Retinal-based anion pump from the cyanobacterium Tolypothrix campylonemoides

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

In this work, a functional characterization of TcaR rhodopsin from the cyanobacterium Tolypothrix campylonemoides was obtained. Analysis of the amino acid sequence of TcaR revealed that this protein possesses a TSD motif that differs by only one amino acid from the motif of the known halorodopsin chloride pump TSA. The TcaR protein was expressed in E. coli, purified and incorporated into proteoliposomes and nanodiscs. Functional activity was measured by electric current generation through the planar bilayer lipid membranes (BLMs) with proteoliposomes adsorbed on one membrane surface, as well as by fluorescence using voltage-dependent dye oxonol VI. We have shown that TcaR rhodopsin functions as a powerful anion pump. Our results show that the novel microbial anion transporter TcaR deserves deeper study and may be of interest both for fundamental studies of membrane proteins and as a tool for optogenetics.

Авторлар туралы

T. Rokitskaya

Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University

Email: rokitskaya@belozersky.msu.ru
119991 Moscow, Russia

A. Alekseev

Moscow Institute of Physics and Technology

141701 Dolgoprudny, Moscow Region, Russia

F. Tsybrov

Moscow Institute of Physics and Technology

141701 Dolgoprudny, Moscow Region, Russia

S. Bukhalovich

Moscow Institute of Physics and Technology

141701 Dolgoprudny, Moscow Region, Russia

Y. Antonenko

Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University

Email: antonen@belozersky.msu.ru
119991 Moscow, Russia

V. Gordeliy

Institut de Biologie Structurale (IBS), Universit� Grenoble Alpes, CEA, CNRS

Email: valentin.gordeliy@gmail.com
Grenoble, France

Әдебиет тізімі

  1. Gushchin, I., and Gordeliy, V. (2018) Microbial rhodopsins, Subcell Biochem., 87, 19-56, doi: 10.1007/978-981-10-7757-9_2.
  2. Gomez-Consarnau, L., Raven, J. A., Levine, N. M., Cutter, L. S., Wang, D., Seegers, B., Aristegui, J., Fuhrman, J. A., Gasol, J. M., and Sanudo-Wilhelmy, S. A. (2019) Microbial rhodopsins are major contributors to the solar energy captured in the sea, Sci. Adv., 8, eaaw8855, doi: 10.1126/sciadv.aaw8855.
  3. Spudich, J. L., Sineshchekov, O. A., and Govorunova, E. G. (2014) Mechanism divergence in microbial rhodopsins, Biochim. Biophys. Acta, 1837, 546-552, doi: 10.1016/j.bbabio.2013.06.006.
  4. Mukherjee, S., Hegemann, P., and Broser, M. (2019) Enzymerhodopsins: novel photoregulated catalysts for optogenetics, Curr. Opin. Struct. Biol., 57, 118-126, doi: 10.1016/j.sbi.2019.02.003.
  5. Кирпичников М. П., Островский М. А. (2019) Оптогенетика и зрение, Вестник Российской Академии Наук, 89, 125-130, doi: 10.31857/S0869-5873892125-130.
  6. Luecke, H., Schobert, B., Richter, H. T., Cartailler, J. P., and Lanyi, J. K. (1999) Structure of bacteriorhodopsin at 1.55 A resolution, J. Mol. Biol., 291, 899-911, doi: 10.1006/jmbi.1999.3027.
  7. Das, S., Singh, D., Madduluri, M., Chandrababunaidu, M. M., Gupta, A., Adhikary, S. P., and Tripathy, S. (2015) Draft genome sequence of bioactive-compound-producing cyanobacterium Tolypothrix campylonemoides strain VB511288, Genome Announc., 3, e00226-15, doi: 10.1128/genomeA.00226-15.
  8. Hasemi, T., Kikukawa, T., Watanabe, Y., Aizawa, T., Miyauchi, S., Kamo, N., and Demura, M. (2019) Photochemical study of a cyanobacterial chloride-ion pumping rhodopsin, Biochim. Biophys. Acta, 1860, 136-146, doi: 10.1016/j.bbabio.2018.12.001.
  9. Yun, J. H., Park, J. H., Jin, Z., Ohki, M., Wang, Y., Lupala, C. S., Liu, H., Park, S. Y., and Lee, W. (2020) Structure-based functional modification study of a cyanobacterial chloride pump for transporting multiple anions, J. Mol. Biol., 432, 5273-5286, doi: 10.3390/ma13143061.
  10. Astashkin, R., Kovalev, K., Bukhdruker, S., Vaganova, S., Kuzmin, A., Alekseev, A., Balandin, T., Zabelskii, D., Gushchin, I., Royant, A., Volkov, D., Bourenkov, G., Koonin, E., Engelhard, M., Bamberg, E., and Gordeliy, V. (2022) Structural insights into light-driven anion pumping in cyanobacteria, Nat. Commun., 13, 6460, doi: 10.1038/s41467-022-34019-9.
  11. Oesterhelt, D., Tittor, J., and Bamberg, E. (1992) A unifying concept for ion translocation by retinal proteins, J. Bioenerg. Biomembr., 24, 181-191, doi: 10.1007/BF00762676.
  12. Drachev, L. A., Jasaitis, A. A., Kaulen, A. D., Kondrashin, A. A., Liberman, E. A., Nemecek, I. B., Ostroumov, S. A., Semenov, A. Yu., and Skulachev, V. P. (1974) Direct measurement of electric current generation by cytochrome oxidase, H+-ATPase and bacteriorhodopsin, Nature, 249, 321-324, doi: 10.1038/249321a0.
  13. Drachev, L. A., Frolov, V. N., Kaulen, A. D., Liberman, E. A., Ostroumov, S. A., Plakunova, V. G., Semenov, A. Y., and Skulachev, V. P. (1976) Reconstitution of biological molecular generators of electric current. Bacteriorhodopsin, J. Biol. Chem., 251, 7059-7065.
  14. Bamberg, E., Apell, H. J., Dencher, N. A., Sperling, W., Stieve, H., and Lauger, P. (1979) Photocurrents generated by bacteriorhodopsin on planar bilayer membranes, Biophys. Struct. Mech., 5, 277-292, doi: 10.1007/BF02426663.
  15. Bamberg, E., Butt, H. J., Eisenrauch, A., and Fendler, K. (1993) Charge transport of ion pumps on lipid bilayer membranes, Q. Rev. Biophys., 26, 1-25, doi: 10.1017/s0033583500003942.
  16. Friedrich, T., Geibel, S., Kalmbach, R., Chizhov, I., Ataka, K., Heberle, J., Engelhard, M., and Bamberg, E. (2002) Proteorhodopsin is a light-driven proton pump with variable vectoriality, J. Mol. Biol., 321, 821-838, doi: 10.1016/s0022-2836(02)00696-4.
  17. Shevchenko, V., Mager, T., Kovalev, K., Polovinkin, V., Alekseev, A., Juettner, J., Chizhov, I., Bamann, C., Vavourakis, C., Ghai, R., Gushchin, I., Borshchevskiy, V., Rogachev, A., Melnikov, I., Popov, A., Balandin, T., Rodriguez-Valera, F., Manstein, D. J., Bueldt, G., Bamberg, E., and Gordeliy, V. (2017) Inward H+ pump xenorhodopsin: mechanism and alternative optogenetic approach, Sci. Adv., 3, e1603187, doi: 10.1126/sciadv.1603187.
  18. Schuler, M. A., Denisov, I. G., and Sligar, S. G. (2013) Nanodiscs as a new tool to examine lipid-protein interactions, Methods Mol. Biol., 974, 415-433, doi: 10.1007/978-1-62703-275-9_18.
  19. Rokitskaya, T. I., Maliar, N. L., Siletsky, S. A., Gordeliy, V., and Antonenko, Y. N. (2022) Electrophysiological characterization of microbial rhodopsin transport properties: electrometric and DpH measurements using planar lipid bilayer, collodion film, and fluorescent probe approaches, Methods Mol. Biol., 2501, 259-275, doi: 10.1007/978-1-0716-2329-9_12.
  20. Rokitskaya, T. I., Maliar, N., Kovalev, K. V., Volkov, O., Gordeliy, V. I., and Antonenko, Y. N. (2021) Rhodopsin channel activity can be evaluated by measuring the photocurrent voltage dependence in planar bilayer lipid membranes, Biochemistry (Moscow), 86, 409-419, doi: 10.1134/S0006297921040039.
  21. Selwyn, M. J., Dawson, A. P., Stockdale, M., and Gains, N. (1970) Chloride-hydroxide exchange across mitochondrial, erythrocyte and artificial lipid membranes mediated by trialkyl-and triphenyltin compounds, Eur. J. Biochem., 14, 120-126, doi: 10.1111/j.1432-1033.1970.tb00268.x.
  22. Antonenko, Y. N. (1990) Electrically silent anion transport through bilayer lipid membrane induced by tributyltin and triethyllead, J. Membr. Biol., 113, 109-113, doi: 10.1007/BF01872884.
  23. Sato, T., Konno, H., Tanaka, Y., Kataoka, T., Nagai, K., Wasserman, H. H., and Ohkuma, S. (1998) Prodigiosins as a new group of H+/Cl- symporters that uncouple proton translocators, J. Biol. Chem., 273, 21455-21462, doi: 10.1074/jbc.273.34.21455.
  24. Bamberg, E., Hegemann, P., and Oesterhelt, D. (1984) Reconstitution of the light-driven electrogenic ion-pump halorhodopsin in black lipid membranes, Biochim. Biophys. Acta, 773, 53-60, doi: 10.1016/0005-2736(84)90549-2.
  25. Bamberg, E., Tittor, J., and Oesterhelt, D. (1993) Light-driven proton or chloride pumping by halorhodopsin, Proc. Natl. Acad. Sci. USA, 90, 639-643, doi: 10.1073/pnas.90.2.639.
  26. Antonenko, Y. N., Denisov, S. S., Silachev, D. N., Khailova, L. S., Jankauskas, S. S., Rokitskaya, T. I., Danilina, T. I., Kotova, E. A., Korshunova, G. A., Plotnikov, E. Y., and Zorov, D. B. (2016) A long-linker conjugate of fluorescein and triphenylphosphonium as mitochondria-targeted uncoupler and fluorescent neuro- and nephroprotector, Biochim. Biophys. Acta, 1860, 2463-2473, doi: 10.1016/j.bbagen.2016.07.014.
  27. Steiner, M., Oesterhelt, D., Ariki, M., and Lanyi, J. K. (1984) Halide binding by the purified halorhodopsin chromoprotein. I. Effects on the chromophore, J. Biol. Chem., 259, 2179-2184, doi: 10.1016/S0021-9258(17)43334-5.

© Russian Academy of Sciences, 2023

Осы сайт cookie-файлдарды пайдаланады

Біздің сайтты пайдалануды жалғастыра отырып, сіз сайттың дұрыс жұмыс істеуін қамтамасыз ететін cookie файлдарын өңдеуге келісім бересіз.< / br>< / br>cookie файлдары туралы< / a>