D-glyceraldehyde 3-phosphate dehydrogenase, Biochem. J., 122, 71-77, doi: 10.1042/bj1220071.
  29. Lemire, J., Mailloux, R. J., and Appanna, V. D. (2008) Mitochondrial lactate dehydrogenase is involved in oxidative-energy metabolism in human astrocytoma cells (CCF-STTG1), PLoS One, 3, e1550, doi: 10.1371/journal.pone.0001550.
  30. Wang, R., Dillon, C. P., Shi, L. Z., Milasta, S., Carter, R., Finkelstein, D., McCormick, L. L., Fitzgerald, P., Chi, H., Munger, J., and Green, D. R. (2011) The transcription factor Myc controls metabolic reprogramming upon T lymphocyte activation, Immunity, 35, 871-882, doi: 10.1016/j.immuni.2011.09.021.
  31. Chapman, N. M., Boothby, M. R., and Chi, H. (2020) Metabolic coordination of T cell quiescence and activation, Nat. Rev. Immunol., 20, 55-70, doi: 10.1038/s41577-019-0203-y.
  32. Jones, N., Vincent, E. E., Cronin, J. G., Panetti, S., Chambers, M., Holm, S. R., Owens, S. E., Francis, N. J., Finlay, D. K., and Thornton, C. A. (2019) Akt and STAT5 mediate naïve human CD4+ T-cell early metabolic response to TCR stimulation, Nat. Commun., 10, 2042, doi: 10.1038/s41467-019-10023-4.
  33. Czibik, G., Steeples, V., Yavari, A., and Ashrafian, H. (2014) Citric acid cycle intermediates in cardioprotection, Circ. Cardiovasc. Genet., 7, 711-719, doi: 10.1161/CIRCGENETICS.114.000220.
  34. Palmieri, F. (2004) The mitochondrial transporter family (SLC25): physiological and pathological implications, Pflug. Arch. Eur. J. Physiol., 447, 689-709, doi: 10.1007/s00424-003-1099-7.
  35. Saggerson, D. (2008) Malonyl-CoA, a key signaling molecule in mammalian cells, Annu. Rev. Nutr., 28, 253-272, doi: 10.1146/annurev.nutr.28.061807.155434.
  36. Huang, B., Song, B.-L., and Xu, C. (2020) Cholesterol metabolism in cancer: mechanisms and therapeutic opportunities, Nat. Metab., 2, 132-141, doi: 10.1038/s42255-020-0174-0.
  37. Ahn, C. S., and Metallo, C. M. (2015) Mitochondria as biosynthetic factories for cancer proliferation, Cancer Metab., 3, 1, doi: 10.1186/s40170-015-0128-2.
  38. Carr, E. L., Kelman, A., Wu, G. S., Gopaul, R., Senkevitch, E., Aghvanyan, A., Turay, A. M., and Frauwirth, K. A. (2010) Glutamine uptake and metabolism are coordinately regulated by ERK/MAPK during T lymphocyte activation, J. Immunol., 185, 1037-1044, doi: 10.4049/jimmunol.0903586.
  39. DeBerardinis, R. J., and Cheng, T. (2010) Q's next: the diverse functions of glutamine in metabolism, cell biology and cancer, Oncogene, 29, 313-324, doi: 10.1038/onc.2009.358.
  40. Skaper, S. D., O'Brien, W. E., and Schafer, I. A. (1978) The influence of ammonia on purine and pyrimidine nucleotide biosynthesis in rat liver and brain in vitro, Biochem. J., 172, 457-464, doi: 10.1042/bj1720457.
  41. Young, V. R., and Ajami, A. M. (2001) Glutamine: the emperor or his clothes? J. Nutr., 131, 2449-2459, doi: 10.1093/jn/131.9.2449S.
  42. Tretter, L., and Adam-Vizi, V. (2005) Alpha-ketoglutarate dehydrogenase: a target and generator of oxidative stress, Philos. Trans. R. Soc., 360, 2335-2345, doi: 10.1098/rstb.2005.1764.
  43. Xie, N., Zhang, L., Gao, W., Huang, C., Huber, P. E., Zhou, X., Li, C., Shen, G., and Zou, B. (2020) NAD+ metabolism: pathophysiologic mechanisms and therapeutic potential, Signal Transduction Targeted Ther., 5, 227, doi: 10.1038/s41392-020-00311-7.
  44. Akie, T. E., Liu, L., Nam, M., Lei, S., and Cooper, M. P. (2015) OXPHOS-mediated induction of NAD+ promotes complete oxidation of fatty acids and interdicts non-alcoholic fatty liver disease, PLoS One, 10, e0125617, doi: 10.1371/journal.pone.0125617.
  45. Yao, C.-H., Wang, R., Wang, Y., Kung, C.-P., Weber, J. D., and Patti, G. J. (2019) Mitochondrial fusion supports increased oxidative phosphorylation during cell proliferation, ELife, 8, e41351, doi: 10.7554/eLife.41351.
  46. Birsoy, K., Wang, T., Chen, W. W., Freinkman, E., Abu-Remaileh, M., and Sabatini, D. M. (2015) An essential role of the mitochondrial electron transport chain in cell proliferation is to enable aspartate synthesis, Cell, 162, 540-551, doi: 10.1016/j.cell.2015.07.016.
  47. Pan, S., Fan, M., Liu, Z., Li, X., and Wang, H. (2021) Serine, glycine and one-carbon metabolism in cancer, Int. J. Oncol., 58, 158-170, doi: 10.3892/ijo.2020.5158.
  48. Tong, X., Zhao, F., and Thompson, C. B. (2009) The molecular determinants of de novo nucleotide biosynthesis in cancer cells, Curr. Opin. Genet. Dev., 19, 32-37, doi: 10.1016/j.gde.2009.01.002.
  49. Baggott, J. E., and Tamura, T. (2015) Folate-dependent purine nucleotide biosynthesis in humans, Adv. Nutr., 6, 564-571, doi: 10.3945/an.115.008300.
  50. Van der Veen, J. N., Kennelly, J. P., Wan, S., Vance, J. E., Vance, D. E., and Jacobs, R. L. (2017) The critical role of phosphatidylcholine and phosphatidylethanolamine metabolism in health and disease, Biochim. Biophys. Acta Biomembr., 1859, 1558-1572, doi: 10.1016/j.bbamem.2017.04.006.
  51. Finkelstein, J. D. (1990) Methionine metabolism in mammals, J. Nutr. Biochem., 1, 228-237, doi: 10.1016/0955-2863(90)90070-2.
  52. Ron-Harel, N., Santos, D., Ghergurovich, J. M., Sage, P. T., Reddy, A., Lovitch, S. B., Dephoure, N., Satterstrom, F. K., Sheffer, M., Spinelli, J. B., Gygi, S., Rabinowitz, J. D., Sharpe, A. H., and Haigis, M. C. (2016) Mitochondrial biogenesis and proteome remodeling promote one-carbon metabolism for T cell activation, Cell Metab., 24, 104-117, doi: 10.1016/j.cmet.2016.06.007.
  53. Grumont, R., Lock, P., Mollinari, M., Shannon, F. M., Moore, A., and Gerondakis, S. (2004) The mitogen-induced increase in T cell size involves PKC and NFAT activation of Rel/NF-kappaB-dependent c-myc expression, Immunity, 21, 19-30, doi: 10.1016/j.immuni.2004.06.004.
  54. Obst, R. (2015) The timing of T cell priming and cycling, Front. Immunol., 6, 563, doi: 10.3389/fimmu.2015.00563.
  55. Hommel, M., and Kyewski, B. (2003) Dynamic changes during the immune response in T cell-antigen-presenting cell clusters isolated from lymph nodes, J. Exp. Med., 197, 269-280, doi: 10.1084/jem.20021512.
  56. Tan, S. Y., Kelkar, Y., Hadjipanayis, A., Shipstone, A., Wynn, T. A., and Hall, J. P. (2020) Metformin and 2-deoxyglucose collaboratively suppress human CD4+ T cell effector functions and activation-induced metabolic reprogramming, J. Immunol., 205, 957-967, doi: 10.4049/jimmunol.2000137.
  57. Macintyre, A. N., Gerriets, V. A., Nichols, A. G., Michalek, R. D., Rudolph, M. C., Deoliveira, D., Anderson. S. M., Abel, E. D., Chen, B. J., Hale, L. P., and Rathmell, J. C. (2014) The glucose transporter Glut1 is selectively essential for CD4 T cell activation and effector function, Cell Metab., 20, 61-72, doi: 10.1016/j.cmet.2014.05.004.
  58. Nian, Y., Iske, J., Maenosono, R., Minami, K., Heinbokel, T., Quante, M., Liu, Y., Azuma, H., Yang, J., Abdi, R., Zhou, H., Elkhal, A., and Tullius, S. G. (2021) Targeting age-specific changes in CD4+ T cell metabolism ameliorates alloimmune responses and prolongs graft survival, Aging Cell, 20, e13299, doi: 10.1111/acel.13299.
  59. Chen, X., Sunkel, B., Wang, M., Kang, S., Wang, T., Gnanaprakasam, J. N. R., Liu, L., Cassel, T. A., Scott, D. A., Muñoz-Cabello, A. M., Lopez-Barneo, J., Yang, J., Lane, A. N., Xin, G., Stanton, B. Z., Fan, T. W., and Wang, R. (2022) Succinate dehydrogenase/complex II is critical for metabolic and epigenetic regulation of T cell proliferation and inflammation, Sci. Immunol., 7, eabm8161, doi: 10.1126/sciimmunol.abm8161.
  60. Ma, E. H., Bantug, G., Griss, T., Condotta, S., Johnson, R. M., Samborska, B., Mainolfi, N., Suri, V., Guak, H., Balmer, M. L., Verway, M. J., Raissi, T. C., Tsui, H., Boukhaled, G., Henriques da Costa, S., Frezza, C., Krawczyk, C. M., Friedman, A., Manfredi, M., Richer, M. J., Hess, C., and Jones, R. G. (2017) Serine is an essential metabolite for effector T cell expansion, Cell Metab., 25, 345-357, doi: 10.1016/j.cmet.2016.12.011.
  61. Caro-Maldonado, A., Wang, R., Nichols, A. G., Kuraoka, M., Milasta, S., Sun, L. D., Gavin, A. L., Abel, E. D., Kelsoe, G., Green, D. R., and Rathmell, J. C. (2014) Metabolic reprogramming is required for antibody production that is suppressed in anergic but exaggerated in chronically BAFF-exposed B cells, J. Immunol., 192, 3626-3636, doi: 10.4049/jimmunol.1302062.
  62. Kim, J., Kim, Y.-S., and Park, S.-H. (2021) Metformin as a treatment strategy for Sjögren's syndrome, Int. J. Mol. Sci., 22, 7231, doi: 10.3390/ijms22137231.
  63. Påhlman, C., Qi, Z., Murray, C. M., Ferguson, D., Bundick, R. V., Donald, D. K., and Ekberg, H. (2013) Immunosuppressive properties of a series of novel inhibitors of the monocarboxylate transporter MCT-1, Transplant Int., 26, 22-29, doi: 10.1111/j.1432-2277.2012.01579.x.
  64. Berod, L., Friedrich, C., Nandan, A., Freitag, J., Hagemann, S., Harmrolfs, K., Sandouk, A., Hesse, C., Castro, C. N., Bähre, H., Tschirner, S. K., Gorinski, N., Gohmert, M., Mayer, C. T., Huehn, J., Ponimaskin, E., Abraham, W. R., Müller, R., Lochner, M., and Sparwasser, T. (2014) De novo fatty acid synthesis controls the fate between regulatory T and T helper 17 cells, Nat. Med., 20, 1327-1333, doi: 10.1038/nm.3704.
  65. Littman, D. R., and Rudensky, A. Y. (2010) Th17 and regulatory T cells in mediating and restraining inflammation, Cell, 140, 845-858, doi: 10.1016/j.cell.2010.02.021.
  66. Singh, R. P., Hasan, S., Sharma, S., Nagra, S., Yamaguchi, D. T., Wong, D. T., Hahn, B. H., and Hossain, A. (2014) Th17 cells in inflammation and autoimmunity, Autoimmun. Rev., 13, 1174-1181, doi: 10.1016/j.autrev.2014.08.019.
  67. Ohue, Y., and Nishikawa, H. (2019) Regulatory T (Treg) cells in cancer: Can Treg cells be a new therapeutic target? Cancer Sci., 110, 2080-2089, doi: 10.1111/cas.14069.
  68. Gerriets, V. A., Kishton, R. J., Nichols, A. G., Macintyre, A. N., Inoue, M., Ilkayeva, O., Winter, P. S., Liu, X., Priyadharshini, B., Slawinska, M. E., Haeberli, L., Huck, C., Turka, L. A., Wood, K. C., Hale, L. P., Smith, P. A., Schneider, M. A., MacIver, N. J., Locasale, J. W., Newgard, C. B., Shinohara, M. L., and Rathmell, J. C. (2015) Metabolic programming and PDHK1 control CD4+ T cell subsets and inflammation, J. Clin. Invest., 125, 194-207, doi: 10.1172/JCI76012.
  69. Shi, L. Z., Wang, R., Huang, G., Vogel, P., Neale, G., Green, D. R., and Chi, H. (2011) HIF1alpha-dependent glycolytic pathway orchestrates a metabolic checkpoint for the differentiation of TH17 and Treg cells, J. Exp. Med., 208, 1367-1376, doi: 10.1084/jem.20110278.
  70. Cluxton, D., Petrasca, A., Moran, B., and Fletcher, J. M. (2019) Differential regulation of human Treg and Th17 cells by fatty acid synthesis and glycolysis, Front. Immunol., 10, 115, doi: 10.3389/fimmu.2019.00115.
  71. Wang, H., Teng, X., Abboud, G., Li, W., Ye, S., and Morel, L. (2021) D-mannose ameliorates autoimmune phenotypes in mouse models of lupus, BMC Immunol., 22, 1, doi: 10.1186/s12865-020-00392-7.
  72. Angiari, S., Runtsch, M. C., Sutton, C. E., Palsson-McDermott, E. M., Kelly, B., Rana, N., Kane, H., Papadopoulou, G., Pearce, E. L., Mills, K. H. G., and O'Neill, L. A. J. (2020) Pharmacological activation of pyruvate kinase M2 inhibits CD4+ T cell pathogenicity and suppresses autoimmunity, Cell Metab., 31, 391-405, doi: 10.1016/j.cmet.2019.10.015.
  73. Xu, K., Yin, N., Peng, M., Stamatiades, E. G., Chhangawala, S., Shyu, A., Li, P., Zhang, X., Do, M. H., Capistrano, K. J., Chou, C., Leslie, C. S., and Li, M. O. (2021) Glycolytic ATP fuels phosphoinositide 3-kinase signaling to support effector T helper 17 cell responses, Immunity, 54, 976-987, doi: 10.1016/j.immuni.2021.04.008.
  74. Pandit, M., Timilshina, M., and Chang, J.-H. (2021) LKB1-PTEN axis controls Th1 and Th17 cell differentiation via regulating mTORC1, J. Mol. Med., 99, 1139-1150, doi: 10.1007/s00109-021-02090-2.
  75. Miska, J., Lee-Chang, C., Rashidi, A., Muroski, M. E., Chang, A. L., Lopez-Rosas, A., Zhang, P., Panek, W. K., Cordero, A., Han, Y., Ahmed, A. U., Chandel, N. S., and Lesniak, M. S. (2019) HIF-1α is a metabolic switch between glycolytic-driven migration and oxidative phosphorylation-driven immunosuppression of Tregs in glioblastoma, Cell Rep., 27, 226-237, doi: 10.1016/j.celrep.2019.03.029.
  76. Chen, X., Li, S., Long, D., Shan, J., and Li, Y. (2021) Rapamycin facilitates differentiation of regulatory T cells via enhancement of oxidative phosphorylation, Cell. Immunol., 365, 104378, doi: 10.1016/j.cellimm.2021.104378.
  77. Qin, J., Liu, Q., Liu, A., Leng, S., Wang, S., Li, C., Ma, J., Peng, J., and Xu, M. (2022) Empagliflozin modulates CD4+ T-cell differentiation via metabolic reprogramming in immune thrombocytopenia, British Br. J. Haematol., 198, 765-775, doi: 10.1111/bjh.18293.
  78. Gualdoni, G. A., Mayer, K. A., Göschl, L., Boucheron, N., Ellmeier, W., and Zlabinger, G. J. (2016) The AMP analog AICAR modulates the Treg/Th17 axis through enhancement of fatty acid oxidation, FASEB J., 30, 3800-3809, doi: 10.1096/fj.201600522R.
  79. Field, C. S., Baixauli, F., Kyle, R. L., Puleston, D. J., Cameron, A. M., Sanin, D. E., Hippen, K. L., Loschi, M., Thangavelu, G., Corrado, M., Edwards-Hicks, J., Grzes, K. M., Pearce, E. J., Blazar, B. R., and Pearce, E. L. (2020) Mitochondrial integrity regulated by lipid metabolism is a cell-intrinsic checkpoint for Treg suppressive function, Cell Metab., 31, 422-437, doi: 10.1016/j.cmet.2019.11.021.
  80. Zhu, H., Liu, Z., An, J., Zhang, M., Qiu, Y., and Zou, M.-H. (2021) Activation of AMPKα1 is essential for regulatory T cell function and autoimmune liver disease prevention, Cell. Mol. Immunol., 18, 2609-2617, doi: 10.1038/s41423-021-00790-w.
  81. Clambey, E. T., McNamee, E. N., Westrich, J. A., Glover, L. E., Campbell, E. L., Jedlicka, P., de Zoeten, E. F., Cambier, J. C., Stenmark, K. R., Colgan, S. P., and Eltzschig, H. K. (2012) Hypoxia-inducible factor-1 alpha-dependent induction of FoxP3 drives regulatory T-cell abundance and function during inflammatory hypoxia of the mucosa, Proc. Natl. Acad. Sci. USA, 109, 2784-2793, doi: 10.1073/pnas.1202366109.
  82. Zeng, H., Yang, K., Cloer, C., Neale, G., Vogel, P., and Chi, H. (2013) mTORC1 couples immune signals and metabolic programming to establish T(reg)-cell function, Nature, 499, 485-490, doi: 10.1038/nature12297.
  83. Allocco, J. B., and Alegre, M.-L. (2020) Exploiting immunometabolism and T cell function for solid organ transplantation, Cell. Immunol., 351, 104068, doi: 10.1016/j.cellimm.2020.104068.
  84. Lopez-Olivo, M. A., Siddhanamatha, H. R., Shea, B., Tugwell, P., Wells, G. A., and Suarez-Almazor, M. E. (2014) Methotrexate for treating rheumatoid arthritis, Cochrane Database Syst. Rev., 2014, CD000957, doi: 10.1002/14651858.CD000957.pub2.
  85. Lee, J.-U., Kim, L.-K., and Choi, J.-M. (2018) Revisiting the concept of targeting NFAT to control T cell immunity and autoimmune diseases, Front. Immunol., 9, 2747, doi: 10.3389/fimmu.2018.02747.
  86. Gao, W., Lu, Y., El Essawy, B., Oukka, M., Kuchroo, V. K., and Strom, T. B. (2007) Contrasting effects of cyclosporine and rapamycin in de novo generation of alloantigen-specific regulatory T cells, Am. J. Transplant., 7, 1722-1732, doi: 10.1111/j.1600-6143.2007.01842.x.
  87. Xu, T., Sun, D., Chen, Y., and Ouyang, L. (2020) Targeting mTOR for fighting diseases: a revisited review of mTOR inhibitors, Eur. J. Med. Chem., 199, 112391, doi: 10.1016/j.ejmech.2020.112391.
  88. Lai, Z.-W., Hanczko, R., Bonilla, E., Caza, T. N., Clair, B., Bartos, A., Miklossy, G., Jimah, J., Doherty, E., Tily, H., Francis, L., Garcia, R., Dawood, M., Yu, J., Ramos, I., Coman, I., Faraone, S. V., Phillips, P. E., and Perl, A. (2012) N-acetylcysteine reduces disease activity by blocking mammalian target of rapamycin in T cells from systemic lupus erythematosus patients: a randomized, double-blind, placebo-controlled trial, Arthritis Rheum., 64, 2937-2946, doi: 10.1002/art.34502.
  89. Walters, M. T., Rubin, C. E., Keightley, S. J., Ward, C. D., and Cawley, M. I. (1986) A double-blind, cross-over, study of oral N-acetylcysteine in Sjögren's syndrome, Scand. J. Rheumatol. Suppl., 61, 253-258.
  90. Fernandez, D., Bonilla, E., Mirza, N., Niland, B., and Perl, A. (2006) Rapamycin reduces disease activity and normalizes T cell activation-induced calcium fluxing in patients with systemic lupus erythematosus, Arthritis Rheum., 54, 2983-2988, doi: 10.1002/art.22085.
  91. Bruyn, G. A. W., Tate, G., Caeiro, F., Maldonado-Cocco, J., Westhovens, R., Tannenbaum, H., Bell, M., Forre, O., Bjorneboe, O., Tak, P. P., Abeywickrama, K. H., Bernhardt, P., van Riel, P. L., and RADD Study Group (2008) Everolimus in patients with rheumatoid arthritis receiving concomitant methotrexate: a 3-month, double-blind, randomised, placebo-controlled, parallel-group, proof-of-concept study, Ann. Rheum. Dis., 67, 1090-1095, doi: 10.1136/ard.2007.078808.
  92. Bachmann, M. F., Barner, M., Viola, A., and Kopf, M. (1999) Distinct kinetics of cytokine production and cytolysis in effector and memory T cells after viral infection, Eur. J. Immunol., 29, 291-299, doi: 10.1002/(SICI)1521-4141(199901)29:01<291::AID-IMMU291>3.0.CO;2-K.
  93. Park, B. V., and Pan, F. (2015) Metabolic regulation of T cell differentiation and function, Mol. Immunol., 68, 497-506, doi: 10.1016/j.molimm.2015.07.027.
  94. Araki, K., Turner, A. P., Shaffer, V. O., Gangappa, S., Keller, S. A., Bachmann, M. F., Larsen, C. P., and Ahmed, R. (2009) mTOR regulates memory CD8 T-cell differentiation, Nature, 460, 108-112, doi: 10.1038/nature08155.
  95. Sukumar, M., Liu, J., Ji, Y., Subramanian, M., Crompton, J. G., Yu, Z., Roychoudhuri, R., Palmer, D. C., Muranski, P., Karoly, E. D., Mohney, R. P., Klebanoff, C. A., Lal, A., Finkel, T., Restifo, N. P., and Gattinoni, L. (2013) Inhibiting glycolytic metabolism enhances CD8+ T cell memory and antitumor function, J. Clin. Invest., 123, 4479-4488, doi: 10.1172/JCI69589.
  96. Wenes, M., Jaccard, A., Wyss, T., Maldonado-Pérez, N., Teoh, S. T., Lepez, A., Renaud, F., Franco, F., Waridel, P., Yacoub Maroun, C., Tschumi, B., Dumauthioz, N., Zhang, L., Donda, A., Martín, F., Migliorini, D., Lunt, S. Y., Ho, P. C., and Romero, P. (2022) The mitochondrial pyruvate carrier regulates memory T cell differentiation and antitumor function, Cell Metab., 34, 731-746, doi: 10.1016/j.cmet.2022.03.013.
  97. He, J., Shangguan, X., Zhou, W., Cao, Y., Zheng, Q., Tu, J., Hu, G., Liang, Z., Jiang, C., Deng, L., Wang, S., Yang, W., Zuo, Y., Ma, J., Cai, R., Chen, Y., Fan, Q., Dong, B., Xue, W., Tan, H., Qi, Y., Gu, J., Su, B., Eugene Chin, Y., Chen, G., Wang, Q., Wang, T., and Cheng, J. (2021) Glucose limitation activates AMPK coupled SENP1-Sirt3 signalling in mitochondria for T cell memory development, Nat. Commun., 12, 4371, doi: 10.1038/s41467-021-24619-2.
  98. Dumauthioz, N., Tschumi, B., Wenes, M., Marti, B., Wang, H., Franco, F., Li, W., Lopez-Mejia, I. C., Fajas, L., Ho, P. C., Donda, A., Romero, P., and Zhang, L. (2021) Enforced PGC-1α expression promotes CD8 T cell fitness, memory formation and antitumor immunity, Cell. Mol. Immunol., 18, 1761-1771, doi: 10.1038/s41423-020-0365-3.
  99. Pearce, E. L., Walsh, M. C., Cejas, P. J., Harms, G. M., Shen, H., Wang, L.-S., Jones, R. G., and Choi, Y. (2009) Enhancing CD8 T-cell memory by modulating fatty acid metabolism, Nature, 460, 103-107, doi: 10.1038/nature08097.
  100. O'Sullivan, D., van der Windt, G. J. W., Huang, S. C.-C., Curtis, J. D., Chang, C.-H., Buck, M. D., Qiu, J., Smith, A. M., Lam, W. Y., DiPlato, L. M., Hsu, F. F., Birnbaum, M. J., Pearce, E. J., and Pearce, E. L. (2014) Memory CD8+ T cells use cell-intrinsic lipolysis to support the metabolic programming necessary for development, Immunity, 41, 75-88, doi: 10.1016/j.immuni.2014.06.005.
  101. Cui, G., Staron, M. M., Gray, S. M., Ho, P.-C., Amezquita, R. A., Wu, J., and Kaech, S. M. (2015) IL-7-induced glycerol transport and TAG synthesis promotes memory CD8+ T cell longevity, Cell, 161, 750-761, doi: 10.1016/j.cell.2015.03.021.
  102. Pan, Y., Tian, T., Park, C. O., Lofftus, S. Y., Mei, S., Liu, X., Luo, C., O'Malley, J. T., Gehad, A., Teague, J. E., Divito, S. J., Fuhlbrigge, R., Puigserver, P., Krueger, J. G., Hotamisligil, G. S., Clark, R. A., and Kupper, T. S. (2017) Survival of tissue-resident memory T cells requires exogenous lipid uptake and metabolism, Nature, 543, 252-256, doi: 10.1038/nature21379.
  103. Han, S.-J., Glatman Zaretsky, A., Andrade-Oliveira, V., Collins, N., Dzutsev, A., Shaik, J., Morais da Fonseca, D., Harrison, O. J., Tamoutounour, S., Byrd, A. L., Smelkinson, M., Bouladoux, N., Bliska, J. B., Brenchley, J. M., Brodsky, I. E., and Belkaid, Y. (2017) White adipose tissue is a reservoir for memory T cells and promotes protective memory responses to infection, Immunity, 47, 1154-1168, doi: 10.1016/j.immuni.2017.11.009.
  104. Dimeloe, S., Mehling, M., Frick, C., Loeliger, J., Bantug, G. R., Sauder, U., Fischer, M., Belle, R., Develioglu, L., Tay, S., Langenkamp, A., and Hess, C. (2016) The immune-metabolic basis of effector memory CD4+ T cell function under hypoxic conditions, J. Immunol., 196, 106-114, doi: 10.4049/jimmunol.1501766.
  105. Van der Windt, G. J. W., Everts, B., Chang, C.-H., Curtis, J. D., Freitas, T. C., Amiel, E., Pearce, E. J., and Pearce, E. L. (2012) Mitochondrial respiratory capacity is a critical regulator of CD8+ T cell memory development, Immunity, 36, 68-78, doi: 10.1016/j.immuni.2011.12.007.
  106. Prlic, M., and Bevan, M. J. (2009) Immunology: a metabolic switch to memory, Nature, 460, 41-42, doi: 10.1038/460041a.
  107. Luo, L., Li, X., Zhang, J., Zhu, C., Jiang, M., Luo, Z., Qin, B., Wang, Y., Chen, B., Du, Y., Lou, Y., and You, J. (2021) Enhanced immune memory through a constant photothermal-metabolism regulation for cancer prevention and treatment, Biomaterials, 270, 120678, doi: 10.1016/j.biomaterials.2021.120678.
  108. Riva, A., and Chokshi, S. (2018) Immune checkpoint receptors: homeostatic regulators of immunity, Hepatol. Int., 12, 223-236, doi: 10.1007/s12072-018-9867-9.
  109. Fife, B. T., and Pauken, K. E. (2011) The role of the PD-1 pathway in autoimmunity and peripheral tolerance, Ann. N. Y. Acad. Sci., 1217, 45-59, doi: 10.1111/j.1749-6632.2010.05919.x.
  110. Chemnitz, J. M., Parry, R. V., Nichols, K. E., June, C. H., and Riley, J. L. (2004) SHP-1 and SHP-2 associate with immunoreceptor tyrosine-based switch motif of programmed death 1 upon primary human T cell stimulation, but only receptor ligation prevents T cell activation, J. Immunol., 173, 945-954, doi: 10.4049/jimmunol.173.2.945.
  111. Riley, J. L. (2009) PD-1 signaling in primary T cells, Immunol. Rev., 229, 114-125, doi: 10.1111/j.1600-065X.2009.00767.x.
  112. Francisco, L. M., Sage, P. T., and Sharpe, A. H. (2010) The PD-1 pathway in tolerance and autoimmunity, Immunol. Rev., 236, 219-242, doi: 10.1111/j.1600-065X.2010.00923.x.
  113. Patsoukis, N., Bardhan, K., Chatterjee, P., Sari, D., Liu, B., Bell, L. N., Karoly, E. D., Freeman, G. J., Petkova, V., Seth, P., Li, L., and Boussiotis, V. A. (2015) PD-1 alters T-cell metabolic reprogramming by inhibiting glycolysis and promoting lipolysis and fatty acid oxidation, Nat. Commun., 6, 6692, doi: 10.1038/ncomms7692.
  114. Keir, M. E., Butte, M. J., Freeman, G. J., and Sharpe, A. H. (2008) PD-1 and its ligands in tolerance and immunity, Ann. Rev. Immunol., 26, 677-704, doi: 10.1146/annurev.immunol.26.021607.090331.
  115. Sharpe, A. H., Wherry, E. J., Ahmed, R., and Freeman, G. J. (2007) The function of programmed cell death 1 and its ligands in regulating autoimmunity and infection, Nat. Immunol., 8, 239-245, doi: 10.1038/ni1443.
  116. Ohaegbulam, K. C., Assal, A., Lazar-Molnar, E., Yao, Y., and Zang, X. (2015) Human cancer immunotherapy with antibodies to the PD-1 and PD-L1 pathway, Trends Mol. Med., 21, 24-33, doi: 10.1016/j.molmed.2014.10.009.
  117. Antonangeli, F., Natalini, A., Garassino, M. C., Sica, A., Santoni, A., and Di Rosa, F. (2020) Regulation of PD-L1 expression by NF-κB in cancer, Front. Immunol., 11, 584626, doi: 10.3389/fimmu.2020.584626.
  118. Brown, J. A., Dorfman, D. M., Ma, F.-R., Sullivan, E. L., Munoz, O., Wood, C. R., Greenfield, E. A., and Freeman, G.J. (2003) Blockade of programmed death-1 ligands on dendritic cells enhances T cell activation and cytokine production, J. Immunol., 170, 1257-1266, doi: 10.4049/jimmunol.170.3.1257.
  119. Kinter, A. L., Godbout, E. J., McNally, J. P., Sereti, I., Roby, G. A., O'Shea, M. A., and Fauci, A. S. (2008) The common gamma-chain cytokines IL-2, IL-7, IL-15, and IL-21 induce the expression of programmed death-1 and its ligands, J. Immunol., 181, 6738-6746, doi: 10.4049/jimmunol.181.10.6738.
  120. Blackburn, S. D., Crawford, A., Shin, H., Polley, A., Freeman, G. J., and Wherry, E. J. (2010) Tissue-specific differences in PD-1 and PD-L1 expression during chronic viral infection: implications for CD8 T-cell exhaustion, Virol. J., 84, 2078-2089, doi: 10.1128/JVI.01579-09.
  121. Zhang, Y., Zhou, Y., Lou, J., Li, J., Bo, L., Zhu, K., Wan, X., Deng, X., and Cai, Z. (2010) PD-L1 blockade improves survival in experimental sepsis by inhibiting lymphocyte apoptosis and reversing monocyte dysfunction, Critical Care, 14, R220, doi: 10.1186/cc9354.
  122. Alfei, F., and Zehn, D. (2017) T cell exhaustion: an epigenetically imprinted phenotypic and functional makeover, Trends Mol. Med., 23, 769-771, doi: 10.1016/j.molmed.2017.07.006.
  123. He, W., Xiao, K., Xu, J., Guan, W., Xie, S., Wang, K., Yan, P., Fang, M., and Xie, L. (2021) Recurrent sepsis exacerbates CD4+ T cell exhaustion and decreases antiviral immune responses, Front. Immunol., 12, 627435, doi: 10.3389/fimmu.2021.627435.
  124. Philip, M., and Schietinger, A. (2019) Heterogeneity and fate choice: T cell exhaustion in cancer and chronic infections, Curr. Opin. Immunol., 58, 98-103, doi: 10.1016/j.coi.2019.04.014.
  125. Fenwick, C., Joo, V., Jacquier, P., Noto, A., Banga, R., Perreau, M., and Pantaleo, G. (2019) T-cell exhaustion in HIV infection, Immunol. Rev., 292, 149-163, doi: 10.1111/imr.12823.
  126. Vardhana, S. A., Hwee, M. A., Berisa, M., Wells, D. K., Yost, K. E., King, B., Smith, M., Herrera, P. S., Chang, H. Y., Satpathy, A. T., van den Brink, M. R. M., Cross, J. R., and Thompson, C. B. (2020) Impaired mitochondrial oxidative phosphorylation limits the self-renewal of T cells exposed to persistent antigen, Nat. Immunol., 21, 1022-1033, doi: 10.1038/s41590-020-0725-2.
  127. Liu, Y.-N., Yang, J.-F., Huang, D.-J., Ni, H.-H., Zhang, C.-X., Zhang, L., He, J., Gu, J. M., Chen, H. X., Mai, H.Q., Chen, Q.Y., Zhang, X.S., Gao, S., and Li, J. (2020) Hypoxia induces mitochondrial defect that promotes T cell exhaustion in tumor microenvironment through MYC-regulated pathways, Front. Immunol., 11, 1906, doi: 10.3389/fimmu.2020.01906.
  128. Scharping, N. E., Rivadeneira, D. B., Menk, A. V., Vignali, P. D. A., Ford, B. R., Rittenhouse, N. L., Peralta, R., Wang, Y., Wang, Y., DePeaux, K., Poholek, A. C., and Delgoffe, G. M. (2021) Mitochondrial stress induced by continuous stimulation under hypoxia rapidly drives T cell exhaustion, Nat. Immunol., 22, 205-215, doi: 10.1038/s41590-020-00834-9.
  129. Yu, Y.-R., Imrichova, H., Wang, H., Chao, T., Xiao, Z., Gao, M., Rincon-Restrepo, M., Franco, F., Genolet, R., Cheng, W. C., Jandus, C., Coukos, G., Jiang, Y. F., Locasale, J. W., Zippelius, A., Liu, P. S., Tang, L., Bock, C., Vannini, N., and Ho, P. C. (2020) Disturbed mitochondrial dynamics in CD8+ TILs reinforce T cell exhaustion, Nat. Immunol., 21, 1540-1551, doi: 10.1038/s41590-020-0793-3.
  130. Li, W., Cheng, H., Li, G., and Zhang, L. (2020) Mitochondrial damage and the road to exhaustion, Cell Metab., 32, 905-907, doi: 10.1016/j.cmet.2020.11.004.
  131. Finisguerra, V., Dvorakova, T., Formenti, M., Van Meerbeeck, P., Mignion, L., Gallez, B., and Van den Eynde, B. J. (2023) Metformin improves cancer immunotherapy by directly rescuing tumor-infiltrating CD8 T lymphocytes from hypoxia-induced immunosuppression, J. Immunother. Cancer, 11, e005719, doi: 10.1136/jitc-2022-005719.
  132. Haws, S. A., Leech, C. M., and Denu, J. M. (2020) Metabolism and the epigenome: a dynamic relationship, Trends Biochem. Sci., 45, 731-747, doi: 10.1016/j.tibs.2020.04.002.
  133. Martínez-Reyes, I., Diebold, L. P., Kong, H., Schieber, M., Huang, H., Hensley, C. T., Mehta, M. M., Wang, T., Santos, J. H., Woychik, R., Dufour, E., Spelbrink, J. N., Weinberg, S. E., Zhao, Y., DeBerardinis, R. J., and Chandel, N. S. (2016) TCA cycle and mitochondrial membrane potential are necessary for diverse biological functions, Mol. Cell, 61, 199-209, doi: 10.1016/j.molcel.2015.12.002.
  134. Madiraju, P., Pande, S. V., Prentki, M., and Madiraju, S. R. M. (2009) Mitochondrial acetylcarnitine provides acetyl groups for nuclear histone acetylation, Epigenetics, 4, 399-403, doi: 10.4161/epi.4.6.9767.
  135. Lozoya, O. A., Wang, T., Grenet, D., Wolfgang, T. C., Sobhany, M., Ganini da Silva, D., Riadi, G., Chandel, N., Woychik, R. P., and Santos, J. H. (2019) Mitochondrial acetyl-CoA reversibly regulates locus-specific histone acetylation and gene expression, Life Sci. Alliance, 2, e201800228, doi: 10.26508/lsa.201800228.
  136. Peng, M., Yin, N., Chhangawala, S., Xu, K., Leslie, C. S., and Li, M. O. (2016) Aerobic glycolysis promotes T helper 1 cell differentiation through an epigenetic mechanism, Science, 354, 481-484, doi: 10.1126/science.aaf6284.
  137. Delsite, R., Kachhap, S., Anbazhagan, R., Gabrielson, E., and Singh, K. K. (2002) Nuclear genes involved in mitochondria-to-nucleus communication in breast cancer cells, Mol. Cancer, 1, 6, doi: 10.1186/1476-4598-1-6.
  138. Carey, B. W., Finley, L. W. S., Cross, J. R., Allis, C. D., and Thompson, C. B. (2015) Intracellular α-ketoglutarate maintains the pluripotency of embryonic stem cells, Nature, 518, 413-416, doi: 10.1038/nature13981.
  139. Liu, P.-S., Wang, H., Li, X., Chao, T., Teav, T., Christen, S., Di Conza, G., Cheng, W. C., Chou, C. H., Vavakova, M., Muret, C., Debackere, K., Mazzone, M., Huang, H. D., Fendt, S. M., Ivanisevic, J., and Ho, P. C. (2017) α-ketoglutarate orchestrates macrophage activation through metabolic and epigenetic reprogramming, Nat. Immunol., 18, 985-994, doi: 10.1038/ni.3796.
  140. Xu, W., Yang, H., Liu, Y., Yang, Y., Wang, P., Kim, S.-H., Ito, S., Yang, C., Wang, P., Xiao, M. T., Liu, L. X., Jiang, W. Q., Liu, J., Zhang, J. Y., Wang, B., Frye, S., Zhang, Y., Xu, Y. H., Lei, Q. Y., Guan, K. L., Zhao, S. M., and Xiong, Y. (2011) Oncometabolite 2-hydroxyglutarate is a competitive inhibitor of α-ketoglutarate-dependent dioxygenases, Cancer Cell, 19, 17-30, doi: 10.1016/j.ccr.2010.12.014.
  141. Sciacovelli, M., Gonçalves, E., Johnson, T.I., Zecchini, V. R., da Costa, A. S. H., Gaude, E., Drubbel, A. V., Theobald, S. J., Abbo, S. R., Tran, M. G., Rajeeve, V., Cardaci, S., Foster, S., Yun, H., Cutillas, P., Warren, A., Gnanapragasam, V., Gottlieb, E., Franze, K., Huntly, B., Maher, E. R., Maxwell, P. H., Saez-Rodriguez, J., and Frezza, C. (2016) Fumarate is an epigenetic modifier that elicits epithelial-to-mesenchymal transition, Nature, 537, 544-547, doi: 10.1038/nature19353.
  142. Nabe, S., Yamada, T., Suzuki, J., Toriyama, K., Yasuoka, T., Kuwahara, M., Shiraishi, A., Takenaka, K., Yasukawa, M., and Yamashita, M. (2018) Reinforce the antitumor activity of CD8+ T cells via glutamine restriction, Cancer Sci., 109, 3737-3750, doi: 10.1111/cas.13827.
  143. Suzuki, J., Yamada, T., Inoue, K., Nabe, S., Kuwahara, M., Takemori, N., Matsuda, S., Kanoh, M., Imai, Y., Yasukawa, M., and Yamashita, M. (2018) The tumor suppressor menin prevents effector CD8 T-cell dysfunction by targeting mTORC1-dependent metabolic activation, Nat. Commun., 9, 3296, doi: 10.1038/s41467-018-05854-6.
  144. Sun, L., Zhang, L., Yu, J., Zhang, Y., Pang, X., Ma, C., et al. (2020) Clinical efficacy and safety of anti-PD-1/PD-L1 inhibitors for the treatment of advanced or metastatic cancer: a systematic review and meta-analysis, Sci. Rep., 10, 2083, doi: 10.1038/s41598-020-58674-4.
  145. Seidel, J. A., Otsuka, A., and Kabashima, K. (2018) Anti-PD-1 and anti-CTLA-4 therapies in cancer: mechanisms of action, efficacy, and limitations, Front. Oncol., 8, 86, doi: 10.3389/fonc.2018.00086.
  146. Chowdhury, P. S., Chamoto, K., Kumar, A., and Honjo, T. (2018) PPAR-induced fatty acid oxidation in T cells increases the number of tumor-reactive CD8+ T cells and facilitates anti-PD-1 therapy, Cancer Immunol. Res., 6, 1375-1387, doi: 10.1158/2326-6066.CIR-18-0095.
  147. Abdul-Rahman, T., Bukhari, S. M. A., Herrera, E. C., Awuah, W. A., Lawrence, J., and de Andrade, H. (2022) Lipid lowering therapy: an era beyond statins, Curr. Probl. Cardiol., 47, 101342, doi: 10.1016/j.cpcardiol.2022.101342.
  148. Lemberg, K. M., Gori, S. S., Tsukamoto, T., Rais, R., and Slusher, B. S. (2022) Clinical development of metabolic inhibitors for oncology, J. Clin. Invest., 132, e148550, doi: 10.1172/JCI148550.
  149. Peng, M., and Li, M. O. (2023) Metabolism along the life journey of T cells, Life Metab., 2, 1-9, doi: 10.1093/lifemeta/load002.

© Russian Academy of Sciences, 2023

Осы сайт cookie-файлдарды пайдаланады

Біздің сайтты пайдалануды жалғастыра отырып, сіз сайттың дұрыс жұмыс істеуін қамтамасыз ететін cookie файлдарын өңдеуге келісім бересіз.< / br>< / br>cookie файлдары туралы< / a>