Пептидные носители как средства доставки терапевтических нуклеиновых кислот. Механизмы и потенциал применения в медицине

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

В настоящее время разрабатывается значительное количество лекарственных и профилактических средств, содержащих терапевтические нуклеиновые кислоты, для лечения онкологических, воспалительных, инфекционных заболеваний, а также заболеваний, связанных с нарушением обмена веществ. Растёт число одобренных к использованию подобных препаратов, что демонстрирует перспективность генной терапии. Свой биологический эффект терапевтические нуклеиновые кислоты реализуют в цитоплазме клетки, при этом плазматическая мембрана является основным препятствием для их внутриклеточной доставки. Поэтому при разработке подобных препаратов зачастую используют специально созданные носители. Оптимальный носитель должен не только обеспечивать интернализацию нуклеиновых кислот, но и быть малотоксичным, стабильным, а также несложным и незатратным в производстве. Всем этим требованиям соответствуют так называемые проникающие пептиды (СРР), которые зарекомендовали себя как эффективные и малотоксичные носители нуклеиновых кислот. CPP представляют собой основные пептиды с положительным зарядом при физиологическом значении pH, которые способны формировать наноструктуры с отрицательно заряженными нуклеиновыми кислотами. Многочисленные доклинические исследования, в которых CPP использовали в роли носителя, показали многообещающие результаты, что в отдельных случаях обеспечило успешное прохождение клинических испытаний и внедрение препарата в медицинскую практику. В данном обзоре мы рассматриваем многообразие терапевтических нуклеиновых кислот, а также обобщаем опыт использования СРР для их внутриклеточной доставки. Кроме того, обсуждается классификация и механизмы поглощения CPP клетками, понимание которых позволит ускорить разработку новых генно-терапевтических лекарственные средств.

Об авторах

Е. Д Тимотиевич

ФГБУ «ГНЦ Институт иммунологии» ФМБА России

Email: ed0594@yandex.ru
115522 Москва, Россия

И. П Шиловский

ФГБУ «ГНЦ Институт иммунологии» ФМБА России

115522 Москва, Россия

М. Р Хаитов

ФГБУ «ГНЦ Институт иммунологии» ФМБА России

115522 Москва, Россия

Список литературы

  1. Chaudhary, N., Weissman, D., and Whitehead, K. A. (2021) mRNA vaccines for infectious diseases: principles, delivery and clinical translation, Nat. Rev. Drug Discov., 20, 817-838, doi: 10.1038/S41573-021-00283-5.
  2. Kulkarni, J. A., Witzigmann, D., Thomson, S. B., Chen, S., Leavitt, B. R., Cullis, P. R., and van der Meel, R. (2021) The current landscape of nucleic acid therapeutics, Nat. Nanotechnol., 16, 630-643, doi: 10.1038/s41565-021-00898-0.
  3. Talap, J., Zhao, J., Shen, M., Song, Z., Zhou, H., Kang, Y., Sun, L., Yu, L., Zeng, S., and Cai, S. (2021) Recent advances in therapeutic nucleic acids and their analytical methods, J. Pharm. Biomed. Anal., 206, 114368, doi: 10.1016/J.JPBA.2021.114368.
  4. Wang, Y., Zhang, R., Tang, L., and Yang, L. (2022) Nonviral delivery systems of mRNA vaccines for cancer gene therapy, Pharmaceutics, 14, 512, doi: 10.3390/PHARMACEUTICS14030512.
  5. Shirley, J. L., de Jong, Y. P., Terhorst, C., and Herzog, R. W. (2020) Immune responses to viral gene therapy vectors, Mol. Ther., 28, 709-722, doi: 10.1016/J.YMTHE.2020.01.001.
  6. Yan, Y., Liu, X. Y., Lu, A., Wang, X. Y., Jiang, L. X., and Wang, J. C. (2022) Non-viral vectors for RNA delivery, J. Control. Rel., 342, 241, doi: 10.1016/J.JCONREL.2022.01.008.
  7. Zou, Z., Shen, Q., Pang, Y., Li, X., Chen, Y., Wang, X., Luo, X., Wu, Z., Bao, Z., Zhang, J., Liang, J., Kong, L., Yan, L., Xiong, L., Zhu, T., Yuan, S., Wang, M., Cai, K., Yao, Y., Wu, J., Jiang, Y., Liu, H., Liu, J., Zhou, Y., Dong, Q., Wang, W., Zhu, K., Li, L., Lou, Y., Wang, H., Li, Y., and Lin, H. (2019) The synthesized transporter K16APoE enabled the therapeutic HAYED peptide to cross the blood-brain barrier and remove excess iron and radicals in the brain, thus easing Alzheimer's disease, Drug Deliv. Transl. Res., 9, 394-403, doi: 10.1007/s13346-018-0579-4.
  8. Matijass, M., and Neundorf, I. (2021) Cell-penetrating peptides as part of therapeutics used in cancer research, Med. Drug Discov., 10, 100092, doi: 10.1016/j.medidd.2021.100092.
  9. Derakhshankhah, H., and Jafari, S. (2018) Cell penetrating peptides: a concise review with emphasis on biomedical applications, Biomed. Pharmacother., 108, 1090-1096, doi: 10.1016/j.biopha.2018.09.097.
  10. Kang, Y. C., Son, M., Kang, S., Im, S., Piao, Y., Lim, K. S., Song, M. Y., Park, K. S., Kim, Y. H., and Pak, Y. K. (2018) Cell-penetrating artificial mitochondria-targeting peptide-conjugated metallothionein 1A alleviates mitochondrial damage in Parkinson's disease models, Exp. Mol. Med., 50, 1-13, doi: 10.1038/s12276-018-0124-z.
  11. Xie, J., Bi, Y., Zhang, H., Dong, S., Teng, L., Lee, R. J., and Yang, Z. (2020) Cell-penetrating peptides in diagnosis and treatment of human diseases: from preclinical research to clinical application, Front. Pharmacol., 11, 697, doi: 10.3389/fphar.2020.00697.
  12. Lopuszynski, J., Agrawal, V., and Zahid, M. (2022) Tissue-specific cell penetrating peptides for targeted delivery of small interfering RNAs, Med. Res. Arch., doi: 10.18103/mra.v10i8.2998.
  13. Nh�n, N. T. T., Maidana, D. E., and Yamada, K. H. (2023) Ocular delivery of therapeutic agents by cell-penetrating peptides, Cells, 12, 1071, doi: 10.3390/cells12071071.
  14. Zorko, M., Jones, S., and Langel, �. (2022) Cell-penetrating peptides in protein mimicry and cancer therapeutics, Adv. Drug Deliv. Rev., 180, 114044, doi: 10.1016/J.ADDR.2021.114044.
  15. Jiang, J. (2021) Cell-penetrating peptide-mediated nanovaccine delivery, Curr. Drug Targets, 22, 896-912, doi: 10.2174/1389450122666210203193225.
  16. Delcroix, M., and Riley, L. W. (2010) Cell-penetrating peptides for antiviral drug development, Pharmaceuticals, 3, 448-470, doi: 10.3390/ph3030448.
  17. Khaitov, M., Nikonova, A., Kofiadi, I., Shilovskiy, I., Smirnov, V., Elisytina, O., Maerle, A., Shatilov, A., Shatilova, A., Andreev, S., Sergeev, I., Trofimov, D., Latysheva, T., Ilyna, N., Martynov, A., Rabdano, S., Ruzanova, E., Savelev, N., Pletiukhina, I., Safi, A., Ratnikov, V., Gorelov, V., Kaschenko, V., Kucherenko, N., Umarova, I., Moskaleva, S., Fabrichnikov, S., Zuev, O., Pavlov, N., Kruchko, D., Berzin, I., Goryachev, D., Merkulov, V., Shipulin, G., Udin, S., Trukhin, V., Valenta, R., and Skvortsova, V. (2023) Treatment of COVID-19 patients with a SARS-CoV-2-specific siRNA-peptide dendrimer formulation, Allergy, 78, 1639-1653, doi: 10.1111/ALL.15663.
  18. Sridharan, K., and Gogtay, N. J. (2016) Therapeutic nucleic acids: current clinical status, Br. J. Clin. Pharmacol., 82, 659-672, doi: 10.1111/BCP.12987.
  19. Davies-Sala, C., Soler-Bistu�, A., Bonomo, R. A., Zorreguieta, A., and Tolmasky, M. E. (2015) External guide sequence technology: a path to development of novel antimicrobial therapeutics, Ann. N. Y. Acad. Sci., 1354, 98-110, doi: 10.1111/NYAS.12755.
  20. Gadgil, H., and Jarrett, H. W. (2002) Oligonucleotide trapping method for purification of transcription factors, J. Chromatogr. A, 966, 99-110, doi: 10.1016/s0021-9673(02)00738-0.
  21. Vickers, T. A., Sabripour, M., and Crooke, S. T. (2011) U1 adaptors result in reduction of multiple pre-mRNA species principally by sequestering U1snRNP, Nucleic Acids Res., 39, e71, doi: 10.1093/NAR/GKR150.
  22. Agrawal, N., Dasaradhi, P. V. N., Mohmmed, A., Malhotra, P., Bhatnagar, R. K., and Mukherjee, S. K. (2003) RNA interference: biology, mechanism, and applications, Microbiol. Mol. Biol. Rev., 67, 657, doi: 10.1128/MMBR.67.4.657-685.2003.
  23. Hammond, S. M., Boettcher, S., Caudy, A. A., Kobayashi, R., and Hannon, G. J. (2001) Argonaute 2, a link between genetic and biochemical analyses of RNAi, Science, 293, 1146-1150, doi: 10.1126/science.1064023.
  24. Gangopadhyay, S., and Gore, K. R. (2022) Advances in siRNA therapeutics and synergistic effect on siRNA activity using emerging dual ribose modifications, RNA Biol., 19, 452-467, doi: 10.1080/15476286.2022.2052641.
  25. Wan-Hin Hui, R., Mak, L. Y., Seto, W. K., and Yuen, M. F. (2022) RNA interference as a novel treatment strategy for chronic hepatitis B infection, Clin. Mol. Hepatol., 28, 408, doi: 10.3350/CMH.2022.0012.
  26. Ray, K. K., Wright, R. S., Kallend, D., Koenig, W., Leiter, L. A., Raal, F. J., Bisch, J. A., Richardson, T., Jaros, M., Wijngaard, P. L. J., and Kastelein, J. J. P. (2020) Two phase 3 trials of inclisiran in patients with elevated LDL cholesterol, New Eng. J. Med., 382, 1507-1519, doi: 10.1056/nejmoa1912387.
  27. Zhang, M. M., Bahal, R., Rasmussen, T. P., Manautou, J. E., and Zhong, X.-Bo (2021) The growth of siRNA-based therapeutics: updated clinical studies, Biochem. Pharmacol., 189, 114432, doi: 10.1016/J.BCP.2021.114432.
  28. Khaitov, M., Nikonova, A., Shilovskiy, I., Kozhikhova, K., Kofiadi, I., Vishnyakova, L., Nikolskii, A., Gattinger, P., Kovchina, V., Barvinskaia, E., Yumashev, K., Smirnov, V., Maerle, A., Kozlov, I., Shatilov, A., Timofeeva, A., Andreev, S., Koloskova, O., Kuznetsova, N., Vasina, D., Nikiforova, M., Rybalkin, S., Sergeev, I., Trofimov, D., Martynov, A., Berzin, I., Gushchin, V., Kovalchuk, A., Borisevich, S., Valenta, R., Khaitov, R., and Skvortsova, V. (2021) Silencing of SARS-CoV-2 with modified siRNA-peptide dendrimer formulation, Allergy, 76, 2840-2854, doi: 10.1111/all.14850.
  29. Pardi, N., Hogan, M. J., and Weissman, D. (2020) Recent advances in mRNA vaccine technology, Curr. Opin. Immunol., 65, 14-20, doi: 10.1016/J.COI.2020.01.008.
  30. Ledford, H. (2020) Moderna COVID vaccine becomes second to get US authorization, Nature, doi: 10.1038/D41586-020-03593-7.
  31. Blind, J. E., McLeod, E. N., Brown, A., Patel, H., and Ghosh, S. (2020) Biosafety practices for in vivo viral-mediated gene therapy in the health care setting, Appl. Biosaf., 25, 194, doi: 10.1177/1535676020942195.
  32. Roberts, T. C., Langer, R., and Wood, M. J. A. (2020) Advances in oligonucleotide drug delivery, Nat. Rev. Drug Discov., 19, 673, doi: 10.1038/S41573-020-0075-7.
  33. Chen, H., Ren, X., Xu, S., Zhang, D., and Han, T. (2022) Optimization of lipid nanoformulations for effective mRNA delivery, Int. J. Nanomed., 17, 2893-2905, doi: 10.2147/IJN.S363990.
  34. Paunovska, K., Loughrey, D., and Dahlman, J. E. (2022) Drug delivery systems for RNA therapeutics, Nat. Rev. Genet., 23, 265, doi: 10.1038/S41576-021-00439-4.
  35. Khan, M. M., Filipczak, N., and Torchilin, V. P. (2021) Cell penetrating peptides: A versatile vector for co-delivery of drug and genes in cancer, J. Controll. Rel., 330, 1220-1228, doi: 10.1016/j.jconrel.2020.11.028.
  36. Taylor, R. E., and Zahid, M. (2020) Cell penetrating peptides, novel vectors for gene therapy, Pharmaceutics, 12, 225, doi: 10.3390/pharmaceutics12030225.
  37. Falato, L., Gestin, M., and Langel, �. (2021) Cell-penetrating peptides delivering siRNAs: An overview, Methods Mol. Biol., 2282, 329-352, doi: 10.1007/978-1-0716-1298-9_18.
  38. R�dis-Baptista, G. (2021) Cell-penetrating peptides derived from animal venoms and toxins, Toxins (Basel), 13, 147, doi: 10.3390/toxins13020147.
  39. Zorko, M., and Langel, �. (2022) Cell-penetrating peptides, Methods Mol. Biol., 2383, 3-32, doi: 10.1007/978-1-0716-1752-6_1.
  40. Ruseska, I., and Zimmer, A. (2020) Internalization mechanisms of cell-penetrating peptides, Beilstein J. Nanotechnol., 11, 101-123, doi: 10.3762/bjnano.11.10.
  41. Holm, T., Andaloussi, S. El, and Langel, �. (2011) Comparison of CPP uptake methods, Methods Mol. Biol., 683, 207-217, doi: 10.1007/978-1-60761-919-2_15.
  42. Li, Z., Zhang, Y., Zhu, D., Li, S., Yu, X., Zhao, Y., Ouyang, X., Xie, Z., and Li, L. (2017) Transporting carriers for intracellular targeting delivery via non-endocytic uptake pathways, Drug Deliv., 24, 45-55, doi: 10.1080/10717544.2017.1391889.
  43. Sadeghian, I., Heidari, R., Sadeghian, S., Raee, M. J., and Negahdaripour, M. (2022) Potential of cell-penetrating peptides (CPPs) in delivery of antiviral therapeutics and vaccines, Eur. J. Pharm. Sci., 169, 106094, doi: 10.1016/J.EJPS.2021.106094.
  44. Trabulo, S., Cardoso, A. L., Mano, M., and de Lima, M. C. P. (2010) Cell-penetrating peptides - mechanisms of cellular uptake and generation of delivery systems, Pharmaceuticals, 3, 961-993, doi: 10.3390/PH3040961.
  45. Nath, A. (2021) Prediction for understanding the effectiveness of antiviral peptides, Comput. Biol. Chem., 95, 107588, doi: 10.1016/j.compbiolchem.2021.107588.
  46. Kaksonen, M., and Roux, A. (2018) Mechanisms of clathrin-mediated endocytosis, Nat. Rev. Mol. Cell Biol., 19, 313-326, doi: 10.1038/NRM.2017.132.
  47. Kawaguchi, Y., Takeuchi, T., Kuwata, K., Chiba, J., Hatanaka, Y., Nakase, I., and Futaki, S. (2016) Syndecan-4 is a receptor for clathrin-mediated endocytosis of arginine-rich cell-penetrating peptides, Bioconjug. Chem., 27, 1119-1130, doi: 10.1021/ACS.BIOCONJCHEM.6B00082.
  48. Futaki, S., and Nakase, I. (2017) Cell-surface interactions on arginine-rich cell-penetrating peptides allow for multiplex modes of internalization, Acc. Chem. Res., 50, 2449-2456, doi: 10.1021/ACS.ACCOUNTS.7B00221.
  49. Pujals, S., and Giralt, E. (2008) Proline-rich, amphipathic cell-penetrating peptides, Adv. Drug Deliv. Rev., 60, 473-484, doi: 10.1016/J.ADDR.2007.09.012.
  50. S��lik, P., Padari, K., Niinep, A., Lorents, A., Hansen, M., Jokitalo, E., Langel, �., and Pooga, M. (2009) Protein delivery with transportans is mediated by caveolae rather than flotillin-dependent pathways, Bioconjug. Chem., 20, 877-887, doi: 10.1021/BC800416F.
  51. Taylor, B. N., Mehta, R. R., Yamada, T., Lekmine, F., Christov, K., Chakrabarty, A. M., Green, A., Bratescu, L., Shilkaitis, A., Beattie, C. W., and das Gupta, T. K. (2009) Noncationic peptides obtained from azurin preferentially enter cancer cells, Cancer Res., 69, 537-546, doi: 10.1158/0008-5472.can-08-2932.
  52. Ye, J., Pei, X., Cui, H., Yu, Z., Lee, H., Wang, J., Wang, X., Sun, L., He, H., and Yang, V. C. (2018) Cellular uptake mechanism and comparative in vitro cytotoxicity studies of monomeric LMWP-siRNA conjugate, J. Industr. Engineer. Chem., 63, 103-111, doi: 10.1016/J.JIEC.2018.02.005.
  53. Yang, S. T., Zaitseva, E., Chernomordik, L. V., and Melikov, K. (2010) Cell-penetrating peptide induces leaky fusion of liposomes containing late endosome-specific anionic lipid, Biophys. J., 99, 2525-2533, doi: 10.1016/J.BPJ.2010.08.029.
  54. Cerrato, C. P., and Langel, �. (2022) An update on cell-penetrating peptides with intracellular organelle targeting, Expert Opin. Drug Deliv., 19, 133-146, doi: 10.1080/17425247.2022.2034784.
  55. Wang, H. Y., Chen, J. X., Sun, Y. X., Deng, J. Z., Li, C., Zhang, X. Z., and Zhuo, R. X. (2011) Construction of cell penetrating peptide vectors with N-terminal stearylated nuclear localization signal for targeted delivery of DNA into the cell nuclei, J. Control Rel., 155, 26-33, doi: 10.1016/J.JCONREL.2010.12.009.
  56. Alkhashrom, S., Kicuntod, J., Stillger, K., L�tzenburg, T., Anzenhofer, C., Neundorf, I., Marschall, M., and Eichler, J. (2022) A peptide inhibitor of the human cytomegalovirus core nuclear egress complex, Pharmaceuticals, 15, 1040, doi: 10.3390/PH15091040.
  57. Huang, S., Zhu, Z., Jia, B., Zhang, W., and Song, J. (2021) Design of acid-activated cell-penetrating peptides with nuclear localization capacity for anticancer drug delivery, J. Pept. Sci., 27, e3354, doi: 10.1002/PSC.3354.
  58. Mueller, J., Kretzschmar, I., Volkmer, R., and Boisguerin, P. (2008) Comparison of cellular uptake using 22 CPPs in 4 different cell lines, Bioconjug. Chem., 19, 2363-2374, doi: 10.1021/BC800194E.
  59. Chiu, Y. L., Ali, A., Chu, C. Y., Cao, H., and Rana, T. M. (2004) Visualizing a correlation between siRNA localization, cellular uptake, and RNAi in living cells, Chem. Biol., 11, 1165-1175, doi: 10.1016/j.chembiol.2004.06.006.
  60. Tai, W., and Gao, X. (2017) Functional peptides for siRNA delivery, Adv. Drug Deliv. Rev., 110-111, 157-168, doi: 10.1016/J.ADDR.2016.08.004.
  61. Wang, F., Wang, Y., Zhang, X., Zhang, W., Guo, S., and Jin, F. (2014) Recent progress of cell-penetrating peptides as new carriers for intracellular cargo delivery, J. Control Rel., 174, 126-136, doi: 10.1016/J.JCONREL.2013.11.020.
  62. Guidotti, G., Brambilla, L., and Rossi, D. (2017) Cell-penetrating peptides: from basic research to clinics, Trends Pharmacol. Sci., 38, 406-424, doi: 10.1016/J.TIPS.2017.01.003.
  63. Crombez, L., Morris, M. C., Dufort, S., Aldrian-Herrada, G., Nguyen, Q., Mc Master, G., Coll, J. L., Heitz, F., and Divita, G. (2009) Targeting cyclin B1 through peptide-based delivery of siRNA prevents tumour growth, Nucleic Acids Res., 37, 4559-4569, doi: 10.1093/NAR/GKP451.
  64. Michiue, H., Eguchi, A., Scadeng, M., and Dowdy, S. F. (2009) Induction of in vivo synthetic lethal RNAi responses to treat glioblastoma, Cancer Biol. Ther., 8, 2304-2311, doi: 10.4161/CBT.8.23.10271.
  65. Zeng, Z., Han, S., Hong, W., Lang, Y., Li, F., Liu, Y., Li, Z., Wu, Y., Li, W., Zhang, X., and Cao, Z. (2016) A Tat-conjugated peptide nucleic acid Tat-PNA-DR inhibits hepatitis B virus replication in vitro and in vivo by targeting LTR direct repeats of HBV RNA, Mol. Ther. Nucleic Acids, 5, e295, doi: 10.1038/MTNA.2016.11.
  66. Moerdyk-Schauwecker, M., Stein, D. A., Eide, K., Blouch, R. E., Bildfell, R., Iversen, P., and Jin, L. (2009) Inhibition of HSV-1 ocular infection with morpholino oligomers targeting ICP0 and ICP27, Antiviral Res., 84, 131-141, doi: 10.1016/J.antiviral.2009.07.020.
  67. Mehrlatifan, S., Mirnurollahi, S. M., Motevalli, F., Rahimi, P., Soleymani, S., and Bolhassani, A. (2016) The structural HCV genes delivered by MPG cell penetrating peptide are directed to enhance immune responses in mice model, Drug Deliv., 23, 2852-2859, doi: 10.3109/10717544.2015.1108375.
  68. Moulton, H. M., Fletcher, S., Neuman, B. W., McClorey, G., Stein, D. A., Abes, S., Wilton, S. D., Buchmeier, M. J., Lebleu, B., and Iversen, P. L. (2007) Cell-penetrating peptide-morpholino conjugates alter pre-mRNA splicing of DMD (Duchenne muscular dystrophy) and inhibit murine coronavirus replication in vivo, Biochem. Soc. Trans., 35, 826-828, doi: 10.1042/BST0350826.
  69. Hosseini, A., Lattanzio, F. A., Samudre, S. S., Disandro, G., Sheppard, J. D., and Williams, P. B. (2012) Efficacy of a phosphorodiamidate morpholino oligomer antisense compound in the inhibition of corneal transplant rejection in a rat cornea transplant model, J. Ocul. Pharmacol. Ther., 28, 194-201, doi: 10.1089/JOP.2011.0135.
  70. Zhang, C., Ren, W., Liu, Q., Tan, Z., Li, J., and Tong, C. (2019) Transportan-derived cell-penetrating peptide delivers siRNA to inhibit replication of influenza virus in vivo, Drug Des. Devel. Ther., 13, 1059-1068, doi: 10.2147/DDDT.S195481.
  71. Yuan, J., Stein, D. A., Lim, T., Qiu, D., Coughlin, S., Liu, Z., Wang, Y., Blouch, R., Moulton, H. M., Iversen, P. L., and Yang, D. (2006) Inhibition of Coxsackievirus B3 in cell cultures and in mice by peptide-conjugated morpholino oligomers targeting the internal ribosome entry site, J. Virol., 80, 11510, doi: 10.1128/JVI.00900-06.
  72. Enterlein, S., Warfield, K. L., Swenson, D. L., Stein, D. A., Smith, J. L., Gamble, C. S., Kroeker, A. D., Iversen, P. L., Bavari, S., and M�hlberger, E. (2006) VP35 knockdown inhibits Ebola virus amplification and protects against lethal infection in mice, Antimicrob. Agents Chemother., 50, 984, doi: 10.1128/AAC.50.3.984-993.2006.
  73. Kozhikhova, K. V., Shilovskiy, I. P., Shatilov, A. A., Timofeeva, A. V., Turetskiy, E. A., Vishniakova, L. I., Nikolskii, A. A., Barvinskaya, E. D., Karthikeyan, S., Smirnov, V. V., Kudlay, D. A., Andreev, S. M., and Khaitov, M. R. (2020) Linear and dendrimeric antiviral peptides: design, chemical synthesis and activity against human respiratory syncytial virus, J. Mater. Chem. B, 8, 2607-2617, doi: 10.1039/c9tb02485a.
  74. Shilovskiy, I., Nikonova, A., Barvinskaia, E., Kaganova, M., Nikolskii, A., Vishnyakova, L., Kovchina, V., Yumashev, K., Korneev, A., Petukhova, O., Kudlay, D., Smirnov, V., Andreev, S., Kozhikhova, K., Shatilov, A., Shatilova, A., Maerle, A., Sergeev, I., Trofimov, D., and Khaitov, M. (2022) Anti-inflammatory effect of siRNAs targeted il-4 and il-13 in a mouse model of allergic rhinitis, Allergy, 77, 2829-2832, doi: 10.1111/ALL.15366.
  75. Nikolskii, A. A., Shilovskiy, I. P., Yumashev, K. V., Vishniakova, L. I., Barvinskaia, E. D., Kovchina, V. I., Korneev, A. V., Turenko, V. N., Kaganova, M. M., Brylina, V. E., Nikonova, A. A., Kozlov, I. B., Kofiadi, I. A., Sergeev, I. V., Maerle, A. V., Petukhova, O. A., Kudlay, D. A., and Khaitov, M. R. (2021) Effect of local suppression of Stat3 gene expression in a mouse model of pulmonary neutrophilic inflammation, Immunologiya, 42, 600-614, doi: 10.33029/0206-4952-2021-42-6-600-614.
  76. Shilovskiy, I., Sundukova, M., Korneev, A., Nikolskii, A., Barvinskaya, E., Kovchina, V., Vishniakova, L., Turenko, V., Yumashev, K., Kaganova, M., Brilina, V., Sergeev, I., Maerle, A., Kudlay, D., Petukhova, O., Khaitov, M. (2022) The mixture of siRNAs targeted to IL-4 and IL-13 genes effectively reduces the airway hyperreactivity and allergic inflammation in a mouse model of asthma, Int. Immunopharmacol., 103, 108432, doi: 10.1016/J.INTIMP.2021.108432.
  77. Stiltner, J., McCandless, K., and Zahid, M. (2021) Cell-penetrating peptides: applications in tumor diagnosis and therapeutics, Pharmaceutics, 13, 890, doi: 10.3390/PHARMACEUTICS13060890.
  78. Abes, R., Arzumanov, A. A., Moulton, H. M., Abes, S., Ivanova, G. D., Iversen, P. L., Gait, M. J., and Lebleu, B. (2007) Cell-penetrating-peptide-based delivery of oligonucleotides: an overview, Biochem. Soc. Trans., 35, 775-779, doi: 10.1042/BST0350775.

© Российская академия наук, 2023

Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах