Markers of end-stage renal disease progression: beyond the GFR

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Chronic kidney disease may progress to end-stage renal disease (ESRD) with a high risk of morbidity and mortality. ESRD requires immediate initiation of therapy or a decision on dialysis or kidney transplantation. Therefore, timely diagnosis of pathology progression is critical for many patients. ESRD is associated with pathological changes, including inflammation, fibrosis, endocrine disorders and following epigenetic changes in various cells, all these alterations could serve as markers for ESRD identification. This review summarizes conventional and promising biomarkers of ESRD, which can be evaluated in kidney tissue, blood, or urine. Some of them are narrowly specific to a particular pathology, while others are more versatile. We suggested several universal inflammatory, fibrotic, hormonal, and epigenetic markers indicative of severe deterioration of renal function and progression of ESRD for improvement of ESRD diagnostics.

About the authors

E. I Yakupova

Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University

Email: elmira.yaku@gmail.com
119234 Moscow, Russia

P. A Abramicheva

Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University

119234 Moscow, Russia

A. D Bocharnikov

International School of Medicine of the Future, Sechenov First Moscow State Medical University

119992 Moscow, Russia

N. V Andrianova

Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University

119234 Moscow, Russia

E. Y Plotnikov

Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University;Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology

Email: plotnikov@belozersky.msu.ru
119234 Moscow, Russia;117997 Moscow, Russia

References

  1. Schainuck, L. I., Striker, G. E., Cutler, R. E., and Benditt, E. P. (1970) Structural-functional correlations in renal disease. II. The correlations, Hum. Pathol., 1, 631-641, doi: 10.1016/S0046-8177(70)80061-2.
  2. Bohle, A., Mackensen-Haen, S., and von Gise, H. (1987) Significance of tubulointerstitial changes in the renal cortex for the excretory function and concentration ability of the kidney: a morphometric contribution, Am. J. Nephrol., 7, 421-433, doi: 10.1159/000167514.
  3. Risdon, R. A., Sloper, J. C., and De Wardener, H. E. (1968) Relationship between renal function and histological changes found in renal-biopsy specimens from patients with persistent glomerular nephritis, Lancet, 292, 363-366, doi: 10.1016/S0140-6736(68)90589-8.
  4. Hashmi, M. F., Benjamin, O., and Lappin, S. L. (2023) End-Stage Renal Disease, In StatPearls, StatPearls Publishing.
  5. Roufosse, C., Simmonds, N., Clahsen-van Groningen, M., Haas, M., Henriksen, K. J., Horsfield, C., Loupy, A., Mengel, M., Perkowska-Ptasińska, A., Rabant, M., Racusen, L. C., Solez, K., and Becker, J. U. (2018) A 2018 reference guide to the banff classification of renal allograft pathology, Transplantation, 102, 1795-1814, doi: 10.1097/TP.0000000000002366.
  6. Saran, R., Robinson, B., Abbott, K. C., Agodoa, L. Y. C., Bragg-Gresham, J., Balkrishnan, R., Bhave, N., Dietrich, X., Ding, Z., Eggers, P. W., Gaipov, A., Gillen, D., Gipson, D., Gu, H., Guro, P., Haggerty, D., Han, Y., He, K., Herman, W., et al. (2019) US Renal Data System 2018 Annual Data Report: Epidemiology of Kidney Disease in the United States, Am. J. Kidney Dis., 73 (3 Suppl 1), A7-A8, doi: 10.1053/j.ajkd.2019.01.001.
  7. Levey, A. S., de Jong, P. E., Coresh, J., El Nahas, M., Astor, B. C., Matsushita, K., Gansevoort, R. T., Kasiske, B. L., and Eckardt, K.-U. (2011) The definition, classification, and prognosis of chronic kidney disease: a KDIGO Controversies Conference report, Kidney Int., 80, 17-28, doi: 10.1038/ki.2010.483.
  8. Acosta-Ochoa, I., Bustamante-Munguira, J., Mendiluce-Herrero, A., Bustamante-Bustamante, J., and Coca-Rojo, A. (2019) Impact on outcomes across KDIGO-2012 AKI criteria according to baseline renal function, J. Clin. Med. Res., 8, doi: 10.3390/jcm8091323.
  9. Uslu, A., Hür, E., Şen, Ç., Şen, S., Akgün, A., Taşlı, F. A., Nart, A., Yilmaz, M., and Töz, H. (2015) To what extent estimated or measured GFR could predict subclinical graft fibrosis: a comparative prospective study with protocol biopsies, Transplant. Int., 28, 575-581, doi: 10.1111/tri.12534.
  10. Bjornstad, P., Karger, A. B., and Maahs, D. M. (2018) Measured GFR in routine clinical practice-the promise of dried blood spots, Adv. Chronic Kidney Dis., 25, 76-83, doi: 10.1053/j.ackd.2017.09.003.
  11. Zsom, L., Zsom, M., Salim, S. A., and Fülöp, T. (2022) Estimated glomerular filtration rate in chronic kidney disease: a critical review of estimate-based predictions of individual outcomes in kidney disease, Toxins, 14, 127, doi: 10.3390/toxins14020127.
  12. Henderson, N. C., Rieder, F., and Wynn, T. A. (2020) Fibrosis: from mechanisms to medicines, Nature, 7835, 555-566, doi: 10.1038/s41586-020-2938-9.
  13. Moeller, M. J., Kramann, R., Lammers, T., Hoppe, B., Latz, E., Ludwig-Portugall, I., Boor, P., Floege, J., Kurts, C., Weiskirchen, R., and Ostendorf, T. (2021) New aspects of kidney fibrosis-from mechanisms of injury to modulation of disease, Front. Med., 8, 814497, doi: 10.3389/fmed.2021.814497.
  14. Ghaderian, S. B., Hayati, F., Shayanpour, S., and Beladi Mousavi, S. S. (2015) Diabetes and end-stage renal disease; a review article on new concepts, J. Renal Injury Prevent., 4, 28-33, doi: 10.12861/jrip.2015.07.
  15. Watanabe, K., Sato, E., Mishima, E., Miyazaki, M., and Tanaka, T. (2022) What's new in the molecular mechanisms of diabetic kidney disease: recent advances, Int. J. Mol. Sci., 24, 570, doi: 10.3390/ijms24010570.
  16. Lees, J. S., Welsh, C. E., Celis-Morales, C. A., Mackay, D., Lewsey, J., Gray, S. R., Lyall, D. M., Cleland, J. G., Gill, J. M. R., Jhund, P. S., Pell, J., Sattar, N., Welsh, P., and Mark, P. B. (2019) Glomerular filtration rate by differing measures, albuminuria and prediction of cardiovascular disease, mortality and end-stage kidney disease, Nat. Med., 25, 1753-1760, doi: 10.1038/s41591-019-0627-8.
  17. Frąk, W., Kućmierz, J., Szlagor, M., Młynarska, E., Rysz, J., and Franczyk, B. (2022) New insights into molecular mechanisms of chronic kidney disease, Biomedicines, 10, 2846, doi: 10.3390/biomedicines10112846.
  18. Gusev, E., Solomatina, L., Zhuravleva, Y., and Sarapultsev, A. (2021) The pathogenesis of end-stage renal disease from the standpoint of the theory of general pathological processes of inflammation, Int. J. Mol. Sci., 22, doi: 10.3390/ijms222111453.
  19. Hewitson, T. D. (2012) Fibrosis in the kidney: is a problem shared a problem halved? Fibrogen. Tissue Rep., 5 (Suppl 1), S14, doi: 10.1186/1755-1536-5-S1-S14.
  20. Barreto, D. V., Barreto, F. C., Liabeuf, S., Temmar, M., Lemke, H.-D., Tribouilloy, C., Choukroun, G., Vanholder, R., Massy, Z. A., and European Uremic Toxin Work Group (EUTox) (2010) Plasma interleukin-6 is independently associated with mortality in both hemodialysis and pre-dialysis patients with chronic kidney disease, Kidney Int., 77, 550-556, doi: 10.1038/ki.2009.503.
  21. Alicic, R. Z., Johnson, E. J., and Tuttle, K. R. (2018) Inflammatory mechanisms as new biomarkers and therapeutic targets for diabetic kidney disease, Adv. Chronic Kidney Dis., 25, 181-191, doi: 10.1053/j.ackd.2017.12.002.
  22. Fried, L., Solomon, C., Shlipak, M., Seliger, S., Stehman-Breen, C., Bleyer, A. J., Chaves, P., Furberg, C., Kuller, L., and Newman, A. (2004) Inflammatory and prothrombotic markers and the progression of renal disease in elderly individuals, J. Am. Soc. Nephrol., 15, 3184-3191, doi: 10.1097/01.ASN.0000146422.45434.35.
  23. Keller, C., Katz, R., Sarnak, M. J., Fried, L. F., Kestenbaum, B., Cushman, M., Shlipak, M. G., and CHS study. (2010) Inflammatory biomarkers and decline in kidney function in the elderly: the cardiovascular health study, Nephrol. Dial. Transplant., 25, 119-124, doi: 10.1093/ndt/gfp429.
  24. Mentz, R. J., Kelly, J. P., von Lueder, T. G., Voors, A. A., Lam, C. S. P., Cowie, M. R., Kjeldsen, K., Jankowska, E. A., Atar, D., Butler, J., Fiuzat, M., Zannad, F., Pitt, B., and O'Connor, C. M. (2014) Noncardiac comorbidities in heart failure with reduced versus preserved ejection fraction, J. Am. Coll. Cardiol., 64, 2281-2293, doi: 10.1016/j.jacc.2014.08.036.
  25. Pouleur, A.-C. (2015) Which biomarkers do clinicians need for diagnosis and management of heart failure with reduced ejection fraction? Clin. Chim. Acta, 443, 9-16, doi: 10.1016/j.cca.2014.10.046.
  26. Feng, Y.-M., Thijs, L., Zhang, Z.-Y., Yang, W.-Y., Huang, Q.-F., Wei, F.-F., Kuznetsova, T., Jennings, A.-M., Delles, C., Lennox, R., Verhamme, P., Dominiczak, A., and Staessen, J. A. (2017) Glomerular function in relation to circulating adhesion molecules and inflammation markers in a general population, Nephrol. Dial. Transplant., 33, 426-435, doi: 10.1093/ndt/gfx256.
  27. Chiang, C.-K., Hsu, S.-P., Pai, M.-F., Peng, Y.-S., Ho, T.-I., Liu, S.-H., Hung, K.-Y., Tsai, T.-J., and Hsieh, B.-S. (2005) Plasma interleukin-18 levels in chronic renal failure and continuous ambulatory peritoneal dialysis, Blood Purif., 23, 144-148, doi: 10.1159/000083620.
  28. Khanijou, V., Zafari, N., Coughlan, M. T., MacIsaac, R. J., and Ekinci, E. I. (2022) Review of potential biomarkers of inflammation and kidney injury in diabetic kidney disease, Diab. Metab. Res. Rev., 38, e3556, doi: 10.1002/dmrr.3556.
  29. Oh, Y. J., An, J. N., Kim, C. T., Yang, S. H., Lee, H., Kim, D. K., Joo, K. W., Paik, J. H., Kang, S.-W., Park, J. T., Lim, C. S., Kim, Y. S., and Lee, J. P. (2015) Circulating tumor necrosis factor α receptors predict the outcomes of human IgA nephropathy: a prospective cohort study, PLoS One, 10, e0132826, doi: 10.1371/journal.pone.0132826.
  30. Niewczas, M. A., Pavkov, M. E., Skupien, J., Smiles, A., Md Dom, Z. I., Wilson, J. M., Park, J., Nair, V., Schlafly, A., Saulnier, P.-J., Satake, E., Simeone, C. A., Shah, H., Qiu, C., Looker, H. C., Fiorina, P., Ware, C. F., Sun, J. K., Doria, A., et al. (2019) A signature of circulating inflammatory proteins and development of end-stage renal disease in diabetes, Nat. Med., 25, 805-813, doi: 10.1038/s41591-019-0415-5.
  31. Khan, F., Kapoor, S., Rana, J., and Khan, S. (2022) Evaluation of Inflammatory markers in different stages of chronic renal disease, Asian J. Med. Sci., 13, 100-107, doi: 10.3126/ajms.v13i5.40454.
  32. Fathi, F., Atapour, A., Eskandari, N., Keyhanmehr, N., Hafezi, H., Mohammadi, S., and Motedayyen, H. (2019) Regulatory T-cells and their impacts on cytokine profile of end-stage renal disease patients suffering from systemic lupus erythematosus, Int. J. Immunopathol. Pharmacol., 33, doi: 10.1177/2058738419863238.
  33. Abraham, R., Durkee, M. S., Ai, J., Veselits, M., Casella, G., Asano, Y., Chang, A., Ko, K., Oshinsky, C., Peninger, E., Giger, M. L., and Clark, M. R. (2022) Specific in situ inflammatory states associate with progression to renal failure in lupus nephritis, J. Clin. Invest., 132, e155350, doi: 10.1172/JCI155350.
  34. Lioulios, G., Fylaktou, A., Xochelli, A., Sampani, E., Tsouchnikas, I., Giamalis, P., Daikidou, D.-V., Nikolaidou, V., Papagianni, A., Theodorou, I., and Stangou, M. (2022) Clustering of end stage renal disease patients by dimensionality reduction algorithms according to lymphocyte senescence markers, Front. Immunol., 13, 841031, doi: 10.3389/fimmu.2022.841031.
  35. Turkmen, K., Guney, I., Yerlikaya, F. H., and Tonbul, H. Z. (2012) The relationship between neutrophil-to-lymphocyte ratio and inflammation in end-stage renal disease patients, Renal Failure, 34, 155-159, doi: 10.3109/0886022X.2011.641514.
  36. Turkmen, K., Erdur, F. M., Ozcicek, F., Ozcicek, A., Akbas, E. M., Ozbicer, A., Demirtas, L., Turk, S., and Tonbul, H. Z. (2013) Platelet-to-lymphocyte ratio better predicts inflammation than neutrophil-to-lymphocyte ratio in end-stage renal disease patients, Hemodial. Int., 17, 391-396, doi: 10.1111/hdi.12040.
  37. Ahbap, E., Sakaci, T., Kara, E., Sahutoglu, T., Koc, Y., Basturk, T., Sevinc, M., Akgol, C., Kayalar, A. O., Ucar, Z. A., Bayraktar, F., and Unsal, A. (2016) Neutrophil-to-lymphocyte ratio and platelet-tolymphocyte ratio in evaluation of inflammation in end-stage renal disease, Clin. Nephrol., 85, 199-208, doi: 10.5414/CN108584.
  38. Catabay, C., Obi, Y., Streja, E., Soohoo, M., Park, C., Rhee, C. M., Kovesdy, C. P., Hamano, T., and Kalantar-Zadeh, K. (2017) Lymphocyte cell ratios and mortality among incident hemodialysis patients, Am. J. Nephrol., 46, 408-416, doi: 10.1159/000484177.
  39. Ouellet, G., Malhotra, R., Penne, E. L., Usvya, L., Levin, N. W., and Kotanko, P. (2016) Neutrophil-lymphocyte ratio as a novel predictor of survival in chronic hemodialysis patients, Clin. Nephrol., 85, 191-198, doi: 10.5414/CN108745.
  40. Li, P., Xia, C., Liu, P., Peng, Z., Huang, H., Wu, J., and He, Z. (2020) Neutrophil-to-lymphocyte ratio and platelet-to-lymphocyte ratio in evaluation of inflammation in non-dialysis patients with end-stage renal disease (ESRD), BMC Nephrology, 21, 511, doi: 10.1186/s12882-020-02174-0.
  41. Keane, T. J., Horejs, C.-M., and Stevens, M. M. (2018) Scarring vs. functional healing: matrix-based strategies to regulate tissue repair, Adv. Drug Deliv. Rev., 129, 407-419, doi: 10.1016/j.addr.2018.02.002.
  42. GBD Chronic Kidney Disease Collaboration (2020) Global, regional, and national burden of chronic kidney disease, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017, Lancet, 395, 709-733, doi: 10.1016/S0140-6736(20)30045-3.
  43. Djudjaj, S., and Boor, P. (2019) Cellular and molecular mechanisms of kidney fibrosis, Mol. Aspects Med., 65, 16-36, doi: 10.1016/j.mam.2018.06.002.
  44. Genovese, F., Manresa, A. A., Leeming, D. J., Karsdal, M. A., and Boor, P. (2014) The extracellular matrix in the kidney: a source of novel non-invasive biomarkers of kidney fibrosis? Fibrogenesis Tissue Rep., 7, 4, doi: 10.1186/1755-1536-7-4.
  45. Buchtler, S., Grill, A., Hofmarksrichter, S., Stöckert, P., Schiechl-Brachner, G., Rodriguez Gomez, M., Neumayer, S., Schmidbauer, K., Talke, Y., Klinkhammer, B. M., Boor, P., Medvinsky, A., Renner, K., Castrop, H., and Mack, M. (2018) Cellular origin and functional relevance of collagen I production in the kidney, J. Am. Soc. Nephrol., 29, 1859-1873, doi: 10.1681/ASN.2018020138.
  46. Sharma, A. K., Mauer, S. M., Kim, Y., and Michael, A. F. (1993) Interstitial fibrosis in obstructive nephropathy, Kidney Int., 44, 774-788, doi: 10.1038/ki.1993.312.
  47. Mason, R. M., and Wahab, N. A. (2003) Extracellular matrix metabolism in diabetic nephropathy, J. Am. Soc. Nephrol., 14, 1358-1373, doi: 10.1097/01.ASN.0000065640.77499.D7.
  48. Vleming, L. J., Baelde, J. J., Westendorp, R. G., Daha, M. R., van Es, L. A., and Bruijn, J. A. (1995) Progression of chronic renal disease in humans is associated with the deposition of basement membrane components and decorin in the interstitial extracellular matrix, Clin. Nephrol., 44, 211-219.
  49. Boor, P., Konieczny, A., Villa, L., Kunter, U., van Roeyen, C. R. C., LaRochelle, W. J., Smithson, G., Arrol, S., Ostendorf, T., and Floege, J. (2007) PDGF-D inhibition by CR002 ameliorates tubulointerstitial fibrosis following experimental glomerulonephritis, Nephrol. Dial. Transplant., 22, 1323-1331, doi: 10.1093/ndt/gfl691.
  50. Boor, P., Celec, P., Behuliak, M., Grancic, P., Kebis, A., Kukan, M., Pronayová, N., Liptaj, T., Ostendorf, T., and Sebeková, K. (2009) Regular moderate exercise reduces advanced glycation and ameliorates early diabetic nephropathy in obese Zucker rats, Metab. Clin. Exp., 58, 1669-1677, doi: 10.1016/j.metabol.2009.05.025.
  51. Hewitson, T. D., Smith, E. R., and Samuel, C. S. (2014) Qualitative and quantitative analysis of fibrosis in the kidney, Nephrology, 19, 721-726, doi: 10.1111/nep.12321.
  52. Gopala K Rangan, G. H. T. (2007) Quantification of renal pathology by image analysis, Nephrology, 12, 553-558, doi: 10.1111/j.1440-1797.2007.00855.x.
  53. Bertram, J. F. (2001) Counting in the kidney, Kidney Int., 59, 792-796, doi: 10.1046/j.1523-1755.2001.059002792.x.
  54. Ricard-Blum, S., and Ruggiero, F. (2005) The collagen superfamily: from the extracellular matrix to the cell membrane, Patholog. Biol., 53, 430-442, doi: 10.1016/j.patbio.2004.12.024.
  55. Ignat'eva, N. Y., Danilov, N. A., Averkiev, S. V., Obrezkova, M. V., Lunin, V. V., and Sobol', E. N. (2007) Determination of hydroxyproline in tissues and the evaluation of the collagen content of the tissues, J. Anal. Chem., 62, 51-57, doi: 10.1134/S106193480701011X.
  56. Genovese, F., Rasmussen, D. G. K., Karsdal, M. A., Jesky, M., Ferro, C., Fenton, A., and Cockwell, P. (2021) Imbalanced turnover of collagen type III is associated with disease progression and mortality in high-risk chronic kidney disease patients, Clin. Kidney J., 14, 593-601, doi: 10.1093/ckj/sfz174.
  57. Poulsen, C. G., Rasmussen, D. G. K., Genovese, F., Hansen, T. W., Nielsen, S. H., Reinhard, H., von Scholten, B. J., Jacobsen, P. K., Parving, H.-H., Karsdal, M. A., Rossing, P., and Frimodt-Møller, M. (2023) Marker for kidney fibrosis is associated with inflammation and deterioration of kidney function in people with type 2 diabetes and microalbuminuria, PLoS One, 18, e0283296, doi: 10.1371/journal.pone.0283296.
  58. Mavrogeorgis, E., Mischak, H., Latosinska, A., Vlahou, A., Schanstra, J. P., Siwy, J., Jankowski, V., Beige, J., and Jankowski, J. (2021) Collagen-derived peptides in CKD: a link to fibrosis, Toxins, 14, 10, doi: 10.3390/toxins14010010.
  59. Morita, M., Uchigata, Y., Hanai, K., Ogawa, Y., and Iwamoto, Y. (2011) Association of urinary type IV collagen with GFR decline in young patients with type 1 diabetes, Am. J. Kidney Dis., 58, 915-920, doi: 10.1053/j.ajkd.2011.04.019.
  60. Klimontov, V. V., Eremenko, N. V., Myakina, N. E., and Fazullina, O. N. (2015) Cystatin C and collagen type IV in diagnostics of chronic kidney disease in type 2 diabetic patients, Diabetes Mellitus, 18, 87-93, doi: 10.14341/dm2015187-93.
  61. Pilemann-Lyberg, S., Rasmussen, D. G. K., Hansen, T. W., Tofte, N., Winther, S. A., Holm Nielsen, S., Theilade, S., Karsdal, M. A., Genovese, F., and Rossing, P. (2019) Markers of collagen formation and degradation reflect renal function and predict adverse outcomes in patients with type 1 diabetes, Diabetes Care, 42, 1760-1768, doi: 10.2337/dc18-2599.
  62. Fenton, A., Jesky, M. D., Ferro, C. J., Sørensen, J., Karsdal, M. A., Cockwell, P., and Genovese, F. (2017) Serum endotrophin, a type VI collagen cleavage product, is associated with increased mortality in chronic kidney disease, PLoS One, 12, e0175200, doi: 10.1371/journal.pone.0175200.
  63. Rasmussen, D. G. K., Fenton, A., Jesky, M., Ferro, C., Boor, P., Tepel, M., Karsdal, M. A., Genovese, F., and Cockwell, P. (2017) Urinary endotrophin predicts disease progression in patients with chronic kidney disease, Sci. Rep., 7, 17328, doi: 10.1038/s41598-017-17470-3.
  64. Den Hoedt, C. H., van Gelder, M. K., Grooteman, M. P., Nubé, M. J., Blankestijn, P. J., Goldschmeding, R., Kok, R. J., Bots, M. L., van den Dorpel, M. A., and Gerritsen, K. G. F. (2019) Connective tissue growth factor is related to all-cause mortality in hemodialysis patients and is lowered by on-line hemodiafiltration: results from the convective transport study, Toxins, 11, 268, doi: 10.3390/toxins11050268.
  65. Soylemezoglu, O., Wild, G., Dalley, A. J., MacNeil, S., Milford-Ward, A., Brown, C. B., and el Nahas, A. M. (1997) Urinary and serum type III collagen: markers of renal fibrosis, Nephrol. Dial. Transplant., 12, 1883-1889, doi: 10.1093/ndt/12.9.1883.
  66. Teppo, A.-M., Törnroth, T., Honkanen, E., and Grönhagen-Riska, C. (2003) Urinary amino-terminal propeptide of type III procollagen (PIIINP) as a marker of interstitial fibrosis in renal transplant recipients, Transplantation, 75, 2113-2119, doi: 10.1097/01.TP.0000066809.60389.48.
  67. Ghoul, B. E., Squalli, T., Servais, A., Elie, C., Meas-Yedid, V., Trivint, C., Vanmassenhove, J., Grünfeld, J.-P., Olivo-Marin, J.-C., Thervet, E., Noël, L.-H., Prié, D., and Fakhouri, F. (2010) Urinary procollagen III aminoterminal propeptide (PIIINP): a fibrotest for the nephrologist, Clin. J. Am. Soc. Nephrol., 5, 205-210, doi: 10.2215/CJN.06610909.
  68. Predictive Value of PIIINP Urinary for the Development of Chronic Renal Failure in Patients with Cystic Fibrosis After Lung Transplantation (MUCO-IRC) (2012, April 6) ClinicalTrials.gov, URL: https://clinicaltrials.gov/ct2/show/NCT01572194?cond=NCT01572194anddraw=2andrank=1.
  69. Ix, J. H., Katz, R., Bansal, N., Foster, M., Weiner, D. E., Tracy, R., Jotwani, V., Hughes-Austin, J., McKay, D., Gabbai, F., Hsu, C.-Y., Bostom, A., Levey, A. S., and Shlipak, M. G. (2017) Urine fibrosis markers and risk of allograft failure in kidney transplant recipients: a case-cohort ancillary study of the FAVORIT trial, Am. J. Kidney Dis., 69, 410-419, doi: 10.1053/j.ajkd.2016.10.019.
  70. Papasotiriou, M., Genovese, F., Klinkhammer, B. M., Kunter, U., Nielsen, S. H., Karsdal, M. A., Floege, J., and Boor, P. (2015) Serum and urine markers of collagen degradation reflect renal fibrosis in experimental kidney diseases, Nephrol. Dial. Transplant., 30, 1112-1121, doi: 10.1093/ndt/gfv063.
  71. Genovese, F., Akhgar, A., Lim, S. S., Farris, A. B., Battle, M., Cobb, J., Sinibaldi, D., Karsdal, M. A., and White, W. I. (2021) Collagen type III and VI remodeling biomarkers are associated with kidney fibrosis in Lupus nephritis, Kidney360, 2, 1473-1481, doi: 10.34067/KID.0001132021.
  72. Lee, Y. H., Kim, K. P., Park, S.-H., Kim, D.-J., Kim, Y.-G., Moon, J.-Y., Jung, S.-W., Kim, J. S., Jeong, K.-H., Lee, S.-Y., Yang, D.-H., Lim, S.-J., Woo, J.-T., Rhee, S. Y., Chon, S., Choi, H.-Y., Park, H.-C., Jo, Y.-I., Yi, J.-H., et al. (2021) Urinary chemokine C-X-C motif ligand 16 and endostatin as predictors of tubulointerstitial fibrosis in patients with advanced diabetic kidney disease, Nephrol. Dial. Transplant., 36, 295-305, doi: 10.1093/ndt/gfz168.
  73. Lin, C. H. S., Chen, J., Ziman, B., Marshall, S., Maizel, J., and Goligorsky, M. S. (2014) Endostatin and kidney fibrosis in aging: a case for antagonistic pleiotropy? Am. J. Physiol. Heart Circ. Physiol., 306, H1692-H1699, doi: 10.1152/ajpheart.00064.2014.
  74. Caterino, M., Zacchia, M., Costanzo, M., Bruno, G., Arcaniolo, D., Trepiccione, F., Siciliano, R. A., Mazzeo, M. F., Ruoppolo, M., and Capasso, G. (2018) Urine proteomics revealed a significant correlation between urine-fibronectin abundance and estimated-GFR decline in patients with Bardet-Biedl syndrome, Kidney Blood Press. Res., 43, 389-405, doi: 10.1159/000488096.
  75. Cao, Y. H., Lv, L. L., Zhang, X., Hu, H., Ding, L. H., Yin, D., Zhang, Y. Z., Ni, H. F., Chen, P. S., and Liu, B. C. (2015) Urinary vimentin mRNA as a potential novel biomarker of renal fibrosis, Am. J. Physiol. Renal Physiol., 309, F514-F522, doi: 10.1152/ajprenal.00449.2014.
  76. Eddy, A. A. (1996) Molecular insights into renal interstitial fibrosis, J. Am. Soc. Nephrol., 7, 2495-2508, doi: 10.1681/ASN.V7122495.
  77. Sakairi, T., Hiromura, K., Yamashita, S., Takeuchi, S., Tomioka, M., Ideura, H., Maeshima, A., Kaneko, Y., Kuroiwa, T., Nangaku, M., Takeuchi, T., and Nojima, Y. (2007) Nestin expression in the kidney with an obstructed ureter, Kidney Int., 72, 307-318, doi: 10.1038/sj.ki.5002277.
  78. Hugo, C., Shankland, S. J., Pichler, R. H., Couser, W. G., and Johnson, R. J. (1998) Thrombospondin 1 precedes and predicts the development of tubulointerstitial fibrosis in glomerular disease in the rat, Kidney Int., 53, 302-311, doi: 10.1046/j.1523-1755.1998.00774.x.
  79. Wang, Z., Divanyan, A., Jourd'heuil, F. L., Goldman, R. D., Ridge, K. M., Jourd'heuil, D., and Lopez-Soler, R. I. (2018) Vimentin expression is required for the development of EMT-related renal fibrosis following unilateral ureteral obstruction in mice, Am. J. Physiol. Renal Physiol., 315, F769-F780, doi: 10.1152/ajprenal.00340.2017.
  80. Duffield, J. S. (2014) Cellular and molecular mechanisms in kidney fibrosis, J. Clin. Invest., 124, 2299-2306, doi: 10.1172/JCI72267.
  81. Lepreux, S., and Desmoulière, A. (2015) Human liver myofibroblasts during development and diseases with a focus on portal (myo)fibroblasts, Front. Physiol., 6, 173, doi: 10.3389/fphys.2015.00173.
  82. Hinz, B. (2016) Myofibroblasts, Exp. Eye Res., 142, 56-70, doi: 10.1016/j.exer.2015.07.009.
  83. Sun, K.-H., Chang, Y., Reed, N. I., and Sheppard, D. (2016) α-Smooth muscle actin is an inconsistent marker of fibroblasts responsible for force-dependent TGFβ activation or collagen production across multiple models of organ fibrosis, Am. J. Physiol. Lung Cell. Mol. Physiol., 310, L824-L836, doi: 10.1152/ajplung.00350.2015.
  84. Bochaton-Piallat, M.-L., Gabbiani, G., and Hinz, B. (2016) The myofibroblast in wound healing and fibrosis: answered and unanswered questions, F1000Res., 5, doi: 10.12688/f1000research.8190.1.
  85. Timsit, M. O., Gadet, R., Ben Abdennebi, H., Codas, R., Petruzzo, P., and Badet, L. (2008) Renal ischemic preconditioning improves recovery of kidney function and decreases alpha-smooth muscle actin expression in a rat model, J. Urology, 180, 388-391, doi: 10.1016/j.juro.2008.02.043.
  86. Singh, S. P., Tao, S., Fields, T. A., Webb, S., Harris, R. C., and Rao, R. (2015) Glycogen synthase kinase-3 inhibition attenuates fibroblast activation and development of fibrosis following renal ischemia-reperfusion in mice, Dis. Models Mech., 8, 931-940, doi: 10.1242/dmm.020511.
  87. Zhang, A., Wang, H., Wang, B., Yuan, Y., Klein, J. D., and Wang, X. H. (2019) Exogenous miR-26a suppresses muscle wasting and renal fibrosis in obstructive kidney disease, FASEB J., 33, 13590-13601, doi: 10.1096/fj.201900884R.
  88. Wong M. G., and Pollock C. A. (2014) Biomarkers in kidney fibrosis: are they useful? Kidney Int. Suppl., 4, 79-83, doi: 10.1038/kisup.2014.15.
  89. Wong, M. G., Perkovic, V., Woodward, M., Chalmers, J., Li, Q., Hillis, G. S., Yaghobian Azari, D., Jun, M., Poulter, N., Hamet, P., Williams, B., Neal, B., Mancia, G., Cooper, M., and Pollock, C. A. (2013) Circulating bone morphogenetic protein-7 and transforming growth factor-β1 are better predictors of renal end points in patients with type 2 diabetes mellitus, Kidney Int., 83, 278-284, doi: 10.1038/ki.2012.383.
  90. Ito, Y., Aten, J., Bende, R. J., Oemar, B. S., Rabelink, T. J., Weening, J. J., and Goldschmeding, R. (1998) Expression of connective tissue growth factor in human renal fibrosis, Kidney Int., 53, 853-861, doi: 10.1111/j.1523-1755.1998.00820.x.
  91. Phanish, M. K., Winn, S. K., and Dockrell, M. E. C. (2010) Connective tissue growth factor-(CTGF, CCN2) - a marker, mediator and therapeutic target for renal fibrosis, Nephron Exp. Nephrol., 114, e83-e92, doi: 10.1159/000262316.
  92. Nguyen, T. Q., Tarnow, L., Jorsal, A., Oliver, N., Roestenberg, P., Ito, Y., Parving, H.-H., Rossing, P., van Nieuwenhoven, F. A., and Goldschmeding, R. (2008) Plasma connective tissue growth factor is an independent predictor of end-stage renal disease and mortality in type 1 diabetic nephropathy, Diabetes Care, 31, 1177-1182, doi: 10.2337/dc07-2469.
  93. Chen, J., Hu, W., Xiao, F., Lin, L., Chen, K., Wang, L., Wang, X., and He, Y. (2019) DCR2, a cellular senescent molecule, is a novel marker for assessing tubulointerstitial fibrosis in patients with immunoglobulin a nephropathy, Kidney Blood Press. Res., 44, 1063-1074, doi: 10.1159/000502233.
  94. Ju, W., Nair, V., Smith, S., Zhu, L., Shedden, K., Song, P. X. K., Mariani, L. H., Eichinger, F. H., Berthier, C. C., Randolph, A., Lai, J. Y.-C., Zhou, Y., Hawkins, J. J., Bitzer, M., Sampson, M. G., Thier, M., Solier, C., Duran-Pacheco, G. C., Duchateau-Nguyen, G. (2015) Tissue transcriptome-driven identification of epidermal growth factor as a chronic kidney disease biomarker, Sci. Translat. Med., 7, 316ra193, doi: 10.1126/scitranslmed.aac7071.
  95. Nowak, G., and Schnellmann, R. G. (1995) Integrative effects of EGF on metabolism and proliferation in renal proximal tubular cells, Am. J. Physiol., 269 (5 Pt 1), C1317-C1325, doi: 10.1152/ajpcell.1995.269.5.C1317.
  96. Isaka, Y. (2016) Epidermal growth factor as a prognostic biomarker in chronic kidney diseases, Ann. Translat. Med., 4 (Suppl 1), S62, doi: 10.21037/atm.2016.10.64.
  97. Kim, J. E., Han, D., Jeong, J. S., Moon, J. J., Moon, H. K., Lee, S., Kim, Y. C., Yoo, K. D., Lee, J. W., Kim, D. K., Kwon, Y. J., Kim, Y. S., and Yang, S. H. (2021) Multisample mass spectrometry-based approach for discovering injury markers in chronic kidney disease, Mol. Cell. Proteomics, 20, 100037, doi: 10.1074/mcp.RA120.002159.
  98. Tang, W. H. W., Shrestha, K., Shao, Z., Borowski, A. G., Troughton, R. W., Thomas, J. D., and Klein, A. L. (2011) Usefulness of plasma galectin-3 levels in systolic heart failure to predict renal insufficiency and survival, Am. J. Cardiol., 108, 385-390, doi: 10.1016/j.amjcard.2011.03.056.
  99. Sotomayor, C. G., Te Velde-Keyzer, C. A., Diepstra, A., van Londen, M., Pol, R. A., Post, A., Gans, R. O. B., Nolte, I. M., Slart, R. H. J. A., de Borst, M. H., Berger, S. P., Rodrigo, R., Navis, G. J., de Boer, R. A., and Bakker, S. J. L. (2021) Galectin-3 and risk of late graft failure in kidney transplant recipients: a 10-year prospective cohort study, Transplantation, 105, 1106-1115, doi: 10.1097/TP.0000000000003359.
  100. O'Seaghdha, C. M., Hwang, S.-J., Ho, J. E., Vasan, R. S., Levy, D., and Fox, C. S. (2013) Elevated galectin-3 precedes the development of CKD, J. Am. Soc. Nephrol., 24, 1470-1477, doi: 10.1681/ASN.2012090909.
  101. Ou, S.-M., Tsai, M.-T., Chen, H.-Y., Li, F.-A., Tseng, W.-C., Lee, K.-H., Chang, F.-P., Lin, Y.-P., Yang, R.-B., and Tarng, D.-C. (2021) Identification of galectin-3 as potential biomarkers for renal fibrosis by RNA-sequencing and clinicopathologic findings of kidney biopsy, Front. Med., 8, 748225, doi: 10.3389/fmed.2021.748225.
  102. Ou, S.-M., Tsai, M.-T., Chen, H.-Y., Li, F.-A., Lee, K.-H., Tseng, W.-C., Chang, F.-P., Lin, Y.-P., Yang, R.-B., and Tarng, D.-C. (2022) Urinary galectin-3 as a novel biomarker for the prediction of renal fibrosis and kidney disease progression, Biomedicines, 10, 585, doi: 10.3390/biomedicines10030585.
  103. LeBleu, V. S., Teng, Y., O'Connell, J. T., Charytan, D., Müller, G. A., Müller, C. A., Sugimoto, H., and Kalluri, R. (2013) Identification of human epididymis protein-4 as a fibroblast-derived mediator of fibrosis, Nat. Med., 19, 227-231, doi: 10.1038/nm.2989.
  104. Yuan, T., and Li, Y. (2017) Human epididymis protein 4 as a potential biomarker of chronic kidney disease in female patients with normal ovarian function, Lab. Med., 48, 238-243, doi: 10.1093/labmed/lmx036.
  105. Amer, H., Lieske, J. C., Rule, A. D., Kremers, W. K., Larson, T. S., Franco Palacios, C. R., Stegall, M. D., and Cosio, F. G. (2013) Urine high and low molecular weight proteins one-year post-kidney transplant: relationship to histology and graft survival, Am. J. Transplant., 13, 676-684, doi: 10.1111/ajt.12044.
  106. Nadkarni, G. N., Rao, V., Ismail-Beigi, F., Fonseca, V. A., Shah, S. V., Simonson, M. S., Cantley, L., Devarajan, P., Parikh, C. R., and Coca, S. G. (2016) Association of urinary biomarkers of inflammation, injury, and fibrosis with renal function decline: the ACCORD trial, Clin. J. Am. Soc. Nephrol., 11, 1343-1352, doi: 10.2215/CJN.12051115.
  107. Park, M., Katz, R., Shlipak, M. G., Weiner, D., Tracy, R., Jotwani, V., Hughes-Austin, J., Gabbai, F., Hsu, C. Y., Pfeffer, M., Bansal, N., Bostom, A., Gutierrez, O., Sarnak, M., Levey, A., and Ix, J. H. (2017) Urinary markers of fibrosis and risk of cardiovascular events and death in kidney transplant recipients: the FAVORIT trial, Am. J. Transplant., 17, 2640-2649, doi: 10.1111/ajt.14284.
  108. Glassock, R. J. (2016) Urinary chemoattractant protein 1: a new biomarker of renal fibrosis, Am. J. Nephrol., 43, 451-453, doi: 10.1159/000446864.
  109. Ihara, K., Skupien, J., Kobayashi, H., Md Dom, Z. I., Wilson, J. M., O'Neil, K., Badger, H. S., Bowsman, L. M., Satake, E., Breyer, M. D., Duffin, K. L., and Krolewski, A. S. (2020) Profibrotic circulating proteins and risk of early progressive renal decline in patients with type 2 diabetes with and without albuminuria, Diabetes Care, 43, 2760-2767, doi: 10.2337/dc20-0630.
  110. Zhou, D., Tian, Y., Sun, L., Zhou, L., Xiao, L., Tan, R. J., Tian, J., Fu, H., Hou, F. F., and Liu, Y. (2017) Matrix metalloproteinase-7 is a urinary biomarker and pathogenic mediator of kidney fibrosis, J. Am. Soc. Nephrol., 28, 598-611, doi: 10.1681/ASN.2016030354.
  111. Pallet, N., Chauvet, S., Chassé, J.-F., Vincent, M., Avillach, P., Levi, C., Meas-Yedid, V., Olivo-Marin, J.-C., Nga-Matsogo, D., Beaune, P., Thervet, E., and Karras, A. (2014) Urinary retinol binding protein is a marker of the extent of interstitial kidney fibrosis, PLoS One, 9, e84708, doi: 10.1371/journal.pone.0084708.
  112. Honkanen, E., Teppo, A. M., Törnroth, T., Groop, P. H., and Grönhagen-Riska, C. (1997) Urinary transforming growth factor-beta 1 in membranous glomerulonephritis, Nephrol. Dial. Transplant., 12, 2562-2568, doi: 10.1093/ndt/12.12.2562.
  113. Susianti, H., Handono, K., Gunawan, A., Mintaroem, K., Purnomo, B. B., and Kalim, H. (2015) Transforming growth factor β1 is better than α smooth muscle actin for the prediction of renal fibrosis in patients with nephritic lupus, Biomarkers Genomic Med., 7, 25-30, doi: 10.1016/j.bgm.2014.08.010.
  114. Murakami, K., Takemura, T., Hino, S., and Yoshioka, K. (1997) Urinary transforming growth factor-beta in patients with glomerular diseases, Pediatric Nephrol., 11, 334-336, doi: 10.1007/s004670050289.
  115. Harris, S., Coupes, B. M., Roberts, S. A., Roberts, I. S. D., Short, C. D., and Brenchley, P. E. C. (2007) TGF-beta1 in chronic allograft nephropathy following renal transplantation, J. Nephrol., 20, 177-185.
  116. Chan, J., Svensson, M., Tannaes, T. M., Waldum-Grevbo, B., Jenssen, T., and Eide, I. A. (2022) Associations of serum uromodulin and urinary epidermal growth factor with measured glomerular filtration rate and interstitial fibrosis in kidney transplantation, Am. J. Nephrol., 53, 108-117, doi: 10.1159/000521757.
  117. Hussain, S., Habib, A., Hussain, M. S., and Najmi, A. K. (2020) Potential biomarkers for early detection of diabetic kidney disease, Diabetes Res. Clin. Pract., 161, 108082, doi: 10.1016/j.diabres.2020.108082.
  118. Lin, Z., Gong, Q., Zhou, Z., Zhang, W., Liao, S., Liu, Y., Yan, X., Pan, X., Lin, S., and Li, X. (2011) Increased plasma CXCL16 levels in patients with chronic kidney diseases, Eur. J. Clin. Invest., 41, 836-845, doi: 10.1111/j.1365-2362.2011.02473.x.
  119. Unal, H. U., Kurt, Y. G., Gok, M., Cetinkaya, H., Karaman, M., Eyileten, T., Vural, A., Oguz, Y., and Yilmaz, M. I. (2014) The importance of serum CXCL-16 levels in patients with grade III-V chronic kidney disease, Turkish Nephrol. Dial. Transplant., 23, 234-239, doi: 10.5262/tndt.2014.1003.10.
  120. Ruge, T., Carlsson, A. C., Larsson, T. E., Carrero, J.-J., Larsson, A., Lind, L., and Ärnlöv, J. (2014) Endostatin level is associated with kidney injury in the elderly: findings from two community-based cohorts, Am. J. Nephrol., 40, 417-424, doi: 10.1159/000369076.
  121. Chen, J., Hamm, L. L., Kleinpeter, M. A., Husserl, F., Khan, I. E., Chen, C.-S., Liu, Y., Mills, K. T., He, C., Rifai, N., Simon, E. E., and He, J. (2012) Elevated plasma levels of endostatin are associated with chronic kidney disease, Am. J. Nephrology, 35, 335-340, doi: 10.1159/000336109.
  122. Chu, C., Hasan, A. A., Gaballa, M. M. S., Zeng, S., Xiong, Y., Elitok, S., Krämer, B. K., and Hocher, B. (2020) Endostatin is an independent risk factor of graft loss after kidney transplant, Am. J. Nephrology, 51, 373-380, doi: 10.1159/000507824.
  123. Carlsson, A. C., Östgren, C. J., Länne, T., Larsson, A., Nystrom, F. H., and Ärnlöv, J. (2016) The association between endostatin and kidney disease and mortality in patients with type 2 diabetes, Diab. Metab., 42, 351-357, doi: 10.1016/j.diabet.2016.03.006.
  124. Gregg, L. P., Tio, M. C., Li, X., Adams-Huet, B., de Lemos, J. A., and Hedayati, S. S. (2018) Association of monocyte chemoattractant protein-1 with death and atherosclerotic events in chronic kidney disease, Am. J. Nephrol., 47, 395-405, doi: 10.1159/000488806.
  125. Domingos, M. A. M., Moreira, S. R., Gomez, L., Goulart, A., Lotufo, P. A., Benseñor, I., and Titan, S. (2016) Urinary retinol-binding protein: relationship to renal function and cardiovascular risk factors in chronic kidney disease, PLoS One, 11, e0162782, doi: 10.1371/journal.pone.0162782.
  126. Gerritsen, K. G., Abrahams, A. C., Peters, H. P., Nguyen, T. Q., Koeners, M. P., den Hoedt, C. H., Dendooven, A., van den Dorpel, M. A., Blankestijn, P. J., Wetzels, J. F., Joles, J. A., Goldschmeding, R., and Kok, R. J. (2012) Effect of GFR on plasma N-terminal connective tissue growth factor (CTGF) concentrations, Am. J. Kidney Dis., 59, 619-627, doi: 10.1053/j.ajkd.2011.12.019.
  127. Wan, J., Wang, Y., Cai, G., Liang, J., Yue, C., Wang, F., Song, J., Wang, J., Liu, M., Luo, J., and Li, L. (2016) Elevated serum concentrations of HE4 as a novel biomarker of disease severity and renal fibrosis in kidney disease, Oncotarget, 7, 67748-67759, doi: 10.18632/oncotarget.11682.
  128. Shen, X., Cheng, J., Yu, G., Li, X., Li, H., and Chen, J. (2021) Urine β2-microglobulin and retinol-binding protein and renal disease progression in IgA nephropathy, Front. Med., 8, 792782, doi: 10.3389/fmed.2021.792782.
  129. Tachaudomdach, C., Kantachuvesiri, S., Changsirikulchai, S., Wimolluck, S., Pinpradap, K., and Kitiyakara, C. (2012) Connective tissue growth factor gene expression and decline in renal function in lupus nephritis, Exp. Ther. Med., 3, 713-718, doi: 10.3892/etm.2012.473.
  130. Steubl, D., Buzkova, P., Garimella, P. S., Ix, J. H., Devarajan, P., Bennett, M. R., Chaves, P. H. M., Shlipak, M. G., Bansal, N., and Sarnak, M. J. (2019) Association of serum uromodulin with ESKD and kidney function decline in the elderly: the cardiovascular health study, Am. J. Kidney Dis., 74, 501-509, doi: 10.1053/j.ajkd.2019.02.024.
  131. Badid, C., Desmouliere, A., Babici, D., Hadj-Aissa, A., McGregor, B., Lefrancois, N., Touraine, J. L., and Laville, M. (2002) Interstitial expression of alpha-SMA: an early marker of chronic renal allograft dysfunction, Nephrol. Dial. Transplant., 17, 1993-1998, doi: 10.1093/ndt/17.11.1993.
  132. Kashtan, C., Schachter, A., Klickstein, L., Liu, X., Jennings, L., and Finkel, N. (2022) Urinary monocyte chemoattractant protein-1 in patients with Alport syndrome, Kidney Int. Rep., 7, 1112-1114, doi: 10.1016/j.ekir.2022.01.1052.
  133. Yang, X., Ou, J., Zhang, H., Xu, X., Zhu, L., Li, Q., Li, J., Xie, D., Sun, J., Zha, Y., Li, Y., Tian, J., Liu, Y., and Hou, F. F. (2020) Urinary matrix metalloproteinase 7 and prediction of IgA nephropathy progression, Am. J. Kidney Dis., 75, 384-393, doi: 10.1053/j.ajkd.2019.07.018.
  134. Kato, M., and Natarajan, R. (2019) Epigenetics and epigenomics in diabetic kidney disease and metabolic memory, Nat. Rev. Nephrol., 15, 327-345, doi: 10.1038/s41581-019-0135-6.
  135. Ding, H., Zhang, L., Yang, Q., Zhang, X., and Li, X. (2021) Epigenetics in kidney diseases, Adv. Clin. Chem., 104, 233-297, doi: 10.1016/bs.acc.2020.09.005.
  136. Tampe, B., and Zeisberg, M. (2014) Contribution of genetics and epigenetics to progression of kidney fibrosis, Nephrol. Dial. Transplant., 29, iv72-iv79, doi: 10.1093/ndt/gft025.
  137. Zhao, H., Pan, S., Duan, J., Liu, F., Li, G., Liu, D., and Liu, Z. (2021) Integrative analysis of mA regulator-mediated RNA methylation modification patterns and immune characteristics in lupus nephritis, Front. Cell Dev. Biol., 9, 724837, doi: 10.3389/fcell.2021.724837.
  138. Chou, Y.-H., Pan, S.-Y., Shao, Y.-H., Shih, H.-M., Wei, S.-Y., Lai, C.-F., Chiang, W.-C., Schrimpf, C., Yang, K.-C., Lai, L.-C., Chen, Y.-M., Chu, T.-S., and Lin, S.-L. (2020) Methylation in pericytes after acute injury promotes chronic kidney disease, J. Clin. Invest., 130, 4845-4857, doi: 10.1172/JCI135773.
  139. Jiang, M., Bai, M., Lei, J., Xie, Y., Xu, S., Jia, Z., and Zhang, A. (2020) Mitochondrial dysfunction and the AKI-to-CKD transition, Am. J. Physiol. Renal Physiol., 319, F1105-F1116, doi: 10.1152/ajprenal.00285.2020.
  140. Tanemoto, F., Nangaku, M., and Mimura, I. (2022) Epigenetic memory contributing to the pathogenesis of AKI-to-CKD transition, Front. Mol. Biosci., 9, 1003227, doi: 10.3389/fmolb.2022.1003227.
  141. Nangaku, M., Hirakawa, Y., Mimura, I., Inagi, R., and Tanaka, T. (2017) Epigenetic changes in the acute kidney injury-to-chronic kidney disease transition, Nephron, 137, 256-259, doi: 10.1159/000476078.
  142. Fan, Y., Chen, H., Huang, Z., Zheng, H., and Zhou, J. (2020) Emerging role of miRNAs in renal fibrosis, RNA Biol., 17, 1-12, doi: 10.1080/15476286.2019.1667215.
  143. Glowacki, F., Savary, G., Gnemmi, V., Buob, D., Van der Hauwaert, C., Lo-Guidice, J.-M., Bouyé, S., Hazzan, M., Pottier, N., Perrais, M., Aubert, S., and Cauffiez, C. (2013) Increased circulating miR-21 levels are associated with kidney fibrosis, PLoS One, 8, e58014, doi: 10.1371/journal.pone.0058014.
  144. Gniewkiewicz, M. S., Paszkowska, I., Gozdowska, J., Czerwinska, K., Sadowska-Jakubowicz, A., Deborska-Materkowska, D., Perkowska-Ptasinska, A., Kosieradzki, M., and Durlik, M. (2020) Urinary MicroRNA-21-5p as potential biomarker of interstitial fibrosis and tubular atrophy (IFTA) in kidney transplant recipients, Diagnostics, 10, 113, doi: 10.3390/diagnostics10020113.
  145. Chen, C., Lu, C., Qian, Y., Li, H., Tan, Y., Cai, L., and Weng, H. (2017) Urinary miR-21 as a potential biomarker of hypertensive kidney injury and fibrosis, Sci. Rep., 7, 17737, doi: 10.1038/s41598-017-18175-3.
  146. Szeto, C.-C., Ching-Ha, K. B., Ka-Bik, L., Mac-Moune, L. F., Cheung-Lung, C. P., Gang, W., Kai-Ming, C., and Kam-Tao, L. P. (2012) Micro-RNA expression in the urinary sediment of patients with chronic kidney diseases, Disease Markers, 33, 137-144, doi: 10.1155/2012/842764.
  147. Pezzolesi, M. G., Satake, E., McDonnell, K. P., Major, M., Smiles, A. M., and Krolewski, A. S. (2015) Circulating TGF-β1-regulated miRNAs and the risk of rapid progression to ESRD in type 1 diabetes, Diabetes, 64, 3285-3293, doi: 10.2337/db15-0116.
  148. Lopez-Anton, M., Lambie, M., Lopez-Cabrera, M., Schmitt, C. P., Ruiz-Carpio, V., Bartosova, M., Schaefer, B., Davies, S., Stone, T., Jenkins, R., Taylor, P. R., Topley, N., Bowen, T., and Fraser, D. (2017) miR-21 promotes fibrogenesis in peritoneal dialysis, Am. J. Pathol., 187, 1537-1550, doi: 10.1016/j.ajpath.2017.03.007.
  149. Chau, B. N., Xin, C., Hartner, J., Ren, S., Castano, A. P., Linn, G., Li, J., Tran, P. T., Kaimal, V., Huang, X., Chang, A. N., Li, S., Kalra, A., Grafals, M., Portilla, D., MacKenna, D. A., Orkin, S. H., and Duffield, J. S. (2012) MicroRNA-21 promotes fibrosis of the kidney by silencing metabolic pathways, Sci. Translat. Med., 4, 121ra18, doi: 10.1126/scitranslmed.3003205.
  150. Lai, J. Y., Luo, J., O'Connor, C., Jing, X., Nair, V., Ju, W., Randolph, A., Ben-Dov, I. Z., Matar, R. N., Briskin, D., Zavadil, J., Nelson, R. G., Tuschl, T., Brosius, F. C., Kretzler, M., and Bitzer, M. (2015) MicroRNA-21 in glomerular injury, J. Am. Soc. Nephrol., 26, 805-816, doi: 10.1681/ASN.2013121274.
  151. Shang, F., Wang, S.-C., Hsu, C.-Y., Miao, Y., Martin, M., Yin, Y., Wu, C.-C., Wang, Y.-T., Wu, G., Chien, S., Huang, H.-D., Tarng, D.-C., Shiu, Y.-T., Cheung, A. K., Huang, P.-H., Chen, Z., and Shyy, J. Y.-J. (2017) MicroRNA-92a mediates endothelial dysfunction in CKD, J. Am. Soc. Nephrol., 28, 3251-3261, doi: 10.1681/ASN.2016111215.
  152. Henique, C., Bollée, G., Loyer, X., Grahammer, F., Dhaun, N., Camus, M., Vernerey, J., Guyonnet, L., Gaillard, F., Lazareth, H., Meyer, C., Bensaada, I., Legrès, L., Satoh, T., Akira, S., Bruneval, P., Dimmeler, S., Tedgui, A., Karras, A., et al. (2017) Genetic and pharmacological inhibition of microRNA-92a maintains podocyte cell cycle quiescence and limits crescentic glomerulonephritis, Nat. Commun., 8, 1829, doi: 10.1038/s41467-017-01885-7.
  153. Ulbing, M., Kirsch, A. H., Leber, B., Lemesch, S., Münzker, J., Schweighofer, N., Hofer, D., Trummer, O., Rosenkranz, A. R., Müller, H., Eller, K., Stadlbauer, V., and Obermayer-Pietsch, B. (2017) MicroRNAs 223-3p and 93-5p in patients with chronic kidney disease before and after renal transplantation, Bone, 95, 115-123, doi: 10.1016/j.bone.2016.11.016.
  154. Han, Q., Zhang, Y., Jiao, T., Li, Q., Ding, X., Zhang, D., Cai, G., and Zhu, H. (2021) Urinary sediment microRNAs can be used as potential noninvasive biomarkers for diagnosis, reflecting the severity and prognosis of diabetic nephropathy, Nutrit. Diabetes, 11, 24, doi: 10.1038/s41387-021-00166-z.
  155. Rivoli, L., Vliegenthart, A. D. B., de Potter, C. M. J., van Bragt, J. J. M. H., Tzoumas, N., Gallacher, P., Farrah, T. E., Dhaun, N., and Dear, J. W. (2017) The effect of renal dysfunction and haemodialysis on circulating liver specific miR-122, Br. J. Clin. Pharmacol., 83, 584-592, doi: 10.1111/bcp.13136.
  156. Chen, N. X., Kiattisunthorn, K., O'Neill, K. D., Chen, X., Moorthi, R. N., Gattone, V. H., 2nd, Allen, M. R., and Moe, S. M. (2013) Decreased microRNA is involved in the vascular remodeling abnormalities in chronic kidney disease (CKD), PLoS One, 8, e64558, doi: 10.1371/journal.pone.0064558.
  157. Wang, H., Peng, W., Shen, X., Huang, Y., Ouyang, X., and Dai, Y. (2012) Circulating levels of inflammation-associated miR-155 and endothelial-enriched miR-126 in patients with end-stage renal disease, Brazil. J. Med. Biol. Res., 45, 1308-1314, doi: 10.1590/S0100-879X2012007500165.
  158. Abdelsalam, L., Ibrahim, A. A., Shalaby, A., Osman, N., Hashad, A., Badawy, D., Elghobary, H., and Amer, E. (2019) Expression of miRNAs-122, -192 and -499 in end stage renal disease associated with acute myocardial infarction, Arch. Med. Sci., 15, 1247-1253, doi: 10.5114/aoms.2019.87095.
  159. Jiang, Z.-H., Tang, Y.-Z., Song, H.-N., Yang, M., Li, B., and Ni, C.-L. (2020) miRNA-342 suppresses renal interstitial fibrosis in diabetic nephropathy by targeting SOX6, Int. J. Mol. Med., 45, 45-52, doi: 10.3892/ijmm.2019.4388.
  160. Fawzy, M. S., Abu AlSel, B. T., Al Ageeli, E., Al-Qahtani, S. A., Abdel-Daim, M. M., and Toraih, E. A. (2020) Long non-coding RNA MALAT1 and microRNA-499a expression profiles in diabetic ESRD patients undergoing dialysis: a preliminary cross-sectional analysis, Arch. Physiol. Biochem., 126, 172-182, doi: 10.1080/13813455.2018.1499119.
  161. Onishi, A., Sugiyama, H., Kitagawa, M., Yamanari, T., Tanaka, K., Ogawa-Akiyama, A., Kano, Y., Mise, K., Tanabe, K., Morinaga, H., Kinomura, M., Uchida, H. A., and Wada, J. (2019) Urine 5MedC, a marker of DNA methylation, in the progression of chronic kidney disease, Dis. Markers, 2019, 5432453, doi: 10.1155/2019/5432453.
  162. Geisel, J., Schorr, H., Heine, G. H., Bodis, M., Hübner, U., Knapp, J.-P., and Herrmann, W. (2007) Decreased p66Shc promoter methylation in patients with end-stage renal disease, Clin. Chem. Lab. Med., 45, 1764-1770, doi: 10.1515/CCLM.2007.357.
  163. Wing, M. R., Devaney, J. M., Joffe, M. M., Xie, D., Feldman, H. I., Dominic, E. A., Guzman, N. J., Ramezani, A., Susztak, K., Herman, J. G., Cope, L., Harmon, B., Kwabi-Addo, B., Gordish-Dressman, H., Go, A. S., He, J., Lash, J. P., Kusek, J. W., Raj, D. S., and Chronic Renal Insufficiency Cohort (CRIC) Study (2014) DNA methylation profile associated with rapid decline in kidney function: findings from the CRIC study, Nephrol. Dial. Transplant., 29, 864-872, doi: 10.1093/ndt/gft537.
  164. Chu, A. Y., Tin, A., Schlosser, P., Ko, Y.-A., Qiu, C., Yao, C., Joehanes, R., Grams, M. E., Liang, L., Gluck, C. A., Liu, C., Coresh, J., Hwang, S.-J., Levy, D., Boerwinkle, E., Pankow, J. S., Yang, Q., Fornage, M., Fox, C. S., et al. (2017) Epigenome-wide association studies identify DNA methylation associated with kidney function, Nat. Commun., 8, 1286, doi: 10.1038/s41467-017-01297-7.
  165. Sapienza, C., Lee, J., Powell, J., Erinle, O., Yafai, F., Reichert, J., Siraj, E. S., and Madaio, M. (2011) DNA methylation profiling identifies epigenetic differences between diabetes patients with ESRD and diabetes patients without nephropathy, Epigenetics, 6, 20-28, doi: 10.4161/epi.6.1.13362.
  166. Qiu, C., Hanson, R. L., Fufaa, G., Kobes, S., Gluck, C., Huang, J., Chen, Y., Raj, D., Nelson, R. G., Knowler, W. C., and Susztak, K. (2018) Cytosine methylation predicts renal function decline in American Indians, Kidney Int., 93, 1417-1431, doi: 10.1016/j.kint.2018.01.036.
  167. Ghattas, M., El-Shaarawy, F., Mesbah, N., and Abo-Elmatty, D. (2014) DNA methylation status of the methylenetetrahydrofolate reductase gene promoter in peripheral blood of end-stage renal disease patients, Mol. Biol. Rep., 41, 683-688, doi: 10.1007/s11033-013-2906-7.
  168. Li, N., Chen, Y.-F., and Zou, A.-P. (2002) Implications of hyperhomocysteinemia in glomerular sclerosis in hypertension, Hypertension, 39 (2 Pt 2), 443-448, doi: 10.1161/hy02t2.102992.
  169. Yusipov, I., Kondakova, E., Kalyakulina, A., Krivonosov, M., Lobanova, N., Bacalini, M. G., Franceschi, C., Vedunova, M., and Ivanchenko, M. (2022) Accelerated epigenetic aging and inflammatory/immunological profile (ipAGE) in patients with chronic kidney disease, GeroScience, 44, 817-834, doi: 10.1007/s11357-022-00540-4.
  170. Matías-García, P. R., Ward-Caviness, C. K., Raffield, L. M., Gao, X., Zhang, Y., Wilson, R., Gào, X., Nano, J., Bostom, A., Colicino, E., Correa, A., Coull, B., Eaton, C., Hou, L., Just, A. C., Kunze, S., Lange, L., Lange, E., Lin, X., et al. (2021) DNAm-based signatures of accelerated aging and mortality in blood are associated with low renal function, Clin. Epigenet., 13, 121, doi: 10.1186/s13148-021-01082-w.
  171. Niemczyk, S., Niemczyk, L., and Romejko-Ciepielewska, K. (2012) Basic endocrinological disorders in chronic renal failure, Endokrynol. Polska, 63, 250-257.
  172. Panizo, S., Martínez-Arias, L., Alonso-Montes, C., Cannata, P., Martín-Carro, B., Fernández-Martín, J. L., Naves-Díaz, M., Carrillo-López, N., and Cannata-Andía, J. B. (2021) Fibrosis in chronic kidney disease: pathogenesis and consequences, Int. J. Mol. Sci., 22, 408, doi: 10.3390/ijms22010408.
  173. Liu, Y. (2006) Renal fibrosis: new insights into the pathogenesis and therapeutics, Kidney Int., 69, 213-217, doi: 10.1038/sj.ki.5000054.
  174. Cho, M. H. (2010) Renal fibrosis, Korean J. Pediatrics, 53, 735-740, doi: 10.3345/kjp.2010.53.7.735.
  175. Banaei, S., and Rezagholizadeh, L. (2019) The role of hormones in renal disease and ischemia-reperfusion injury, Iranian J. Basic Med. Sci., 22, 469.
  176. AlQudah, M., Hale, T. M., and Czubryt, M. P. (2020) Targeting the renin-angiotensin-aldosterone system in fibrosis, Matrix Biol., 91-92, 92-108, doi: 10.1016/j.matbio.2020.04.005.
  177. Carey, R. M., Wang, Z. Q., and Siragy, H. M. (2000) Role of the angiotensin type 2 receptor in the regulation of blood pressure and renal function. Hypertension, 35 (1 Pt 2), 155-163, doi: 10.1161/01.HYP.35.1.155.
  178. Mezzano, S. A., Ruiz-Ortega, M., and Egido, J. (2001) Angiotensin II and renal fibrosis, Hypertension, 38 (3 Pt 2), 635-638, doi: 10.1161/hy09t1.094234.
  179. Balakumar, P., Sambathkumar, R., Mahadevan, N., Muhsinah, A. B., Alsayari, A., Venkateswaramurthy, N., and Jagadeesh, G. (2019) A potential role of the renin-angiotensin-aldosterone system in epithelial-to-mesenchymal transition-induced renal abnormalities: Mechanisms and therapeutic implications, Pharmacol. Res., 146, 104314, doi: 10.1016/j.phrs.2019.104314.
  180. Ohashi, N., Isobe, S., Ishigaki, S., Suzuki, T., Ono, M., Fujikura, T., Tsuji, T., Kato, A., Ozono, S., and Yasuda, H. (2017) Intrarenal renin-angiotensin system activity is augmented after initiation of dialysis, Hypertens. Res., 40, 364-370, doi: 10.1038/hr.2016.143.
  181. Ohashi, N., Isobe, S., Matsuyama, T., Ishigaki, S., Suzuki, T., Tsuji, T., Otsuka, A., Kato, A., Miyake, H., and Yasuda, H. (2019) The intrarenal renin-angiotensin system is activated immediately after kidney donation in kidney transplant donors, Internal Med., 58, 643-648, doi: 10.2169/internalmedicine.1756-18.
  182. Reams, G., Villarreal, D., Wu, Z., and Bauer, J. H. (1994) Urinary angiotensin II: a marker of renal tissue activity? Nephron, 67, 450-458, doi: 10.1159/000188215.
  183. Yamamoto, T., Nakagawa, T., Suzuki, H., Ohashi, N., Fukasawa, H., Fujigaki, Y., Kato, A., Nakamura, Y., Suzuki, F., and Hishida, A. (2007) Urinary angiotensinogen as a marker of intrarenal angiotensin II activity associated with deterioration of renal function in patients with chronic kidney disease, J. Am. Soc. Nephrol., 18, 1558-1565, doi: 10.1681/ASN.2006060554.
  184. Park, H. C., Kim, J., Cho, A., Kim, D. H., Lee, Y. K., Ryu, H., Kim, H., Oh, K. H., Oh, Y. K., Hwang, Y. H., Lee, K. B., Kim, S. W., Kim, Y. H., Lee, J., Ahn, C., and KNOW-CKD Investigators Group (2020) Urinary angiotensinogen in addition to imaging classification in the prediction of renal outcome in autosomal dominant polycystic kidney disease, J. Korean Med. Sci., 35, e165, doi: 10.3346/jkms.2020.35.e165.
  185. Suh, S. H., Oh, T. R., Choi, H. S., Yang, E. M., Kim, C. S., Bae, E. H., Ma, S. K., Oh, K.-H., Jung, J. Y., Hyun, Y. Y., and Kim, S. W. (2022) Urinary angiotensinogen and progression of chronic kidney disease: results from KNOW-CKD study, Biomolecules, 12, 1280, doi: 10.3390/biom12091280.
  186. Lee, M. J., Kim, S. S., Kim, I. J., Song, S. H., Kim, E. H., Seo, J. Y., Kim, J. H., Kim, S., Jeon, Y. K., Kim, B. H., and Kim, Y. K. (2017) Changes in urinary angiotensinogen associated with deterioration of kidney function in patients with type 2 diabetes mellitus, J. Korean Med. Sci., 32, 782-788, doi: 10.3346/jkms.2017.32.5.782.
  187. Choi, M. R., and Fernández, B. E. (2021) Protective renal effects of atrial natriuretic peptide: where are we now? Front. Physiol., 12, 680213, doi: 10.3389/fphys.2021.680213.
  188. Khalifeh, N., Haider, D., and Hörl, W. H. (2009) Natriuretic peptides in chronic kidney disease and during renal replacement therapy: an update, J. Invest. Med., 57, 33-39, doi: 10.2310/JIM.0b013e318194f44b.
  189. Wang, A. Y.-M., and Lai, K.-N. (2008) Use of cardiac biomarkers in end-stage renal disease, J. Am. Soc. Nephrol., 19, 1643-1652, doi: 10.1681/ASN.2008010012.
  190. Spanaus, K.-S., Kronenberg, F., Ritz, E., Schlapbach, R., Fliser, D., Hersberger, M., Kollerits, B., König, P., von Eckardstein, A., and Mild-to-Moderate Kidney Disease Study Group (2007) B-type natriuretic peptide concentrations predict the progression of nondiabetic chronic kidney disease: the mild-to-moderate kidney disease study, Clin. Chem., 53, 1264-1272, doi: 10.1373/clinchem.2006.083170.
  191. Dieplinger, B., Mueller, T., Kollerits, B., Struck, J., Ritz, E., von Eckardstein, A., Haltmayer, M., Kronenberg, F., and MMKD Study Group (2009) Pro-A-type natriuretic peptide and pro-adrenomedullin predict progression of chronic kidney disease: the MMKD study, Kidney Int., 75, 408-414, doi: 10.1038/ki.2008.560.
  192. Yandle, T. G., Espiner, E. A., Gary Nicholls, M., and Duff, H. (1986) Radioimmunoassay and characterization of atrial natriuretic peptide in human plasma, J. Clin. Endocrinol. Metab., 63, 72-79, doi: 10.1210/jcem-63-1-72.
  193. Safley, D. M., Awad, A., Sullivan, R. A., Sandberg, K. R., Mourad, I., Boulware, M., Merhi, W., and McCullough, P. A. (2005) Changes in B-type natriuretic peptide levels in hemodialysis and the effect of depressed left ventricular function, Adv. Chronic Kidney Dis., 12, 117-124, doi: 10.1053/j.ackd.2004.11.002.
  194. Wahl, H. G., Graf, S., Renz, H., and Fassbinder, W. (2004) Elimination of the cardiac natriuretic peptides B-type natriuretic peptide (BNP) and N-terminal proBNP by hemodialysis, Clin. Chem., 50, 1071-1074, doi: 10.1373/clinchem.2003.030692.
  195. Cataliotti, A., Giordano, M., De Pascale, E., Giordano, G., Castellino, P., Jougasaki, M., Costello, L. C., Boerrigter, G., Tsuruda, T., Belluardo, P., Lee, S.-C., Huntley, B., Sandberg, S., Malatino, L. S., and Burnett, J. C., Jr. (2002) CNP production in the kidney and effects of protein intake restriction in nephrotic syndrome, Am. J. Physiol. Renal Physiol., 283, F464-F472, doi: 10.1152/ajprenal.00372.2001.
  196. Hu, P., Zhang, X. C., Kong, H. B., Xia, X., Hu, B., and Qin, Y. H. (2015) Exogenous C-type natriuretic peptide infusion ameliorates unilateral ureteral obstruction-induced tubulointerstitial fibrosis in rats, Lab. Invest., 95, 263-272, doi: 10.1038/labinvest.2014.149.
  197. Zakeri, R., Burnett, J. C., Jr, and Sangaralingham, S. J. (2015) Urinary C-type natriuretic peptide: an emerging biomarker for heart failure and renal remodeling, Clin. Chim. Acta, 443, 108-113, doi: 10.1016/j.cca.2014.12.009.
  198. Kenny, A. J., Bourne, A., and Ingram, J. (1993) Hydrolysis of human and pig brain natriuretic peptides, urodilatin, C-type natriuretic peptide and some C-receptor ligands by endopeptidase-24.11, Biochem. J., 291 (Pt 1), 83-88, doi: 10.1042/bj2910083.
  199. Hu, P., Wang, J., Hu, B., Lu, L., Xuan, Q., and Qin, Y. H. (2012) Increased urinary C-type natriuretic peptide excretion may be an early marker of renal tubulointerstitial fibrosis, Peptides, 37, 98-105, doi: 10.1016/j.peptides.2012.06.009.
  200. Carrithers, S. L., Hill, M. J., Johnson, B. R., O'Hara, S. M., Jackson, B. A., Ott, C. E., Lorenz, J., Mann, E. A., Giannella, R. A., Forte, L. R., and Greenberg, R. N. (1999) Renal effects of uroguanylin and guanylin in vivo, Brazil. J. Med. Biol. Res., 32, 1337-1344, doi: 10.1590/S0100-879X1999001100003.
  201. Sindić, A., and Schlatter, E. (2005) Mechanisms of actions of guanylin peptides in the kidney, Pflugers Arch., 450, 283-291, doi: 10.1007/s00424-005-1464-9.
  202. Sindić, A., and Schlatter, E. (2007) Renal electrolyte effects of guanylin and uroguanylin, Curr. Opin. Nephrol. Hypertens., 16, 10-15, doi: 10.1097/MNH.0b013e328011cb4a.
  203. Nakazato, M., Yamaguchi, H., Shiomi, K., Date, Y., Fujimoto, S., Kangawa, K., Matsuo, H., and Matsukura, S. (1994) Identification of 10-kDa proguanylin as a major guanylin molecule in human intestine and plasma and its increase in renal insufficiency, Biochem. Biophys. Res. Commun., 205, 1966-1975, doi: 10.1006/bbrc.1994.2901.
  204. Kinoshita, H., Fujimoto, S., Fukae, H., Yokota, N., Hisanaga, S., Nakazato, M., and Eto, T. (1999) Plasma and urine levels of uroguanylin, a new natriuretic peptide, in nephrotic syndrome, Nephron, 81, 160-164, doi: 10.1159/000045272.
  205. Nakazato, M., Yamaguchi, H., Kinoshita, H., Kangawa, K., Matsuo, H., Chino, N., and Matsukura, S. (1996) Identification of biologically active and inactive human uroguanylins in plasma and urine and their increases in renal insufficiency, Biochem. Biophys. Res. Commun., 220, 586-593, doi: 10.1006/bbrc.1996.0447.
  206. Fukae, H., Kinoshita, H., Fujimoto, S., Nakazato, M., and Eto, T. (2000) Plasma concentration of uroguanylin in patients on maintenance dialysis therapy, Nephron, 84, 206-210, doi: 10.1159/000045578.
  207. Kinoshita, H., Fujimoto, S., Nakazato, M., Yokota, N., Date, Y., Yamaguchi, H., Hisanaga, S., and Eto, T. (1997) Urine and plasma levels of uroguanylin and its molecular forms in renal diseases, Kidney Int., 52, 1028-1034, doi: 10.1038/ki.1997.424.
  208. Sasaki, R., Masuda, S., and Nagao, M. (2000) Erythropoietin: multiple physiological functions and regulation of biosynthesis, Biosci. Biotechnol. Biochem., 64, 1775-1793, doi: 10.1271/bbb.64.1775.
  209. Hayat, A. (2009) Erythropoietin friend or foe in chronic kidney disease anemia: an analysis of randomized controlled trials, observational studies and meta-analyses, Br. J. Med. Practit., 2, 12-20.
  210. Sacks, D., Baxter, B., Campbell, B. C. V., Carpenter, J. S., Cognard, C., Dippel, D., Eesa, M., Fischer, U., Hausegger, K., Hirsch, J. A., Shazam Hussain, M., Jansen, O., Jayaraman, M. V., Khalessi, A. A., Kluck, B. W., Lavine, S., Meyers, P. M., Ramee, S., Rüfenacht, D. A., et al. (2018) Multisociety consensus quality improvement revised consensus statement for endovascular therapy of acute ischemic stroke, Int. J. Stroke, 13, 612-632, doi: 10.1016/j.jvir.2017.11.026.
  211. Lankhorst, C. E., and Wish, J. B. (2010) Anemia in renal disease: diagnosis and management, Blood Rev., 24, 39-47, doi: 10.1016/j.blre.2009.09.001.
  212. Provatopoulou, S. T., and Ziroyiannis, P. N. (2011) Clinical use of erythropoietin in chronic kidney disease: outcomes and future prospects, Hippokratia, 15, 109-115.
  213. Ghasemi, F., Abdi, A., Salari, N., Tohidi, M. R., and Faraji, A. (2019) Comparing the effects of intravenous and subcutaneous Erythropoietin on blood indices in hemodialysis patients, Sci. Rep., 9, 2284, doi: 10.1038/s41598-018-38193-z.
  214. Ben-Jonathan, N., LaPensee, C. R., and LaPensee, E. W. (2008) What can we learn from rodents about prolactin in humans? Endocr. Rev., 29, 1-41, doi: 10.1210/er.2007-0017.
  215. Freeman, M. E., Kanyicska, B., Lerant, A., and Nagy, G. (2000) Prolactin: structure, function, and regulation of secretion, Physiol. Rev., 80, 1523-1631, doi: 10.1152/physrev.2000.80.4.1523.
  216. Devi, Y. S., Sangeeta Devi, Y., and Halperin, J. (2014) Reproductive actions of prolactin mediated through short and long receptor isoforms, Mol. Cell. Endocrinol., 382, 400-410, doi: 10.1016/j.mce.2013.09.016.
  217. Takada, M., and Hokari, S. (2007) Prolactin increases Na+ transport across adult bullfrog skin via stimulation of both ENaC and Na+/K+-pump, Gen. Comp. Endocrinol., 151, 325-331, doi: 10.1016/j.ygcen.2007.01.040.
  218. Sievertsen, G. D., Lim, V. S., Nakawatase, C., and Frohman, L. A. (1980) Metabolic clearance and secretion rates of human prolactin in normal subjects and in patients with chronic renal failure, J. Clin. Endocrinol. Metab., 50, 846-852, doi: 10.1210/jcem-50-5-846.
  219. Dourado, M., Cavalcanti, F., Vilar, L., and Cantilino, A. (2020) Relationship between prolactin, chronic kidney disease, and cardiovascular risk, Int. J. Endocrinol., 2020, 9524839, doi: 10.1155/2020/9524839.
  220. Lo, J. C., Beck, G. J., Kaysen, G. A., Chan, C. T., Kliger, A. S., Rocco, M. V., Chertow, G. M., and for the FHN Study (2017) Hyperprolactinemia in end-stage renal disease and effects of frequent hemodialysis, Hemodial. Int., 2, 190-196, doi: 10.1111/hdi.12489.
  221. Shimatsu, A., and Hattori, N. (2012) Macroprolactinemia: diagnostic, clinical, and pathogenic significance, Clin. Dev. Immunol., 2012, 167132, doi: 10.1155/2012/167132.
  222. Huang, W., and Molitch, M. E. (2021) Prolactin and other pituitary disorders in kidney disease, Semin. Nephrol., 41, 156-167, doi: 10.1016/j.semnephrol.2021.03.010.
  223. Chiang, W.-C., Lin, S.-L., Chen, Y.-M., Wu, K.-D., and Tsai, T.-J. (2008) Urinary kallikrein excretion is related to renal function change and inflammatory status in chronic kidney disease patients receiving angiotensin II receptor blocker treatment, Nephrology, 13, 198-203, doi: 10.1111/j.1440-1797.2008.00933.x.
  224. Härma, M.-A., Dahlström, E. H., Sandholm, N., Forsblom, C., Groop, P.-H., Lehto, M., and FinnDiane Study Group (2020) Decreased plasma kallikrein activity is associated with reduced kidney function in individuals with type 1 diabetes, Diabetologia, 63, 1349-1354, doi: 10.1007/s00125-020-05144-1.
  225. Yu, H., Song, Q., Freedman, B. I., Chao, J., Chao, L., Rich, S. S., and Bowden, D. W. (2002) Association of the tissue kallikrein gene promoter with ESRD and hypertension, Kidney Int., 61, 1030-1039, doi: 10.1046/j.1523-1755.2002.00198.x.
  226. Study of Urinary Angiotensinogen as a Marker to Warn the Deterioration of Renal Function in CKD Patients Early. (n.d.) ClinicalTrials.gov. Retrieved September 2009, URL: https://clinicaltrials.gov/ct2/show/NCT01118494?cond=NCT01118494anddraw=2andrank=1.

Copyright (c) 2023 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies