Immune privileges as a result of mutual regulation of the immune and stem systems

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

The immune privileges of cancer stem cells are a well-known and widely studied problem, as the presence of such cells in tumors is associated with refractoriness, recurrence, and metastasis. Accumulating evidence also suggests the presence of immune privileges for non-pathologic stem cells in addition to their other defense mechanisms against damaging factors. This similarity between pathologic and normal stem cells raises the question of why stem cells have such a potentially damaging property. The regulation of vital processes of autoimmunity control and regeneration by interactions between immune cells, stem cells and their microenvironment are reviewed as determinants of stem cell immune privilege formation. A deep mutual integration in the regulation of stem and immune cells is noted. Based on the diversity and complexity of the mutual regulation of stem cells, their microenvironment and the immune system, I propose to use the term “stem system”.

Авторлар туралы

D. Karpenko

National Medical Research Center for Hematology

Email: d_@list.ru
125167 Moscow, Russia

Әдебиет тізімі

  1. Van Dooremaal, J. C. (1873) The development of living tissue transplanted to foreign soil [in German], Arch. Ophthalmol., 19, 358-373.
  2. Niederkorn, J. Y. (2006) See no evil, hear no evil, do no evil: the lessons of immune privilege, Nat. Immunol., 7, 354-359, doi: 10.1038/NI1328.
  3. Shirai, Y. (1921) On the transplantation of the rat sarcoma in adult heterogeneous animals, Japan Med. World, 1, 14-15.
  4. Murphy, J. B., and Sturm, E. (1923) Conditions determining the transplantability of tissues in the brain, J. Exp. Med., 38, 183-197, doi: 10.1084/jem.38.2.183.
  5. Medawar, P. B. (1948) Immunity to homologous grafted skin; the fate of skin homografts, Br. J. Exp. Pathol., 29, 58-69.
  6. Carson, M. J., Doose, J. M., Melchior, B., Schmid, C. D., and Ploix, C. C. (2006) CNS immune privilege: hiding in plain sight, Immunol. Rev., 213, 48-65, doi: 10.1111/j.1600-065X.2006.00441.x.
  7. Negi, N., and Das, B. K. (2018) CNS: not an immunoprivilaged site anymore but a virtual secondary lymphoid organ, Int. Rev. Immunol., 37, 57-68, doi: 10.1080/08830185.2017.1357719.
  8. Chang, G. C., and Young, L. H. (2011) Sympathetic ophthalmia, Semin. Ophthalmol., 26, 316-320, doi: 10.3109/08820538.2011.588658.
  9. Hori, J., Yamaguchi, T., Keino, H., Hamrah, P., and Maruyama, K. (2019) Immune privilege in corneal transplantation, Prog. Retin. Eye Res., 72, 100758, doi: 10.1016/j.preteyeres.2019.04.002.
  10. Keino, H., Horie, S., and Sugita, S. (2018) Immune privilege and eye-derived T-regulatory cells, J. Immunol. Res., 2018, 1679197, doi: 10.1155/2018/1679197.
  11. Zenclussen, A. C., Schumacher, A., Zenclussen, M. L., Wafula, P., and Volk, H. D. (2007) Immunology of pregnancy: cellular mechanisms allowing fetal survival within the maternal uterus, Expert Rev. Mol. Med., 9, 1-14, doi: 10.1017/S1462399407000294.
  12. Katsh, S. (1957) In vitro demonstration of uterine anaphylaxis in guinea pigs sensitized with homologous testis or sperm, Nature, 180, 1047-1048, doi: 10.1038/1801047a0.
  13. Kaur, G., Thompson, L. A., and Dufour, J. M. (2014) Sertoli cells - immunological sentinels of spermatogenesis, Semin. Cell Dev. Biol., 30, 36-44, doi: 10.1016/j.semcdb.2014.02.011.
  14. Kern, S., Robertson, S. A., Mau, V. J., and Maddocks, S. (1995) Cytokine Secretion by macrophages in the rat testis, Biol. Reprod., 53, 1407-1416, doi: 10.1095/biolreprod53.6.1407.
  15. O'Bryan, M. K., Gerdprasert, O., Nikolic-Paterson, D. J., Meinhardt, A., Muir, J. A., Foulds, L. M., Phillips, D. J., De Kretser, D. M., and Hedger, M. P. (2005) Cytokine profiles in the testes of rats treated with lipopolysaccharide reveal localized suppression of inflammatory responses, Am. J. Physiol. Regul. Integr. Comp. Physiol., 288, 1744-1755, doi: 10.1152/ajpregu.00651.2004.
  16. Billingham, R. E., and Silvers, W. K. (1971) A biologist's reflections on dermatology, J. Invest. Dermatol., 57, 227-240, doi: 10.1111/1523-1747.ep12261543.
  17. Paus, R., Bulfone-Paus, S., and Bertolini, M. (2018) Hair follicle immune privilege revisited: the key to alopecia areata management, J. Invest. Dermatol. Symp. Proc., 19, 12-17, doi: 10.1016/j.jisp.2017.10.014.
  18. Sun, Z., Zhang, M., Zhao, X. H., Liu, Z. H., Gao, Y., Samartzis, D., Wang, H. Q., and Luo, Z. J. (2013) Immune cascades in human intervertebral disc: the pros and cons, Int. J. Clin. Exp. Pathol., 6, 1009-1014.
  19. Fujihara, Y., Takato, T., and Hoshi, K. (2014) Macrophage-inducing FasL on chondrocytes forms immune privilege in cartilage tissue engineering, enhancing in vivo regeneration, Stem Cells, 32, 1208-1219, doi: 10.1002/stem.1636.
  20. Sun, Z., Liu, B., and Luo, Z. J. (2020) The immune privilege of the intervertebral disc: implications for intervertebral disc degeneration treatment, Int. J. Med. Sci., 17, 685-692, doi: 10.7150/ijms.42238.
  21. Joyce, J. A., and Fearon, D. T. (2015) T cell exclusion, immune privilege, and the tumor microenvironment, Science, 348, 74-80, doi: 10.1126/science.aaa6204.
  22. Chen, D. S., and Mellman, I. (2013) Oncology meets immunology: the cancer-immunity cycle, Immunity, 39, 1-10, doi: 10.1016/j.immuni.2013.07.012.
  23. Kalavska, K., Kucerova, L., Schmidtova, S., Chovanec, M., and Mego, M. (2020) Cancer stem cell niche and immune-active tumor microenvironment in testicular germ cell tumors, Adv. Exp. Med. Biol., 1226, 111-121, doi: 10.1007/978-3-030-36214-0_9.
  24. Nguyen, P. H. D., Wasser, M., Tan, C. T., Lim, C. J., Lai, H. L. H., et al. (2022) Trajectory of immune evasion and cancer progression in hepatocellular carcinoma, Nat. Commun., 13, 1441, doi: 10.1038/S41467-022-29122-W.
  25. Duan, Q., Zhang, H., Zheng, J., and Zhang, L. (2020) Turning cold into hot: firing up the tumor microenvironment, Trends Cancer, 6, 605-618, doi: 10.1016/J.TRECAN.2020.02.022.
  26. Lim, A. R., Rathmell, W. K., and Rathmell, J. C. (2020) The tumor microenvironment as a metabolic barrier to effector T cells and immunotherapy, eLife, 9, 1-13, doi: 10.7554/ELIFE.55185.
  27. Li, B., Chan, H. L., and Chen, P. (2019) Immune checkpoint inhibitors: basics and challenges, Curr. Med. Chem., 26, 3009-3025, doi: 10.2174/0929867324666170804143706.
  28. Xia, L., Oyang, L., Lin, J., Tan, S., Han, Y., et al. (2021) The cancer metabolic reprogramming and immune response, Mol. Cancer, 20, 28, doi: 10.1186/S12943-021-01316-8.
  29. Ichiryu, N., and Fairchild, P. J. (2013) Immune privilege of stem cells, Methods Mol. Biol., 1029, 1-16, doi: 10.1007/978-1-62703-478-4_1.
  30. Agudo, J. (2021) Immune privilege of skin stem cells: what do we know and what can we learn? Exp. Dermatol., 30, 522-528, doi: 10.1111/EXD.14221.
  31. Ankrum, J. A., Ong, J. F., and Karp, J. M. (2014) Mesenchymal stem cells: immune evasive, not immune privileged, Nat. Biotechnol., 32, 252-260, doi: 10.1038/nbt.2816.
  32. Aguila, H. L., and Weissman, I. L. (1996) Hematopoietic stem cells are not direct cytotoxic targets of natural killer cells, Blood, 87, 1225-1231, doi: 10.1182/blood.V87.4.1225.bloodjournal8741225.
  33. Drukker, M., Katz, G., Urbach, A., Schuldiner, M., Markel, G., Itskovitz-Eldor, J., Reubinoff, B., Mandelboim, O., and Benvenisty, N. (2002) Characterization of the expression of MHC proteins in human embryonic stem cells, Proc. Natl. Acad. Sci. USA, 99, 9864-9869, doi: 10.1073/PNAS.142298299.
  34. Rasmusson, I., Ringdén, O., Sundberg, B., and Le Blanc, K. (2003) Mesenchymal stem cells inhibit the formation of cytotoxic T lymphocytes, but not activated cytotoxic T lymphocytes or natural killer cells, Transplantation, 76, 1208-1213, doi: 10.1097/01.TP.0000082540.43730.80.
  35. Mammolenti, M., Gajavelli, S., Tsoulfas, P., and Levy, R. (2004) Absence of major histocompatibility complex class I on neural stem cells does not permit natural killer cell killing and prevents recognition by alloreactive cytotoxic T lymphocytes in vitro, Stem Cells, 22, 1101-1110, doi: 10.1634/stemcells.22-6-1101.
  36. Agudo, J., Park, E. S., Rose, S. A., Alibo, E., Sweeney, R., et al. (2018) Quiescent tissue stem cells evade immune surveillance, Immunity, 48, 271-285, doi: 10.1016/j.immuni.2018.02.001.
  37. Bernitz, J. M., Kim, H. S., MacArthur, B., Sieburg, H., and Moore, K. (2016) Hematopoietic stem cells count and remember self-renewal divisions, Cell, 167, 1296-1309, doi: 10.1016/j.cell.2016.10.022.
  38. Fürst, D., Neuchel, C., Tsamadou, C., Schrezenmeier, H., and Mytilineos, J. (2019) HLA matching in unrelated stem cell transplantation up to date, Transfus. Med. Hemother., 46, 326-336, doi: 10.1159/000502263.
  39. Hirata, Y., Furuhashi, K., Ishii, H., Li, H. W., Pinho, S., Ding, L., Robson, S. C., Frenette, P. S., and Fujisaki, J. (2018) CD150 high bone marrow Tregs maintain hematopoietic stem cell quiescence and immune privilege via adenosine, Cell Stem Cell, 22, 445-453, doi: 10.1016/j.stem.2018.01.017.
  40. Méndez-Ferrer, S., Michurina, T. V., Ferraro, F., Mazloom, A. R., Macarthur, B. D., Lira, S. A., Scadden, D. T., Ma'ayan, A., Enikolopov, G. N., and Frenette, P. S. (2010) Mesenchymal and haematopoietic stem cells form a unique bone marrow niche, Nature, 466, 829-834, doi: 10.1038/nature09262.
  41. Naji, A., Eitoku, M., Favier, B., Deschaseaux, F., Rouas-Freiss, N., and Suganuma, N. (2019) Biological functions of mesenchymal stem cells and clinical implications, Cell. Mol. Life Sci., 76, 3323-3348, doi: 10.1007/S00018-019-03125-1.
  42. Zangi, L., Margalit, R., Reich-Zeliger, S., Bachar-Lustig, E., Beilhack, A., Negrin, R., and Reisner, Y. (2009) Direct imaging of immune rejection and memory induction by allogeneic mesenchymal stromal cells, Stem Cells, 27, 2865-2874, doi: 10.1002/stem.217.
  43. Miura, Y., Yoshioka, S., Yao, H., Takaori-Kondo, A., Maekawa, T., and Ichinohe, T. (2013) Chimerism of bone marrow mesenchymal stem/stromal cells in allogeneic hematopoietic cell transplantation: is it clinically relevant? Chimerism, 4, 78-83, doi: 10.4161/chim.25609.
  44. Badillo, A. T., Beggs, K. J., Javazon, E. H., Tebbets, J. C., and Flake, A. W. (2007) Murine bone marrow stromal progenitor cells elicit an in vivo cellular and humoral alloimmune response, Biol. Blood Marrow Transplant., 13, 412-422, doi: 10.1016/j.bbmt.2006.12.447.
  45. Berglund, A. K., Fortier, L. A., Antczak, D. F., and Schnabel, L. V. (2017) Immunoprivileged no more: measuring the immunogenicity of allogeneic adult mesenchymal stem cells, Stem Cell Res. Ther., 8, 288, doi: 10.1186/s13287-017-0742-8.
  46. Malladi, S., MacAlinao, D. G., Jin, X., He, L., Basnet, H., Zou, Y., De Stanchina, E., and Massagué, J. (2016) Metastatic latency and immune evasion through autocrine inhibition of WNT, Cell, 165, 45, doi: 10.1016/J.CELL.2016.02.025.
  47. Galassi, C., Musella, M., Manduca, N., Maccafeo, E., and Sistigu, A. (2021) The immune privilege of cancer stem cells: a key to understanding tumor immune escape and therapy failure, Cells, 10, 2361 doi: 10.3390/CELLS10092361.
  48. Babaei, G., Aziz, S. G. G., and Jaghi, N. Z. Z. (2021) EMT, cancer stem cells and autophagy; the three main axes of metastasis, Biomed. Pharmacother., 133, 110909, doi: 10.1016/J.BIOPHA.2020.110909.
  49. Karpenko, D., Kapranov, N., and Bigildeev, A. (2022) Nestin-GFP transgene labels immunoprivileged bone marrow mesenchymal stem cells in the model of ectopic foci formation, Front. Cell Dev. Biol., 10, 993056, doi: 10.3389/FCELL.2022.993056.
  50. Kuroda, Y., Oguma, Y., Hall, K., and Dezawa, M. (2022) Endogenous reparative pluripotent muse cells with a unique immune privilege system: hint at a new strategy for controlling acute and chronic inflammation, Front. Pharmacol., 13, 1027961, doi: 10.3389/FPHAR.2022.1027961.
  51. Yamada, Y., Wakao, S., Kushida, Y., Minatoguchi, S., Mikami, A., et al. (2018) S1P-S1PR2 axis mediates homing of muse cells into damaged heart for long-lasting tissue repair and functional recovery after acute myocardial infarction, Circ. Res., 122, 1069-1083, doi: 10.1161/CIRCRESAHA.117.311648.
  52. Li, H., Wei, J., Liu, X., Zhang, P., and Lin, J. (2022) Muse Cells: ushering in a new era of stem cell-based therapy for stroke, Stem Cell Res. Ther., 13, 421, doi: 10.1186/S13287-022-03126-1.
  53. Jiang, M. H., Cai, B., Tuo, Y., Wang, J., Zang, Z. J., et al. (2014) Characterization of nestin-positive stem leydig cells as a potential source for the treatment of testicular leydig cell dysfunction, Cell Res., 24, 1466-1485, doi: 10.1038/CR.2014.149.
  54. Jaramillo-Rangel, G., Chávez-Briones, M. D. L., Ancer-Arellano, A., and Ortega-Martínez, M. (2021) Nestin-expressing cells in the lung: the bad and the good parts, Cells, 10, 3413, doi: 10.3390/cells10123413.
  55. Li, L., Mignone, J., Yang, M., Matic, M., Penman, S., Enikolopov, G., and Hoffman, R. M. (2003) Nestin expression in hair follicle sheath progenitor cells, Proc. Natl. Acad. Sci. USA, 100, 9958-9961, doi: 10.1073/PNAS.1733025100.
  56. Bhatia, B., Singhal, S., Lawrence, J. M., Khaw, P. T., and Limb, G. A. (2009) Distribution of Müller stem cells within the neural retina: evidence for the existence of a ciliary margin-like zone in the adult human eye, Exp. Eye Res., 89, 373-382, doi: 10.1016/J.EXER.2009.04.005.
  57. Bernal, A., and Arranz, L. (2018) Nestin-expressing progenitor cells: function, identity and therapeutic implications, Cell. Mol. Life Sci., 75, 2177-2195, doi: 10.1007/S00018-018-2794-Z.
  58. Sharma, P., Alsharif, S., Fallatah, A., and Chung, B. M. (2019) Intermediate filaments as effectors of cancer development and metastasis: a focus on keratins, vimentin, and nestin, Cells, 8, 497, doi: 10.3390/CELLS8050497.
  59. Szymańska-Chabowska, A., Świątkowski, F., Jankowska-Polańska, B., Mazur, G., and Chabowski, M. (2021) Nestin expression as a diagnostic and prognostic marker in colorectal cancer and other tumors, Clin. Med. Insights Oncol., 15, doi: 10.1177/11795549211038256.
  60. Neradil, J., and Veselska, R. (2015) Nestin as a marker of cancer stem cells, Cancer Sci., 106, 803-811, doi: 10.1111/CAS.12691.
  61. Ishiwata, T., Matsuda, Y., and Naito, Z. (2011) Nestin in gastrointestinal and other cancers: effects on cells and tumor angiogenesis, World J. Gastroenterol., 17, 409-418, doi: 10.3748/WJG.V17.I4.409.
  62. Bhartiya, D. (2017) Pluripotent stem cells in adult tissues: struggling to be acknowledged over two decades, Stem Cell. Rev. Rep., 13, 713-724, doi: 10.1007/S12015-017-9756-Y.
  63. Ratajczak, M. Z., Ratajczak, J., and Kucia, M. (2019) Very small embryonic-like stem cells (VSELs), Circ. Res., 124, 208-210, doi: 10.1161/circresaha.118.314287.
  64. Ratajczak, M. Z., Ratajczak, J., Suszynska, M., Miller, D. M., Kucia, M., and Shin, D. M. (2017) A novel view of the adult stem cell compartment from the perspective of a quiescent population of very small embryonic-like stem cells, Circ. Res., 120, 166-178, doi: 10.1161/CIRCRESAHA.116.309362.
  65. Bhartiya, D., Jha, N., Tripathi, A., and Tripathi, A. (2023) Very small embryonic-like stem cells have the potential to win the three-front war on tissue damage, cancer, and aging, Front. Cell. Dev. Biol., 10, 1061022, doi: 10.3389/FCELL.2022.1061022.
  66. Dezawa, M. (2016) Muse cells provide the pluripotency of mesenchymal stem cells: direct contribution of muse cells to tissue regeneration, Cell Transplant., 25, 849-861, doi: 10.3727/096368916X690881.
  67. Isern, J., García-García, A., Martín, A. M., Arranz, L., Martín-Pérez, D., Torroja, C., Sánchez-Cabo, F., and Méndez-Ferrer, S. (2014) The neural crest is a source of mesenchymal stem cells with specialized hematopoietic stem cell niche function, eLife, 3, 03696, doi: 10.7554/ELIFE.03696.
  68. Gleiberman, A. S., Michurina, T., Encinas, J. M., Roig, J. L., Krasnov, P., Balordi, F., Fishell, G., Rosenfeld, M. G., and Enikolopov, G. (2008) Genetic approaches identify adult pituitary stem cells, Proc. Natl. Acad. Sci. USA, 105, 6332, doi: 10.1073/PNAS.0801644105.
  69. Dumont, N. A., Wang, Y. X., and Rudnicki, M. A. (2015) Intrinsic and extrinsic mechanisms regulating satellite cell function, Development, 142, 1572-1581, doi: 10.1242/DEV.114223.
  70. Neo, W. H., Lie-A-Ling, M., Fadlullah, M. Z. H., and Lacaud, G. (2021) Contributions of embryonic HSC-independent hematopoiesis to organogenesis and the adult hematopoietic system, Front. Cell Dev. Biol., 9, 631699, doi: 10.3389/FCELL.2021.631699.
  71. Shaikh, A., Bhartiya, D., Kapoor, S., and Nimkar, H. (2016) Delineating the effects of 5-fluorouracil and follicle-stimulating hormone on mouse bone marrow stem/progenitor cells, Stem Cell Res. Ther., 7, 59, doi: 10.1186/S13287-016-0311-6.
  72. Anand, S., Bhartiya, D., Sriraman, K., and Mallick, A. (2016) Underlying mechanisms that restore spermatogenesis on transplanting healthy niche cells in busulphan treated mouse testis, Stem Cell Rev. Rep., 12, 682-697, doi: 10.1007/S12015-016-9685-1.
  73. Ratajczak, J., Wysoczynski, M., Zuba-Surma, E., Wan, W., Kucia, M., et al. (2011) Adult murine bone marrow-derived very small embryonic-like stem cells differentiate into the hematopoietic lineage after coculture over OP9 stromal cells, Exp. Hematol., 39, 225-237, doi: 10.1016/j.exphem.2010.10.007.
  74. Sousa-Victor, P., García-Prat, L., and Muñoz-Cánoves, P. (2021) Control of satellite cell function in muscle regeneration and its disruption in ageing, Nat. Rev. Mol. Cell Biol., 23, 204-226, doi: 10.1038/s41580-021-00421-2.
  75. Chen, Z., Guo, Q., Song, G., and Hou, Y. (2022) Molecular regulation of hematopoietic stem cell quiescence, Cell. Mol. Life Sci., 79, 218, doi: 10.1007/S00018-022-04200-W.
  76. Cavallucci, V., Fidaleo, M., and Pani, G. (2016) Neural stem cells and nutrients: poised between quiescence and exhaustion, Trends Endocrinol. Metab., 27, 756-769, doi: 10.1016/J.TEM.2016.06.007.
  77. Ancel, S., Stuelsatz, P., and Feige, J. N. (2021) Muscle stem cell quiescence: controlling stemness by staying asleep, Trends Cell Biol., 31, 556-568, doi: 10.1016/J.TCB.2021.02.006.
  78. Ayyaz, A., Kumar, S., Sangiorgi, B., Ghoshal, B., Gosio, J., Ouladan, S., Fink, M., Barutcu, S., Trcka, D., Shen, J., Chan, K., Wrana, J. L., and Gregorieff, A. (2019) Single-cell transcriptomes of the regenerating intestine reveal a revival stem cell, Nature, 569, 121-125, doi: 10.1038/S41586-019-1154-Y.
  79. Dias, I. B., Bouma, H. R., and Henning, R. H. (2021) Unraveling the big sleep: molecular aspects of stem cell dormancy and hibernation, Front. Physiol., 12, 624950, doi: 10.3389/FPHYS.2021.624950.
  80. Ibrayeva, A., Bay, M., Pu, E., Jörg, D. J., Peng, L., Jun, H., Zhang, N., Aaron, D., Lin, C., Resler, G., Hidalgo, A., Jang, M. H., Simons, B. D., and Bonaguidi, M. A. (2021) Early stem cell aging in the mature brain, Cell Stem Cell, 28, 955-966, doi: 10.1016/J.STEM.2021.03.018.
  81. Choi, K., Park, S. H., Park, S. Y., and Yoon, S. K. (2022) The stem cell quiescence and niche signaling is disturbed in the hair follicle of the hairpoor mouse, an MUHH model mouse, Stem Cell Res. Ther., 13, 211, doi: 10.1186/S13287-022-02898-W.
  82. Chakkalakal, J. V., Jones, K. M., Basson, M. A., and Brack, A. S. (2012) The aged niche disrupts muscle stem cell quiescence, Nature, 490, 355-360, doi: 10.1038/nature11438.
  83. Singh, S., Jakubison, B., and Keller, J. R. (2020) Protection of hematopoietic stem cells from stress-induced exhaustion and aging, Curr. Opin. Hematol., 27, 225-231, doi: 10.1097/MOH.0000000000000586.
  84. Zhang, Z., Zhuang, L., and Lin, C. P. (2019) Roles of microRNAs in establishing and modulating stem cell potential, Int. J. Mol. Sci., 20, 3643, doi: 10.3390/IJMS20153643.
  85. Ren, R., Ocampo, A., Liu, G. H., and Izpisua Belmonte, J. C. (2017) Regulation of stem cell aging by metabolism and epigenetics, Cell Metab., 26, 460-474, doi: 10.1016/J.CMET.2017.07.019.
  86. Wu, X., Dao Thi, V. L., Huang, Y., Billerbeck, E., Saha, D., et al. (2018) Intrinsic immunity shapes viral resistance of stem cells, Cell, 172, 423-438, doi: 10.1016/J.CELL.2017.11.018.
  87. Fuchs, E., and Blau, H. M. (2020) Tissue stem cells: architects of their niches, Cell Stem Cell, 27, 532-556, doi: 10.1016/J.STEM.2020.09.011.
  88. Cancedda, R., and Mastrogiacomo, M. (2023) Transit Amplifying Cells (TACs): a still not fully understood cell population, Front. Bioeng. Biotechnol., 11, 1189225, doi: 10.3389/FBIOE.2023.1189225.
  89. Chertkov, J. L., Drize, N. J., and Gurevitch, O. A. (1983) Hemopoietic stromal precursors in long-term culture of bone marrow: II. Significance of initial packing for creating a hemopoietic microenvironment and maintaining stromal precursors in the culture, Exp. Hematol., 11, 243-248.
  90. Nie, Y., Han, Y.-C., and Zou, Y.-R. (2008) CXCR4 is required for the quiescence of primitive hematopoietic cells, J. Exp. Med., 205, 777-783, doi: 10.1084/jem.20072513.
  91. Greenbaum, A., Hsu, Y. M. S., Day, R. B., Schuettpelz, L. G., Christopher, M. J., Borgerding, J. N., Nagasawa, T., and Link, D. C. (2013) CXCL12 in early mesenchymal progenitors is required for haematopoietic stem-cell maintenance, Nature, 495, 227-230, doi: 10.1038/nature11926.
  92. Boyd, A. L., Campbell, C. J. V., Hopkins, C. I., Fiebig-Comyn, A., Russell, J., Ulemek, J., Foley, R., Leber, B., Xenocostas, A., Collins, T. J., and Bhatia, M. (2014) Niche displacement of human leukemic stem cells uniquely allows their competitive replacement with healthy HSPCs, J. Exp. Med., 211, 1925-1935, doi: 10.1084/jem.20140131.
  93. Lahlil, R., Scrofani, M., Barbet, R., Tancredi, C., Aries, A., and Hénon, P. (2018) VSELs maintain their pluripotency and competence to differentiate after enhanced ex vivo expansion, Stem Cell Rev. Rep., 14, 510-524, doi: 10.1007/S12015-018-9821-1.
  94. Quarta, M., Brett, J. O., DiMarco, R., De Morree, A., Boutet, S. C., Chacon, R., Gibbons, M. C., Garcia, V. A., Su, J., Shrager, J. B., Heilshorn, S., and Rando, T. A. (2016) An artificial niche preserves the quiescence of muscle stem cells and enhances their therapeutic efficacy, Nat. Biotechnol., 34, 752-759, doi: 10.1038/nbt.3576.
  95. Elashry, M. I., Kinde, M., Klymiuk, M. C., Eldaey, A., Wenisch, S., and Arnhold, S. (2022) The effect of hypoxia on myogenic differentiation and multipotency of the skeletal muscle-derived stem cells in mice, Stem Cell Res. Ther., 13, 56, doi: 10.1186/S13287-022-02730-5.
  96. Kann, A. P., Hung, M., and Krauss, R. S. (2021) Cell-cell contact and signaling in the muscle stem cell niche, Curr. Opin. Cell. Biol., 73, 78-83, doi: 10.1016/J.CEB.2021.06.003.
  97. Zamfirescu, A. M., Yatsenko, A. S., and Shcherbata, H. R. (2022) Notch signaling sculpts the stem cell niche, Front. Cell. Dev. Biol., 10, 1027222, doi: 10.3389/FCELL.2022.1027222.
  98. Whitehead, J., Zhang, J., Harvestine, J. N., Kothambawala, A., Liu, G. Yu, and Leach, J. K. (2020) Tunneling nanotubes mediate the expression of senescence markers in mesenchymal stem/stromal cell spheroids, Stem Cells, 38, 80-89, doi: 10.1002/stem.3056.
  99. Jackson, M. V., Morrison, T. J., Doherty, D. F., McAuley, D. F., Matthay, M. A., Kissenpfennig, A., O'Kane, C. M., and Krasnodembskaya, A. D. (2016) Mitochondrial transfer via tunneling nanotubes is an important mechanism by which mesenchymal stem cells enhance macrophage phagocytosis in the in vitro and in vivo models of ARDS, Stem Cells, 34, 2210-2223, doi: 10.1002/STEM.2372.
  100. Yamazaki, S., Ema, H., Karlsson, G., Yamaguchi, T., Miyoshi, H., Shioda, S., Taketo, M. M., Karlsson, S., Iwama, A., and Nakauchi, H. (2011) Nonmyelinating schwann cells maintain hematopoietic stem cell hibernation in the bone marrow niche, Cell, 147, 1146-1158, doi: 10.1016/J.CELL.2011.09.053.
  101. Phinney, D. G., Di Giuseppe, M., Njah, J., Sala, E., Shiva, S., et al. (2015) Mesenchymal stem cells use extracellular vesicles to outsource mitophagy and shuttle microRNAs, Nat. Commun., 6, 8472, doi: 10.1038/ncomms9472.
  102. Toh, W. S., Zhang, B. I. N., Lai, R. C., and Lim, S. K. (2018) Immune regulatory targets of mesenchymal stromal cell exosomes/small extracellular vesicles in tissue regeneration, Cytotherapy, 20, 1419-1426, doi: 10.1016/J.JCYT.2018.09.008.
  103. Kahmini, F. R., and Shahgaldi, S. (2021) Therapeutic potential of mesenchymal stem cell-derived extracellular vesicles as novel cell-free therapy for treatment of autoimmune disorders, Exp. Mol. Pathol., 118, 104566, doi: 10.1016/J.YEXMP.2020.104566.
  104. Nakazaki, M., Lankford, K. L., Yamamoto, H., Mae, Y., and Kocsis, J. D. (2023) Human mesenchymal stem-derived extracellular vesicles improve body growth and motor function following severe spinal cord injury in rat, Clin. Transl. Med., 13, 1284, doi: 10.1002/CTM2.1284.
  105. Ratajczak, M. Z., Liu, R., Marlicz, W., Blogowski, W., Starzynska, T., Wojakowski, W., and Zuba-Surma, E. (2011) Identification of very small embryonic/epiblast-like stem cells (VSELS) circulating in peripheral blood during organ/tissue injuries, Methods Cell Biol., 103, 31-54, doi: 10.1016/B978-0-12-385493-3.00003-6.
  106. Barbato, L., Bocchetti, M., Di Biase, A., and Regad, T. (2019) Cancer stem cells and targeting strategies, Cells, 8, 926, doi: 10.3390/CELLS8080926.
  107. Mantovani, A., Marchesi, F., Malesci, A., Laghi, L., and Allavena, P. (2017) Tumour-associated macrophages as treatment targets in oncology, Nat. Rev. Clin. Oncol., 14, 399-416, doi: 10.1038/nrclinonc.2016.217.
  108. Rollan, M. P., Cabrera, R., and Schwartz, R. A. (2022) Current knowledge of immunosuppression as a risk factor for skin cancer development, Crit. Rev. Oncol. Hematol., 177, 103754, doi: 10.1016/j.critrevonc.2022.103754.
  109. Dugué, P. A., Rebolj, M., Garred, P., and Lynge, E. (2013) Immunosuppression and risk of cervical cancer, Expert Rev. Anticancer Ther., 13, 29-42, doi: 10.1586/ERA.12.159.
  110. You, Y., Li, Y., Li, M., Lei, M., Wu, M., Qu, Y., Yuan, Y., Chen, T., and Jiang, H. (2018) Ovarian cancer stem cells promote tumour immune privilege and invasion via CCL5 and regulatory T cells, Clin. Exp. Immunol., 191, 60-73, doi: 10.1111/CEI.13044.
  111. Baldominos, P., Barbera-Mourelle, A., Barreiro, O., Huang, Y., Wight, A., et al. (2022) Quiescent cancer cells resist T cell attack by forming an immunosuppressive niche, Cell, 185, 1694-1708, doi: 10.1016/j.cell.2022.03.033.
  112. Lebeau, G., Ah-Pine, F., Daniel, M., Bedoui, Y., Vagner, D., Frumence, E., and Gasque, P. (2022) Perivascular mesenchymal stem/stromal cells, an immune privileged niche for viruses? Int. J. Mol. Sci., 23, 8038, doi: 10.3390/IJMS23148038.
  113. Theofilopoulos, A. N., Kono, D. H., and Baccala, R. (2017) The Multiple pathways to autoimmunity, Nat. Immunol., 18, 716-724, doi: 10.1038/NI.3731.
  114. Legoux, F. P., Lim, J. B., Cauley, A. W., Dikiy, S., Ertelt, J., Mariani, T. J., Sparwasser, T., Way, S. S., and Moon, J. J. (2015) CD4+ T cell tolerance to tissue-restricted self antigens is mediated by antigen-specific regulatory T Cells rather than deletion, Immunity, 43, 896-908, doi: 10.1016/J.IMMUNI.2015.10.011.
  115. Sergeant, E., Buysse, M., Devos, T., and Sprangers, B. (2021) Multipotent mesenchymal stromal cells in kidney transplant recipients: the next big thing? Blood Rev., 45, 100718, doi: 10.1016/J.BLRE.2020.100718.
  116. López-García, L., and Castro-Manrreza, M. E. (2021) TNF-α and IFN-γ participate in improving the immunoregulatory capacity of mesenchymal stem/stromal cells: importance of cell-cell contact and extracellular vesicles, Int. J. Mol. Sci., 22, 9531, doi: 10.3390/IJMS22179531.
  117. Blokzijl, F., De Ligt, J., Jager, M., Sasselli, V., Roerink, S., et al. (2016) Tissue-specific mutation accumulation in human adult stem cells during life, Nature, 538, 260-264, doi: 10.1038/nature19768.
  118. Cooke, J. P. (2019) Inflammation and its role in regeneration and repair, Circ. Res., 124, 1166-1168, doi: 10.1161/CIRCRESAHA.118.314669.
  119. Vannella, K. M., and Wynn, T. A. (2017) Mechanisms of organ injury and repair by macrophages, Annu. Rev. Physiol., 79, 593-617, doi: 10.1146/annurev-physiol-022516-034356.
  120. Zhang, R., Xu, K., Shao, Y., Sun, Y., Saredy, J., et al. (2021) Tissue Treg secretomes and transcription factors shared with stem cells contribute to a Treg niche to maintain Treg-ness with 80% innate immune pathways, and functions of immunosuppression and tissue repair, Front. Immunol., 11, 632239, doi: 10.3389/FIMMU.2020.632239.
  121. Cho, I., Lui, P. P., and Ali, N. (2020) Treg regulation of the epithelial stem cell lineage, J. Immunol. Regen. Med., 8, 100028, doi: 10.1016/J.REGEN.2020.100028.
  122. Li, J., Tan, J., Martino, M. M., and Lui, K. O. (2018) Regulatory T-cells: potential regulator of tissue repair and regeneration, Front. Immunol., 9, 585, doi: 10.3389/FIMMU.2018.00585.
  123. Liu, J., Sato, C., Cerletti, M., and Wagers, A. (2010) Notch signaling in the regulation of stem cell self-renewal and differentiation, Curr. Top. Dev. Biol., 92, 367-409, doi: 10.1016/S0070-2153(10)92012-7.
  124. Ali, N., Zirak, B., Rodriguez, R. S., Pauli, M. L., Truong, H. A., et al. (2017) Regulatory T cells in skin facilitate epithelial stem cell differentiation, Cell, 169, 1119-1129, doi: 10.1016/J.CELL.2017.05.002.
  125. Golub, R. (2021) The Notch signaling pathway involvement in innate lymphoid cell biology, Biomed. J., 44, 133-143, doi: 10.1016/J.BJ.2020.12.004.
  126. Meng, J., Jiang, Y.-Z., Zhao, S., Tao, Y., Zhang, T., et al. (2022) Tumor-derived Jagged1 promotes cancer progression through immune evasion, Cell Rep., 38, 110492, doi: 10.1016/J.CELREP.2022.110492.
  127. Chazaud, B. (2020) Inflammation and skeletal muscle regeneration: leave it to the macrophages! Trends Immunol., 41, 481-492, doi: 10.1016/J.IT.2020.04.006.
  128. Oishi, Y., and Manabe, I. (2018) Macrophages in inflammation, repair and regeneration, Int. Immunol., 30, 511-528, doi: 10.1093/INTIMM/DXY054.
  129. Velissaris, D., Zareifopoulos, N., Lagadinou, M., Platanaki, C., Tsiotsios, K., Stavridis, E. L., Kasartzian, D. I., Pierrakos, C., and Karamouzos, V. (2021) Procalcitonin and sepsis in the emergency department: an update, Eur. Rev. Med. Pharmacol. Sci., 25, 466-479, doi: 10.26355/EURREV_202101_24416.
  130. Lombardo, E., and Delarosa, O. (2010) Modulation of adult mesenchymal stem cells activity by toll-like receptors: implications on therapeutic potential, Mediators Inflamm., 2010, 865601, doi: 10.1155/2010/865601.
  131. Raicevic, G., Rouas, R., Najar, M., Stordeur, P., Id Boufker, H., Bron, D., Martiat, P., Goldman, M., Nevessignsky, M. T., and Lagneaux, L. (2010) Inflammation modifies the pattern and the function of Toll-like receptors expressed by human mesenchymal stromal cells, Hum. Immunol., 71, 235-244, doi: 10.1016/J.HUMIMM.2009.12.005.
  132. Wu, Q., You, L., Nepovimova, E., Heger, Z., Wu, W., Kuca, K., and Adam, V. (2022) Hypoxia-inducible factors: master regulators of hypoxic tumor immune escape, J. Hematol. Oncol., 15, 77, doi: 10.1186/S13045-022-01292-6.
  133. Newman, H., Shih, Y. V., and Varghese, S. (2021) Resolution of inflammation in bone regeneration: from understandings to therapeutic applications, Biomaterials, 277, 121114, doi: 10.1016/j.biomaterials.2021.121114.
  134. Song, X., Zhang, Y., Zhang, L., Song, W., and Shi, L. (2018) Hypoxia enhances indoleamine 2,3-dioxygenase production in dendritic cells, Oncotarget, 9, 11572-11580, doi: 10.18632/ONCOTARGET.24098.
  135. Matheakakis, A., Batsali, A., Papadaki, H. A., and Pontikoglou, C. G. (2021) Therapeutic implications of mesenchymal stromal cells and their extracellular vesicles in autoimmune diseases: from biology to clinical applications, Int. J. Mol. Sci., 22, 10132, doi: 10.3390/IJMS221810132.
  136. Petinati, N., Kapranov, N., Davydova, Y., Bigildeev, A., Pshenichnikova, O., Karpenko, D., Drize, N., Kuzmina, L., Parovichnikova, E., and Savchenko, V. (2020) Immunophenotypic characteristics of multipotent mesenchymal stromal cells that affect the efficacy of their use in the prevention of acute graft vs host disease, World J. Stem Cells, 12, 1377-1395, doi: 10.4252/WJSC.V12.I11.1377.
  137. Ara, T., and Hashimoto, D. (2021) Novel insights into the mechanism of GVHD-induced tissue damage, Front. Immunol., 12, 713631, doi: 10.3389/fimmu.2021.713631.
  138. Proics, E., David, M., Mojibian, M., Speck, M., Lounnas-Mourey, N., et al. (2023) Preclinical assessment of antigen-specific chimeric antigen receptor regulatory t cells for use in solid organ transplantation, Gene Ther., 30, 309-322, doi: 10.1038/S41434-022-00358-X.
  139. Alanazi, R. F., Alhwity, B. S., Almahlawi, R. M., Alatawi, B. D., Albalawi, S. A., Albalawi, R. A., Albalawi, A. A., Abdel-Maksoud, M. S., and Elsherbiny, N. (2023) Multilineage differentiating stress enduring (Muse) cells: a new era of stem cell-based therapy, Cells, 12, 1676, doi: 10.3390/cells12131676.
  140. Kushioka, J., Chow, S. K. H., Toya, M., Tsubosaka, M., Shen, H., Gao, Q., Li, X., Zhang, N., and Goodman, S. B. (2023) Bone regeneration in inflammation with aging and cell-based immunomodulatory therapy, Inflamm. Regen., 43, 29, doi: 10.1186/S41232-023-00279-1.
  141. Akhbariyoon, H., Azizpour, Y., Esfahani, M. F., Firoozabad, M. S. M., Rad, M. R., Esfahani, K. S., Khoshavi, N., Karimi, N., Shirinisaz, A., Abedi, F., Rad, M. R., and Sharifi, P. (2021) Immune checkpoint inhibition for the treatment of cancers: an update and critical review of ongoing clinical trials, Clin. Immunol., 232, 108873, doi: 10.1016/J.CLIM.2021.108873.
  142. Kong, X. (2020) Discovery of new immune checkpoints: family grows up, Adv. Exp. Med. Biol., 1248, 61-82, doi: 10.1007/978-981-15-3266-5_4.

© Russian Academy of Sciences, 2023

Осы сайт cookie-файлдарды пайдаланады

Біздің сайтты пайдалануды жалғастыра отырып, сіз сайттың дұрыс жұмыс істеуін қамтамасыз ететін cookie файлдарын өңдеуге келісім бересіз.< / br>< / br>cookie файлдары туралы< / a>