Nucleotide excision repair. Methods of determination the efficiency functioning

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

The nucleotide excision repair (NER) system is responsible for removing a wide range of bulky damages from DNA, making a significant contribution to maintaining the stability of the genome. The efficiency with which the proteins of the NER system recognize and remove bulky damages depends on many factors and has important clinical and diagnostic significance. The review examines the current understanding of the molecular basis of the functioning of the NER system in eukaryotic cells, as well as analyzes the methods and approaches that are used to study the efficiency functioning of this DNA repair system both in vitro and ex vivo.

Авторлар туралы

A. Popov

Institute of Chemical Biology and Fundamental Medicine Siberian Branch Russian Academy of Sciences

630090 Novosibirsk, Russia

I. Petruseva

Institute of Chemical Biology and Fundamental Medicine Siberian Branch Russian Academy of Sciences

630090 Novosibirsk, Russia

N. Naumenko

Institute of Chemical Biology and Fundamental Medicine Siberian Branch Russian Academy of Sciences

630090 Novosibirsk, Russia

O. Lavrik

Institute of Chemical Biology and Fundamental Medicine Siberian Branch Russian Academy of Sciences;Novosibirsk National Research State University

Email: lavrik@niboch.nsc.ru
630090 Novosibirsk, Russia;630090 Novosibirsk, Russia

Әдебиет тізімі

  1. Chatterjee, N., and Walker, G. C. (2017) Mechanisms of DNA damage, repair, and mutagenesis, Environ. Mol. Mutagen., 58, 235-263, doi: 10.1002/em.22087.
  2. Martens, M. C., Emmert, S., and Boeckmann, L. (2021) Xeroderma pigmentosum: gene variants and splice variants, Genes, 12, 1173, doi: 10.3390/genes12081173.
  3. Krasikova, Y., Rechkunova, N., and Lavrik, O. (2021) Nucleotide excision repair: from molecular defects to neurological abnormalities, Int. J. Mol. Sci., 22, 6220, doi: 10.3390/ijms22126220.
  4. Paccosi, E., Balajee, A. S., and Proietti-De-Santis, L. (2022) A matter of delicate balance: loss and gain of Cockayne syndrome proteins in premature aging and cancer, Front. Aging, 3, 960662, doi: 10.3389/fragi.2022.960662.
  5. Ataabadi, E. A., Golshiri, K., Van Der Linden, J., De Boer, M., Duncker, D. J., Jüttner, A., De Vries, R., Van Veghel, R., Van Der Pluijm, I., Dutheil, S., Chalgeri, S., Zhang, L., Lin, A., Davis, R. E., Gretchen, S. L., Danser, J. H. A., and Roks, A. J. M. (2021) Vascular ageing features caused by selective DNA damage in smooth muscle cell, Oxid. Med. Cell Longev., 2021, 2308317, doi: 10.1155/2021/2308317.
  6. Christmann, M., and Kaina, B. (2013) Transcriptional regulation of human DNA repair genes following genotoxic stress: trigger mechanisms, inducible responses and genotoxic adaptation, Nucleic Acids Res., 41, 8403-8420, doi: 10.1093/nar/gkt635.
  7. MacRae, S. L., Croken, M. M., Calder, R. B., Aliper, A., Milholland, B., White, R. R., Zhavoronkov, A., Gladyshev, V. N., Seluanov, A., Gorbunova, V., Zhang, Z. D., and Vijg, J. (2015) DNA repair in species with extreme lifespan differences, Aging (Albany NY), 7, 1171-1184, doi: 10.18632/aging.100866.
  8. Figueroa-Gonzalez, G., and Perez-Plasencia, C. (2017) Strategies for the evaluation of DNA damage and repair mechanisms in cancer, Oncol. Lett., 13, 3982-3988, doi: 10.3892/ol.2017.6002.
  9. Van den Heuvel, D., van der Weegen, Y., Boer, D. E. C., Ogi, T., and Luijsterburg, M. S. (2021) Transcription-coupled DNA repair: from mechanism to human disorder, Trends Cell Biol., 31, 359-371, doi: 10.1016/j.tcb.2021.02.007.
  10. Kobaisi, F., Fayyad, N., Rezvani, H. R., Fayyad-Kazan, M., Sulpice, E., Badran, B., Fayyad-Kazan, H., Gidrol, X., and Rachidi, W. (2019) Signaling pathways, chemical and biological modulators of nucleotide excision repair: the faithful shield against UV genotoxicity, Oxid. Med. Cell. Longev., 2019, 4654206, doi: 10.1155/2019/4654206.
  11. Le, J., and Min, J. H. (2023) Structural modeling and analyses of genetic variations in the human XPC nucleotide excision repair protein, J. Biomol. Struct. Dyn., 1-28, doi: 10.1080/07391102.2023.2177349.
  12. Zebian, A., Shaito, A., Mazurier, F., Rezvani, H. R., and Zibara, K. (2019) XPC beyond nucleotide excision repair and skin cancers, Mutat. Res. Rev. Mutat. Res., 782, 108286, doi: 10.1016/j.mrrev.2019.108286.
  13. Yokoi, M., and Hanaoka, F. (2017) Two mammalian homologs of yeast Rad23, HR23A and HR23B, as multifunctional proteins, Gene, 597, 1-9, doi: 10.1016/j.gene.2016.10.027.
  14. Grønbaek-Thygesen, M., Kampmeyer, C., Hofmann, K., and Hartmann-Petersen, R. (2023) The moonlighting of RAD23 in DNA repair and protein degradation, Biochim. Biophys. Acta Gene Regul. Mech., 1866, 194925, doi: 10.1016/j.bbagrm.2023.194925.
  15. Rechkunova, N. I., Krasikova, Y. S., and Lavrik, O. I. (2021) Interactome of base and nucleotide excision DNA repair systems, Mol. Biol. (Moscow), 55, 155-166, doi: 10.1134/S0026893321020126.
  16. Feltes, B. C. (2021) Every protagonist has a sidekick: structural aspects of human xeroderma pigmentosum-binding proteins in nucleotide excision repair, Protein Sci., 30, 2187-2205, doi: 10.1002/pro.4173.
  17. Zhang, W., Shi, E., Zhao, Y., and Yang, B. (2018) Modulation effect of double strand DNA on the self-assembly of N-terminal domain of Euplotes octocarinatus centrin, J. Inorg. Biochem., 180, 15-25, doi: 10.1016/j.jinorgbio.2017.12.001.
  18. Paul, D., Mu, H., Zhao, H., Ouerfelli, O., Jeffrey, P. D., Broyde, S., and Min, J. H. (2019) Structure and mechanism of pyrimidine-pyrimidone (6-4) photoproduct recognition by the Rad4/XPC nucleotide excision repair complex, Nucleic Acids Res., 47, 6015-6028, doi: 10.1093/nar/gkz359.
  19. Apelt, K., Lans, H., Schärer, O. D., and Luijsterburg, M. S. (2021) Nucleotide excision repair leaves a mark on chromatin: DNA damage detection in nucleosomes, Cell. Mol. Life Sci., 78, 7925-7942, doi: 10.1007/s00018-021-03984-7.
  20. Boetefuer, E. L., Lake, R. J., and Fan, H. Y. (2018) Mechanistic insights into the regulation of transcription and transcription-coupled DNA repair by Cockayne syndrome protein B, Nucleic Acids Res., 46, 7471-7479, doi: 10.1093/nar/gky660.
  21. Lans, H., Hoeijmakers, J. H. J., Vermeulen, W., and Marteijn, J. A. (2019) The DNA damage response to transcription stress, Nat. Rev. Mol. Cell Biol., 20, 766-784, doi: 10.1038/s41580-019-0169-4.
  22. Van der Weegen, Y., Golan-Berman, H., Mevissen, T. E. T., Apelt, K., González-Prieto, R., Goedhart, J., Heilbrun, E. E., Vertegaal, A. C. O., van den Heuvel, D., Walter, J. C., Adar, S., and Luijsterburg, M. S. (2020) The cooperative action of CSB, CSA, and UVSSA target TFIIH to DNA damage-stalled RNA polymerase II, Nat. Commun., 11, 2104, doi: 10.1038/s41467-020-15903-8.
  23. Xu, J., Lahiri, I., Wang, W., Wier, A., Cianfrocco, M. A., Chong, J., Hare, A. A., Dervan, P. B., DiMaio, F., Leschziner, A. E., and Wang, D. (2017) Structural basis for eukaryotic transcription-coupled DNA repair initiation, Nature, 551, 653-657, doi: 10.1038/nature24658.
  24. Kokic, G., Wagner, F. R., Chernev, A., Urlaub, H., and Cramer, P. (2021) Structural basis of human transcription-DNA repair coupling, Nature, 598, 368-372, doi: 10.1038/s41586-021-03906-4.
  25. Fischer, E. S., Scrima, A., Böhm, K., Matsumoto, S., Lingaraju, G. M., Faty, M., Yasuda, T., Cavadini, S., Wakasugi, M., Hanaoka, F., Iwai, S., Gut, H., Sugasawa, K., and Thomä, N. H. (2011) The molecular basis of CRL4DDB2/CSA ubiquitin ligase architecture, targeting, and activation, Cell, 147, 1024-1039, doi: 10.1016/j.cell.2011.10.035.
  26. Kim, J., Li, C. L., Chen, X., Cui, Y., Golebiowski, F. M., Wang, H., Hanaoka, F., Sugasawa, K., and Yang, W. (2023) Lesion recognition by XPC, TFIIH and XPA in DNA excision repair, Nature, 617, 170-175, doi: 10.1038/s41586-023-05959-z.
  27. Kuper, J., and Kisker, C. (2021) Three targets in one complex: A molecular perspective of TFIIH in cancer therapy, DNA Repair (Amst), 105, 103143, doi: 10.1016/j.dnarep.2021.103143.
  28. Tsutakawa, S. E., Tsai, C. L., Yan, C., Bralić, A., Chazin, W. J., Hamdan, S. M., Schärer, O. D., Ivanov, I., and Tainer, J. A. (2020) Envisioning how the prototypic molecular machine TFIIH functions in transcription initiation and DNA repair, DNA Repair (Amst), 96, 102972, doi: 10.1016/j.dnarep.2020.102972.
  29. Greber, B. J., Toso, D. B., Fang, J., and Nogales, E. (2019) The complete structure of the human TFIIH core complex, Elife, 12, e44771, doi: 10.7554/eLife.44771.
  30. Kokic, G., Chernev, A., Tegunov, D., Dienemann, C., Urlaub, H., and Cramer, P. (2019) Structural basis of TFIIH activation for nucleotide excision repair, Nat. Commun., 10, 2885, doi: 10.1038/s41467-019-10745-5.
  31. Kim, M., Kim, H. S., D'Souza, A., Gallagher, K., Jeong, E., Topolska-Wós, A., Ogorodnik Le Meur, K., Tsai, C. L., Tsai, M. S., Kee, M., Tainer, J. A., Yeo, J. E., Chazin, W. J., and Schärer, O. D. (2022) Two interaction surfaces between XPA and RPA organize the preincision complex in nucleotide excision repair, Proc. Natl. Acad. Sci. USA, 119, e2207408119, doi: 10.1073/pnas.2207408119.
  32. Krasikova, Y. S., Lavrik, O. I., and Rechkunova, N. I. (2022) The XPA protein-life under precise control, Cells, 11, 3723, doi: 10.3390/cells11233723.
  33. Van den Heuvel, D., Kim, M., Wondergem, A. P., van der Meer, P. J., Witkamp, M., Lambregtse, F., Kim, H. S., Kan, F., Apelt, K., Kragten, A., González-Prieto, R., Vertegaal, A. C. O., Yeo, J. E., Kim, B. G., van Doorn, R., Schärer, O. D., and Luijsterburg, M. S. (2023) A disease-associated XPA allele interferes with TFIIH binding and primarily affects transcription-coupled nucleotide excision repair, Proc. Natl. Acad. Sci. USA, 120, e2208860120, doi: 10.1073/pnas.2208860120.
  34. Li, C. L., Golebiowski, F. M., Onishi, Y., Samara, N. L., Sugasawa, K., and Yang, W. (2015) Tripartite DNA lesion recognition and verification by XPC, TFIIH, and XPA in nucleotide excision repair, Mol. Cell., 59, 1025-1034, doi: 10.1016/j.molcel.2015.08.012.
  35. Kemp, M. G., and Hu, J. (2017) Postexcision events in human nucleotide excision repair, Photochem. Photobiol., 93, 178-191, doi: 10.1111/php.12641.
  36. González-Corrochano, R., Ruiz, F. M., Taylor, N. M. I., Huecas, S., Drakulic, S., Spínola-Amilibia, M., and Fernández-Tornero, C. (2020) The crystal structure of human XPG, the xeroderma pigmentosum group G endonuclease, provides insight into nucleotide excision DNA repair, Nucleic Acids Res., 48, 9943-9958, doi: 10.1093/nar/gkaa688.
  37. Muniesa-Vargas, A., Theil, A. F., Ribeiro-Silva, C., Vermeulen, W., and Lans, H. (2022) XPG: a multitasking genome caretaker, Cell. Mol. Life Sci., 79, 166, doi: 10.1007/s00018-022-04194-5.
  38. Hu, J., Choi, J. H., Gaddameedhi, S., Kemp, M. G., Reardon, J. T., and Sancar, A. (2013) Nucleotide excision repair in human cells: fate of the excised oligonucleotide carrying DNA damage in vivo, J. Biol. Chem., 288, 20918-20926, doi: 10.1074/jbc.M113.482257.
  39. Krasikova, Y. S., Rechkunova, N. I., Maltseva, E. A., Pestryakov, P. E., Petruseva, I. O., Sugasawa, K., Chen, X., Min, J. H., and Lavrik, O. I. (2013) Comparative analysis of interaction of human and yeast DNA damage recognition complexes with damaged DNA in nucleotide excision repair, J. Biol. Chem., 288, 10936-10947, doi: 10.1074/jbc.M112.444026.
  40. Petruseva, I., Naumenko, N., Kuper, J., Anarbaev, R., Kappenberger, J., Kisker, C., and Lavrik, O. (2021) The interaction efficiency of XPD-p44 with bulky DNA damages depends on the structure of the damage, Front. Cell Dev. Biol., 9, 617160, doi: 10.3389/fcell.2021.617160.
  41. Barnett, J., Kuper, J., Koelmel, W., Kisker, C., and Kad, N. (2019) The TFIIH subunits p44/p62 act as a damage sensor during nucleotide excision repair, Nucleic Acids Res., 48, 12689-12696, doi: 10.1093/nar/gkaa973.
  42. Aboussekhra, A., Biggerstaff, M., Shivji, M. K. K., Vilpo, J. A., Moncollin, V., Podust, V. N., Protić, M., Hübscher, U., Egly, J. M., and Wood, R. D. (1995) Mammalian DNA nucleotide excision repair reconstituted with purified protein components, Cell, 80, 859-868, doi: 10.1016/0092-8674(95)90289-9.
  43. Szeltner, Z., Póti, A., Harami, G. M., Kovács, M., and Szüts, D. (2021) Evaluation and modulation of DNA lesion bypass in an SV40 large T antigen-based in vitro replication system, FEBS Open Bio, 11, 1054-1075, doi: 10.1002/2211-5463.13099.
  44. Du, H., Wang, P., Li, L., and Wang, Y. (2019) Repair and translesion synthesis of O6-alkylguanine DNA lesions in human cells, J. Biol. Chem., 294, 11144-11153, doi: 10.1074/jbc.RA119.009054.
  45. Evdokimov, A., Petruseva, I., Tsidulko, A., Koroleva, L., Serpokrylova, I., Silnikov, V., and Lavrik, O. (2013) New synthetic substrates of mammalian nucleotide excision repair system, Nucleic Acids Res., 41, e123, doi: 10.1093/nar/gkt301.
  46. Hilton, B., Gopal, S., Xu, L., Mazumder, S., Musich, P. R., Cho, B. P., and Zou, Y. Z. (2016) Dissociation dynamics of XPC-RAD23B from damaged DNA is a determining factor of NER efficiency, PLoS One, 11, e0157784, doi: 10.1371/journal.pone.0157784.
  47. Naumenko, N., Petruseva, I., Lomzov, A., and Lavrik, O. (2021) Recognition and removal of clustered DNA lesions via nucleotide excision repair, DNA Repair (Amst), 108, 103225, doi: 10.1016/j.dnarep.2021.103225.
  48. Huang, J. C., and Sancar, A. (1994) Determination of minimum substrate size for human excinuclease, J. Biol. Chem., 269, 19034-19040, doi: 10.1016/S0021-9258(17)32270-6.
  49. Hess, M. T., Gunz, D., Luneva, N., Geacintov, N. E., and Naegeli, H. (1997) Base pair conformation-dependent excision of benzo[a]pyrene diol epoxide-guanine adducts by human nucleotide excision repair enzymes, Mol. Cell Biol., 17, 7069-7076, doi: 10.1128/MCB.17.12.7069.
  50. Gillet, L. C., Alzeer, J., and Schärer, O. D. (2005) Site-specific incorporation of N-(deoxyguanosin-8-yl)-2-acetylaminofluorene (dG-AAF) into oligonucleotides using modified ‘ultra-mild' DNA synthesis, Nucleic Acids Res., 33, 1961-1969, doi: 10.1093/nar/gki335.
  51. Dezhurov, S. V., Khodyreva, S. N., Plekhanova, E. S., and Lavrik, O. I. (2005) A new highly efficient photoreactive analogue of dCTP. Synthesis, characterization, and application in photoaffinity modification of DNA binding proteins, Bioconjug. Chem., 16, 215-222, doi: 10.1021/bc0497867.
  52. Lukyanchikova, N. V., Petruseva, I. O., Evdokimov, A. N., Silnikov, V. N., and Lavrik, O. I. (2016) DNA with damage in both strands as affinity probes and nucleotide excision repair substrates, Biochemistry (Moscow), 81, 263-274, doi: 10.1134/S0006297916030093.
  53. Kolbanovskiy, M., Aharonoff, A., Sales, A. H., Geacintov, N. E., and Shafirovich, V. (2020) Remarkable enhancement of nucleotide excision repair of a bulky guanine lesion in a covalently closed circular DNA plasmid relative to the same linearized plasmid, Biochemistry, 59, 2842-2848, doi: 10.1021/acs.biochem.0c00441.
  54. Emerson, C. H., Lopez, C. R., Ribes-Zamora, A., Polleys, E. J., Williams, C. L., Yeo, L., Zaneveld, J. E., Chen, R., and Bertuch, A. A. (2018) Ku DNA end-binding activity promotes repair fidelity and influences end-processing during nonhomologous end-joining in Saccharomyces cerevisiae, Genetics, 209, 115-128, doi: 10.1534/genetics.117.300672.
  55. Geacintov, N. E., and Broyde, S. (2017) Repair-resistant DNA lesions, Chem. Res. Toxicol., 30, 1517-1548, doi: 10.1021/acs.chemrestox.7b00128.
  56. Evdokimov, A., Kutuzov, M., Petruseva, I., Lukjanchikova, N., Kashina, E., Kolova, E., Zemerova, T., Romanenko, S., Perelman, P., Prokopov, D., Seluanov, A., Gorbunova, V., Graphodatsky, A., Trifonov, V., Khodyreva, S., and Lavrik, O. (2018) Naked mole rat cells display more efficient excision repair than mouse cells, Aging (Albany NY), 10, 1454-1473, doi: 10.18632/aging.101482.
  57. Liu, Z., Ding, S., Kropachev, K., Lei, J., Amin, S., Broyde, S., and Geacintov, N. E. (2015) Resistance to nucleotide excision repair of bulky guanine adducts opposite abasic sites in DNA duplexes and relationships between structure and function, PLoS One, 10, e0142068, doi: 10.1371/journal.pone.0137124.
  58. Song, J., Kemp, M. G., and Choi, J. H. (2017) Detection of the excised, damage-containing oligonucleotide products of nucleotide excision repair in human cells, Photochem. Photobiol., 93, 192-198, doi: 10.1111/php.12638.
  59. Lukyanchikova, N. V., Petruseva, I. O., Evdokimov, A. N., Koroleva, L. S., and Lavrik, O. I. (2018) DNA bearing bulky fluorescent and photoreactive damage in both strands as substrates of the nucleotide excision repair system, Mol. Biol. (Moscow), 52, 237-246, doi: 10.1134/S0026893318020061.
  60. Govan, H. L., Valles-Ayoub, Y., and Braun, J. (1990) Fine-mapping of DNA damage and repair in specific genomic segments, Nucleic Acids Res., 18, 3823-3830, doi: 10.1093/nar/18.13.3823.
  61. Chesner, L. N., and Campbell, C. (2018) A quantitative PCR-based assay reveals that nucleotide excision repair plays a predominant role in the removal of DNA-protein crosslinks from plasmids transfected into mammalian cells, DNA Repair (Amst), 62, 18-27, doi: 10.1016/j.dnarep.2018.01.004.
  62. Shen, J. C., Fox, E. J., Ahn, E. H., and Loeb, L. A. (2014) A rapid assay for measuring nucleotide excision repair by oligonucleotide retrieval, Sci. Rep., 4, 4894, doi: 10.1038/srep04894.
  63. Aloisi, C. M. N., Nilforoushan, A., Ziegler, N., and Sturla, S. J. (2020) Sequence-specific quantitation of mutagenic DNA damage via polymerase amplification with an artificial nucleotide, J. Am. Chem. Soc., 142, 6962-6969, doi: 10.1021/jacs.9b11746.
  64. Jennerwein, M. M., and Eastman, A. (1991) A polymerase chain reaction-based method to detect cisplatin adducts in specific genes, Nucleic Acids Res., 19, 6209-6214, doi: 10.1093/nar/19.22.6209.
  65. Kalinowski, D. P., Illenye, S., and Van Houten, B. (1992) Analysis of DNA damage and repair in murine leukemia L1210 cells using a quantitative polymerase chain reaction assay, Nucleic Acids Res., 20, 3485-3494, doi: 10.1093/nar/20.13.3485.
  66. Azqueta, A., Langie, S. A. S., Boutet-Robinet, E., Duthie, S., Ladeira, C., Møller, P., Collins, A. R., and Godschalk, R. W. L. (2019) DNA repair as a human biomonitoring tool: Comet assay approaches, Mutat. Res., 781, 71-87, doi: 10.1016/j.mrrev.2019.03.002.
  67. Collins, A. R. (2004) The comet assay for DNA damage and repair: principles, applications, and limitations, Mol. Biotechnol., 26, 249-261, doi: 10.1385/MB:26:3:249.
  68. Vodenkova, S., Azqueta, A., Collins, A., Dusinska, M., Gaivão, I., Møller, P., Opattova, A., Vodicka, P., Godschalk, R. W. L., and Langie, S. A. S. (2020) An optimized comet-based in vitro DNA repair assay to assess base and nucleotide excision repair activity, Nat. Protoc., 15, 3844-3878, doi: 10.1038/s41596-020-0401-x.
  69. Vodicka, P., Vodenkova, S., Opattova, A., and Vodickova, L. (2019) DNA damage and repair measured by comet assay in cancer patients, Mutat. Res. Genet. Toxicol. Environ. Mutagen., 843, 95-110, doi: 10.1016/j.mrgentox.2019.05.009.
  70. Speit, G., Leibiger, C., Kuehner, S., and Högel, J. (2013) Further investigations on the modified comet assay for measuring aphidicolin-block nucleotide excision repair, Mutagenesis, 28, 145-151, doi: 10.1093/mutage/ges063.
  71. Ge, J., Ngo, L. P., Kaushal, S., Tay, I. J., Thadhani, E., Kay, J. E., Mazzucato, P., Chow, D. N., Fessler, J. L., Weingeist, D. M., Sobol, R. W., Samson, L. D., Floyd, S. R., and Engelward, B. P. (2021) CometChip enables parallel analysis of multiple DNA repair activities, DNA Repair (Amst), 106, 103176, doi: 10.1016/j.dnarep.2021.103176.
  72. Valdiglesias, V., Sánchez-Flores, M., Fernández-Bertólez, N., Au, W., Pásaro, E., and Laffon, B. (2020) Expanded usage of the Challenge-Comet assay as a DNA repair biomarker in human populations: protocols for fresh and cryopreserved blood samples, and for different challenge agents, Arch. Toxicol., 94, 4219-4228, doi: 10.1007/s00204-020-02881-5.
  73. Cipollini, M., He, J., Rossi, P., Baronti, F., Micheli, A., Rossi, A. M., and Barale, R. (2006) Can individual repair kinetics of UVC-induced DNA damage in human lymphocytes be assessed through the comet assay? Mutat. Res., 601, 150-161, doi: 10.1016/j.mrfmmm.2006.06.004.
  74. Vande Loock, K., Decordier, I., Ciardelli, R., Haumont, D., and Kirsch-Volders, M. (2010) An aphidicolin-block nucleotide excision repair assay measuring DNA incision and repair capacity, Mutagenesis, 25, 25-32, doi: 10.1093/mutage/gep039.
  75. Muruzabal, D., Sanz-Serrano, J., Sauvaigo, S., Gützkow, K. B., López de Cerain, A., Vettorazzi, A., and Azqueta, A. (2020) Novel approach for the detection of alkylated bases using the enzyme-modified comet assay, Toxicol. Lett., 330, 108-117, doi: 10.1016/j.toxlet.2020.04.021.
  76. Ngo, L. P., Owiti, N. A., Swartz, C., Winters, J., Su, Y., Ge, J., Xiong, A., Han, J., Recio, L., Samson, L. D., and Engelward, B. P. (2020) Sensitive CometChip assay for screening potentially carcinogenic DNA adducts by trapping DNA repair intermediates, Nucleic Acids Res., 48, e13, doi: 10.1093/nar/gkz1077.
  77. Ge, J., Prasongtanakij, S., Wood, D. K., Weingeist, D. M., Fessler, J., Navasummrit, P., Ruchirawat, M., and Engelward, B. P. (2014) CometChip: a high-throughput 96-well platform for measuring DNA damage in microarrayed human cells, J. Vis. Exp., 92, e50607, doi: 10.3791/50607.
  78. Azqueta, A., Ladeira, C., Giovannelli, L., Boutet-Robinet, E., Bonassi, S., Neri, M., Gajski, G., Duthie, S., Del Bo', C., Riso, P., Koppen, G., Basaran, N., Collins, A., and Møller, P. (2020) Application of the comet assay in human biomonitoring: An hCOMET perspective, Mutat. Res. Rev. Mutat. Res., 783, 108288, doi: 10.1016/j.mrrev.2019.108288.
  79. Athas, W. F., Hedayati, M. A., Matanoski, G. M., Farmer, E. R., and Grossman, L. (1991) Development and field-test validation of an assay for DNA repair in circulating human lymphocytes, Cancer Res., 51, 5786-5793.
  80. Chu, G., and Chang, E. (1988) Xeroderma pigmentosum group E cells lack a nuclear factor that binds to damaged DNA, Science, 242, 564-567, doi: 10.1126/science.3175673.
  81. Qiao, Y., Spitz, M. R., Guo, Z., Hadeyati, M., Grossman, L., Kraemer, K. H., and Wei, Q. (2002) Rapid assessment of repair of ultraviolet DNA damage with a modified host-cell reactivation assay using a luciferase reporter gene and correlation with polymorphisms of DNA repair genes in normal human lymphocytes, Mutat. Res., 509, 165-174, doi: 10.1016/s0027-5107(02)00219-1.
  82. Roguev, A., and Russev, G. (2000) Two-wavelength fluorescence assay for DNA repair, Anal. Biochem., 287, 313-318, doi: 10.1006/abio.2000.4865.
  83. Burger, K., Matt, K., Kieser, N., Gebhard, D., and Bergemann, J. (2010) A modified fluorimetric host cell reactivation assay to determine the repair capacity of primary keratinocytes, melanocytes and fibroblasts, BMC Biotechnol., 10, 46, doi: 10.1186/1472-6750-10-46.
  84. Kitsera, N., Rodriguez-Alvarez, M., Emmert, S., Carell, T., and Khobta, A. (2019) Nucleotide excision repair of abasic DNA lesions, Nucleic Acids Res., 47, 8537-8547, doi: 10.1093/nar/gkz558.
  85. Popov, A. A., Orishchenko, K. E., Naumenko, K. N., Evdokimov, A. N., Petruseva, I. O., and Lavrik, O. I. (2021) A method for assessing the efficiency of the nucleotide excision repair system ex vivo, Acta Naturae, 13, 122-125, doi: 10.32607/actanaturae.11430.
  86. Evdokimov, A. N., Tsidulko, A. N., Popov, A. V., Vorobiev, Y. N., Lomzov, A. A., Koroleva, L. S., Silnikov, V. N., Petruseva, I. O., and Lavrik, O. I. (2018) Structural basis for the recognition and processing of DNA containing bulky lesions by the mammalian nucleotide excision repair system, DNA Repair (Amst), 61, 86-98, doi: 10.1016/j.dnarep.2017.10.010.
  87. Piett, C. G., Pecen, T. J., Laverty, D. J., and Nagel, Z. D. (2021) Large-scale preparation of fluorescence multiplex host cell reactivation (FM-HCR) reporters, Nat. Protoc., 16, 4265-4298, doi: 10.1038/s41596-021-00577-3.
  88. Kitsera, N., Stathis, D., Lühnsdorf, B., Müller, H., Carell, T., Epe, B., and Khobta, A. (2011) 8-Oxo-7,8-dihydroguanine in DNA does not constitute a barrier to transcription, but is converted into transcription-blocking damage by OGG1, Nucleic Acids Res., 39, 5926-5934, doi: 10.1093/nar/gkr163.
  89. Kogan, V., Molodtsov, I., Menshikov, L. I., Reis, R. J. S., and Fedichev, P. (2015) Stability analysis of a model gene network links aging, stress resistance, and negligible senescence, Sci. Rep., 5, 13589, doi: 10.1038/srep13589.

© Russian Academy of Sciences, 2023

Осы сайт cookie-файлдарды пайдаланады

Біздің сайтты пайдалануды жалғастыра отырып, сіз сайттың дұрыс жұмыс істеуін қамтамасыз ететін cookie файлдарын өңдеуге келісім бересіз.< / br>< / br>cookie файлдары туралы< / a>