Microgravity effects and aging physiology: similar changes or common mechanisms?

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Despite the use of preventive measures (including intense physical activity), cosmonauts and astronauts develop muscle atony and atrophy, insufficiency of the cardiovascular system, osteopenia, etc. All these changes, reminiscent of age-related physiological changes, occur in a healthy person in microgravity quite quickly - within a few months. Adaptation to the absence of gravity leads to the symptoms of aging, which are compensated after returning to Earth. The prospect of interplanetary flights raises the question of gravity thresholds, below which the main physiological systems will lose their functional potential, similar to aging, and affect life expectancy. An important role in the aging process belongs to the body’s cellular reserve - progenitor cells, which are involved in physiological remodeling and regenerative/reparative processes of all physiological systems. With age, progenitor cell count and the regenerative potential decreases. Moreover, their paracrine spectrum becomes pro-inflammatory during replicative senescence, disrupting tissue homeostasis. Mesenchymal stem/stromal cells (MSCs) are mechanosensitive, and therefore the absence of a gravitational stimulus causes serious changes in their functional status. The review compares the cellular effects of microgravity and changes developing in senescent cells, including stromal precursors.

Sobre autores

A. Ratushnyy

Institute of Biomedical Problems, Russian Academy of Sciences

123007 Moscow, Russia

L. Buravkova

Institute of Biomedical Problems, Russian Academy of Sciences

Email: buravkova@imbp.ru
123007 Moscow, Russia

Bibliografia

  1. Demontis, G. C., Germani, M. M., Caiani, E. G., Barravecchia, I., Passino, C., and Angeloni, D. (2017) Human pathophysiological adaptations to the space environment, Front. Physiol., 8, 547, doi: 10.3389/fphys.2017.00547.
  2. Tran, K. N., and Choi, J. I. (2022) Mimic microgravity effect on muscle transcriptome under ionizing radiation, Life Sci. Space Res., 32, 96-104, doi: 10.1016/j.lssr.2021.12.002.
  3. Patel, S. (2020) The effects of microgravity and space radiation on cardiovascular health: from low-Earth orbit and beyond, Int. J. Cardiol. Heart Vasc., 30, 100595, doi: 10.1016/j.ijcha.2020.100595.
  4. Vernikos, J., and Schneider, V. S. (2010) Space, gravity and the physiology of aging: parallel or convergent disciplines? A mini-review, Gerontology, 56, 157-166, doi: 10.1159/000252852.
  5. Wang, E. (1999) Age-dependent atrophy and microgravity travel: what do they have in common? FASEB J., 13, S167-S174, doi: 10.1096/fasebj.13.9001.s167.
  6. Biolo, G., Heer, M., Narici, M., and Strollo, F. (2003) Microgravity as a model of ageing, Curr. Opin. Clin. Nutr. Metab. Care, 6, 31-40, doi: 10.1097/00075197-200301000-00006.
  7. Strollo, F., Gentile, S., Strollo, G., Mambro, A., and Vernikos, J. (2018) Recent progress in space physiology and aging, Front. Physiol., 9, 1551, doi: 10.3389/fphys.2018.01551.
  8. Burger, E. H., and Klein-Nulend, J. (1998) Microgravity and bone cell mechanosensitivity, Bone, 22, 127S-130S, doi: 10.1016/s8756-3282(98)00010-6.
  9. Keune, J. A., Branscum, A. J., Iwaniec, U. T., and Turner, R. T. (2015) Effects of spaceflight on bone microarchitecture in the axial and appendicular skeleton in growing ovariectomized rats, Sci. Rep., 5, 18671, doi: 10.1038/srep18671.
  10. Gerbaix, M., Gnyubkin, V., Farlay, D., Olivier, C., Ammann, P., Courbon, G., Laroche, N., Genthial, R., Follet, H., Peyrin, F., Shenkman, B., Gauquelin-Koch, G., and Vico, L. (2017) One-month spaceflight compromises the bone microstructure, tissue-level mechanical properties, osteocyte survival and lacunae volume in mature mice skeletons, Sci. Rep., 7, 2659, doi: 10.1038/s41598-017-03014-2.
  11. Stavnichuk, M., Mikolajewicz, N., Corlett, T., Morris, M., and Komarova, S. V. (2020) A systematic review and meta-analysis of bone loss in space travelers, NPJ Microgravity, 6, 13, doi: 10.1038/s41526-020-0103-2.
  12. Crucian, B., Simpson, R. J., Mehta, S., Stowe, R., Chouker, A., Hwang, S. A., Actor, J. K., Salam, A. P., Pierson, D., and Sams, C. (2014) Terrestrial stress analogs for spaceflight associated immune system dysregulation, Brain Behav. Immun., 39, 23-32, doi: 10.1016/j.bbi.2014.01.011.
  13. Sofronova, S. I., Tarasova, O. S., Gaynullina, D., Borzykh, A. A., Behnke, B. J., Stabley, J. N., McCullough, D. J., Maraj, J. J., Hanna, M., Muller-Delp, J. M., Vinogradova, O. L., and Delp, M. D. (2015) Spaceflight on the Bion-M1 biosatellite alters cerebral artery vasomotor and mechanical properties in mice, J. Appl. Physiol., 118, 830-838, doi: 10.1152/japplphysiol.00976.2014.
  14. Hughson, R. L., Yee, N. J., and Greaves, D. K. (2016) Elevated end-tidal Pco2 during long-duration spaceflight, Aerospace Med. Hum. Perform., 87, 894-897, doi: 10.3357/AMHP.4598.2016.
  15. Shen, H., Lim, C., Schwartz, A. G., Andreev-Andrievskiy, A., Deymier, A. C., and Thomopoulos, S. (2017) Effects of spaceflight on the muscles of the murine shoulder, FASEB J., 31, 5466-5477, doi: 10.1096/fj.201700320R.
  16. Novikov, V. E., and Ilyin, E. A. (1981) Age-related reactions of rat bones to their unloading, Aviat. Space Environ. Med., 52, 551-553.
  17. Strollo, F., Riondino, G., Harris, B., Strollo, G., Casarosa, E., Mangrossa, N., Ferretti, C., and Luisi, M. (1998) The effect of microgravity on testicular androgen secretion, Aviat. Space Environ. Med., 69, 133-136.
  18. Blaber, E. A., Dvorochkin, N., Lee, C., Alwood, J. S., Yousuf, R., Pianetta, P., Globus, R. K., Burns, B. P., and Almeida, E. A. (2013) Microgravity induces pelvic bone loss through osteoclastic activity, osteocytic osteolysis, and osteoblastic cell cycle inhibition by CDKN1a/p21, PLoS One, 8, e61372, doi: 10.1371/journal.pone.0061372.
  19. Luxton, J. J., McKenna, M. J., Lewis, A., Taylor, L. E., George, K. A., Dixit, S. M., Moniz, M., Benegas, W., Mackay, M. J., Mozsary, C., Butler, D., Bezdan, D., Meydan, C., Crucian, B. E., Zwart, S. R., Smith, S. M., Mason, C. E., and Bailey, S. M. (2020) Telomere length dynamics and DNA damage responses associated with long-duration spaceflight, Cell Rep., 33, 108457, doi: 10.1016/j.celrep.2020.108457.
  20. Zhuikova, S. E., and Nagovitsyn, R. S. (2021) Influence of running on some physiological and molecular biological markers of human aging, Hum. Physiol., 47, 587-594, doi: 10.1134/S0362119721050133.
  21. Simoes, H. G., Sousa, C. V., Dos Santos Rosa, T., da Silva Aguiar, S., Deus, L. A., Rosa, E. C. C. C., Amato, A. A., and Andrade, R. V. (2017) Longer telomere length in elite master sprinters: relationship to performance and body composition, Int. J. Sports Med., 38, 1111-1116, doi: 10.1055/s-0043-120345.
  22. Prasad, B., Grimm, D., Strauch, S. M., Erzinger, G. S., Corydon, T. J., Lebert, M., Magnusson, N. E., Infanger, M., Richter, P., and Krüger, M. (2020) Influence of microgravity on apoptosis in cells, tissues, and other systems in vivo and in vitro, Int. J. Mol. Sci., 21, 9373, doi: 10.3390/ijms21249373.
  23. Fernando, H. J., and Bowers, D. (2021) Neuroendocrine Theory of Aging, in Encyclopedia of Gerontology and Population Aging (Gu, D., and Dupre, M. E., eds) Springer, Cham, doi: 10.1007/978-3-030-22009-9_673.
  24. Dilman, V. M., Revskoy, S. Y., and Golubev, A. G. (1986) Neuroendocrine-ontogenetic mechanism of aging: toward an integrated theory of aging, Int. Rev. Neurobiol., 28, 89-156, doi: 10.1016/s0074-7742(08)60107-5.
  25. Olovnikov, A. (2005) Lunasensor, infradian rhythms, telomeres, and the chronomere program of aging, Ann. NY Acad. Sci., 1057, 112-132, doi: 10.1196/annals.1356.006.
  26. Olovnikov, A. M. (2015) Chronographic theory of development, aging, and origin of cancer: role of chronomeres and printomeres, Curr. Aging Sci., 8, 76-88, doi: 10.2174/1874609808666150422114916.
  27. Olovnikov, A. M. (2022) Planetary metronome as a regulator of lifespan and aging rate: the metronomic hypothesis, Biochemistry (Moscow), 87, 1640-1650, doi: 10.1134/S0006297922120197.
  28. Horvath, S. (2013) DNA methylation age of human tissues and cell types, Genome Biol., 14, R115, doi: 10.1186/gb-2013-14-10-r115.
  29. Petkovich, D. A., Podolskiy, D. I., Lobanov, A. V., Lee, S. G., Miller, R. A., and Gladyshev, V. N. (2017) Using DNA methylation profiling to evaluate biological age and longevity interventions, Cell Metab., 25, 954-960.e6, doi: 10.1016/j.cmet.2017.03.016.
  30. López-Otín, C., Blasco, M. A., Partridge, L., Serrano, M., and Kroemer, G. (2013) The hallmarks of aging, Cell, 153, 1194-1217, doi: 10.1016/j.cell.2013.05.039.
  31. McHugh, D., and Gil, J. (2018) Senescence and aging: causes, consequences, and therapeutic avenues, J. Cell Biol., 217, 65-77, doi: 10.1083/jcb.201708092.
  32. Campisi, J., and d'Adda di Fagagna, F. (2007) Cellular senescence: when bad things happen to good cells, Nat. Rev. Mol. Cell Biol., 8, 729-740, doi: 10.1038/nrm2233.
  33. Ratushnyy, A. Y., Rudimova, Y. V., and Buravkova, L. B. (2020) Replicative senescence and expression of autophagy genes in mesenchymal stromal cells, Biochemistry (Moscow), 85, 1169-1177, doi: 10.1134/S0006297920100053.
  34. Kuilman, T., Michaloglou, C., Mooi, W. J., and Peeper, D. S. (2010) The essence of senescence, Genes Dev., 24, 2463-2479, doi: 10.1101/gad.1971610.
  35. Salama, R., Sadaie, M., Hoare, M., and Narita, M. (2014) Cellular senescence and its effector programs, Genes Dev., 28, 99-114, doi: 10.1101/gad.235184.113.
  36. Ratushnyy, A. Y., and Buravkova, L. B. (2020) Cell senescence and mesenchymal stromal cells, Hum. Physiol., 46, 85-93, doi: 10.1134/S0362119720010132.
  37. Imai, S., and Guarente, L. (2014) NAD+ and sirtuins in aging and disease, Trends Cell Biol., 24, 464-471, doi: 10.1016/j.tcb.2014.04.002.
  38. Dimri, G. P., Lee, X., Basile, G., Acosta, M., Scott, G., Roskelley, C., Medrano, E. E., Linskens, M., Rubelj, I., and Pereira-Smith, O. (1995) A biomarker that identifies senescent human cells in culture and in aging skin in vivo, Proc. Natl. Acad. Sci. USA, 92, 9363-9367, doi: 10.1073/pnas.92.20.9363.
  39. Narita, M., Nũnez, S., Heard, E., Narita, M., Lin, A. W., Hearn, S. A., Spector, D. L., Hannon, G. J., and Lowe, S. W. (2003) Rb-mediated heterochromatin formation and silencing of E2F target genes during cellular senescence, Cell, 113, 703-716, doi: 10.1016/s0092-8674(03)00401-x.
  40. Collado, M., Blasco, M. A., and Serrano, M. (2007) Cellular senescence in cancer and aging, Cell, 130, 223-233, doi: 10.1016/j.cell.2007.07.003.
  41. Hanahan, D., and Weinberg, R. A. (2011) Hallmarks of cancer: the next generation, Cell, 144, 646-674, doi: 10.1016/j.cell.2011.02.013.
  42. Jun, J. I., and Lau, L. F. (2010) The matricellular protein CCN1 induces fibroblast senescence and restricts fibrosis in cutaneous wound healing, Nat. Cell Biol., 12, 676-685, doi: 10.1038/ncb2070.
  43. Noronha, N. C., Mizukami, A., Caliári-Oliveira, C., Cominal, J. G., Rocha, J. L. M., Covas, D. T., Swiech, K., and Malmegrim, K. C. R. (2019) Priming approaches to improve the efficacy of mesenchymal stromal cell-based therapies, Stem Cell Res. Ther., 10, 131, doi: 10.1186/s13287-019-1224-y.
  44. Hayflick, L., and Moorhead, P. S. (1961) The serial cultivation of human diploid cell strains, Exp. Cell Res., 25, 585-621, doi: 10.1016/0014-4827(61)90192-6.
  45. Olovnikov, A. M. (1971) Principle of marginotomy in template synthesis of polynucleotides, Dokl. Akad. Nauk SSSR, 201, 1496-1499.
  46. Victorelli, S., and Passos, J. F. (2017) Telomeres and cell senescence - size matters not, EBioMedicine, 21, 14-20, doi: 10.1016/j.ebiom.2017.03.027.
  47. De Magalhães, J. P., and Passos, J. F. (2018) Stress, cell senescence and organismal ageing, Mech. Ageing Dev., 170, 2-9, doi: 10.1016/j.mad.2017.07.001.
  48. Gruber, J., Schaffer, S., and Halliwell, B. (2008) The mitochondrial free radical theory of ageing - where do we stand? Front. Biosci., 13, 6554-6579, doi: 10.2741/3174.
  49. Vizioli, M. G., Liu, T., Miller, K. N., Robertson, N. A., Gilroy, K., Lagnado, A. B., Perez-Garcia, A., Kiourtis, C., Dasgupta, N., Lei, X., Kruger, P. J., Nixon, C., Clark, W., Jurk, D., Bird, T. G., Passos, J. F., Berger, S. L., Dou, Z., and Adams, P. D. (2020) Mitochondria-to-nucleus retrograde signaling drives formation of cytoplasmic chromatin and inflammation in senescence, Genes Dev., 34, 428-445, doi: 10.1101/gad.331272.119.
  50. Von Zglinicki, T. (2002) Oxidative stress shortens telomeres, Trends Biochem. Sci., 27, 339-344, doi: 10.1016/s0968-0004(02)02110-2.
  51. Campisi, J. (2013) Aging, cellular senescence, and cancer, Annu. Rev. Physiol., 75, 685-705, doi: 10.1146/annurev-physiol-030212-183653.
  52. Sherr, C. J., and Roberts, J. M. (1999) CDK inhibitors: positive and negative regulators of G1-phase progression, Genes Dev., 13, 1501-1512, doi: 10.1101/gad.13.12.1501.
  53. Sherr, C. J., and McCormick, F. (2002) The RB and p53 pathways in cancer, Cancer Cell, 2, 103-112, doi: 10.1016/s1535-6108(02)00102-2.
  54. Tharp, K. M., Higuchi-Sanabria, R., Timblin, G. A., Ford, B., Garzon-Coral, C., Schneider, C., Muncie, J. M., Stashko, C., Daniele, J. R., Moore, A. S., Frankino, P. A., Homentcovschi, S., Manoli, S. S., Shao, H., Richards, A. L., Chen, K. H., Hoeve, J. T., Ku, G. M., Hellerstein, M., Nomura, D. K., et al. (2021) Adhesion-mediated mechanosignaling forces mitohormesis, Cell Metab., 33, 1322-1341.e13, doi: 10.1016/j.cmet.2021.04.017.
  55. Duan, J. L., Ruan, B., Song, P., Fang, Z. Q., Yue, Z. S., Liu, J. J., Dou, G. R., Han, H., and Wang, L. (2022) Shear stress-induced cellular senescence blunts liver regeneration through Notch-sirtuin 1-P21/P16 axis, Hepatology, 75, 584-599, doi: 10.1002/hep.32209.
  56. Van Loon, J. W. A. (2007) Some history and use of the random positioning machine, RPM, in gravity related research, Adv. Space Res., 39, 1161-1165, doi: 10.1016/j.asr.2007.02.016.
  57. Kopp, S., Warnke, E., Wehland, M., Aleshcheva, G., Magnusson, N. E., Hemmersbach, R., Corydon, T. J., Bauer, J., Infanger, M., and Grimm, D. (2015) Mechanisms of three-dimensional growth of thyroid cells during long-term simulated microgravity, Sci. Rep., 5, 16691, doi: 10.1038/srep16691.
  58. Wuest, S. L., Richard, S., Kopp, S., Grimm, D., and Egli, M. (2015) Simulated microgravity: critical review on the use of random positioning machines for mammalian cell culture, BioMed Res. Int., 2015, 971474, doi: 10.1155/2015/971474.
  59. Wang, J., Zhang, J., Bai, S., Wang, G., Mu, L., Sun, B., Wang, D., Kong, Q., Liu, Y., Yao, X., Xu, Y., and Li, H. (2009) Simulated microgravity promotes cellular senescence via oxidant stress in rat PC12 cells, Neurochem. Int., 55, 710-716, doi: 10.1016/j.neuint.2009.07.002.
  60. Kapitonova, M. Y., Muid, S., Froemming, G. R., Yusoff, W. N., Othman, S., Ali, A. M., and Nawawi, H. M. (2012) Real space flight travel is associated with ultrastructural changes, cytoskeletal disruption and premature senescence of HUVEC, Malays. J. Pathol., 34, 103-113.
  61. Ulbrich, C., Wehland, M., Pietsch, J., Aleshcheva, G., Wise, P., van Loon, J., Magnusson, N., Infanger, M., Grosse, J., Eilles, C., Sundaresan, A., and Grimm, D. (2014) The impact of simulated and real microgravity on bone cells and mesenchymal stem cells, BioMed Res. Int., 2014, 928507, doi: 10.1155/2014/928507.
  62. Winkelmaier, G., Jabbari, K., Chien, L. C., Grabham, P., Parvin, B., and Pluth, J. (2023) Influence of simulated microgravity on mammary epithelial cells grown as 2D and 3D cultures, Int. J. Mol. Sci., 24, 7615, doi: 10.3390/ijms24087615.
  63. Ratushnyy, A., Ezdakova, M., Yakubets, D., and Buravkova, L. (2018) Angiogenic activity of human adipose-derived mesenchymal stem cells under simulated microgravity, Stem Cells Dev., 27, 831-837, doi: 10.1089/scd.2017.0262.
  64. Ingber, D. E. (2003) Mechanobiology and diseases of mechanotransduction, Ann. Med., 35, 564-577, doi: 10.1080/07853890310016333.
  65. Louis, F., Deroanne, C., Nusgens, B., Vico, L., and Guignandon, A. (2015) RhoGTPases as key players in mammalian cell adaptation to microgravity, BioMed Res. Int., 2015, 747693, doi: 10.1155/2015/747693.
  66. Mao, X., Chen, Z., Luo, Q., Zhang, B., and Song, G. (2016) Simulated microgravity inhibits the migration of mesenchymal stem cells by remodeling actin cytoskeleton and increasing cell stiffness, Cytotechnology, 68, 2235-2243, doi: 10.1007/s10616-016-0007-x.
  67. Ratushnyy, A. Y., and Buravkova, L. B. (2017) Expression of focal adhesion genes in mesenchymal stem cells under simulated microgravity, Dokl. Biochem. Biophys., 477, 354-356, doi: 10.1134/S1607672917060035.
  68. Buravkova, L., Larina, I., Andreeva, E., and Grigoriev, A. (2021) Microgravity effects on the matrisome, Cells, 10, 2226, doi: 10.3390/cells10092226.
  69. Dinarelli, S., Longo, G., Dietler, G., Francioso, A., Mosca, L., Pannitteri, G., Boumis, G., Bellelli, A., and Girasole, M. (2018) Erythrocyte's aging in microgravity highlights how environmental stimuli shape metabolism and morphology, Sci. Rep., 8, 5277, doi: 10.1038/s41598-018-22870-0.
  70. Takahashi, H., Nakamura, A., and Shimizu, T. (2021) Simulated microgravity accelerates aging of human skeletal muscle myoblasts at the single cell level, Biochem. Biophys. Res. Commun., 578, 115-121, doi: 10.1016/j.bbrc.2021.09.037.
  71. Acharya, A., Nemade, H., Papadopoulos, S., Hescheler, J., Neumaier, F., Schneider, T., Rajendra Prasad, K., Khan, K., Hemmersbach, R., Gusmao, E. G., Mizi, A., Papantonis, A., and Sachinidis, A. (2022) Microgravity-induced stress mechanisms in human stem cell-derived cardiomyocytes, iScience, 25, 104577, doi: 10.1016/j.isci.2022.104577.
  72. Singh, R., Rajput, M., and Singh, R. P. (2021) Simulated microgravity triggers DNA damage and mitochondria-mediated apoptosis through ROS generation in human promyelocytic leukemic cells, Mitochondrion, 61, 114-124, doi: 10.1016/j.mito.2021.09.006.
  73. Kossmehl, P., Shakibaei, M., Cogoli, A., Infanger, M., Curcio, F., Schönberger, J., Eilles, C., Bauer, J., Pickenhahn, H., Schulze-Tanzil, G., Paul, M., and Grimm, D. (2003) Weightlessness induced apoptosis in normal thyroid cells and papillary thyroid carcinoma cells via extrinsic and intrinsic pathways, Endocrinology, 144, 4172-4179, doi: 10.1210/en.2002-0171.
  74. Ran, F., An, L., Fan, Y., Hang, H., and Wang, S. (2016) Simulated microgravity potentiates generation of reactive oxygen species in cells, Biophys. Rep., 2, 100-105, doi: 10.1007/s41048-016-0029-0.
  75. Greco, O., Durante, M., Gialanella, G., Grossi, G., Pugliese, M., Scampoli, P., Snigiryova, G., and Obe, G. (2003) Biological dosimetry in Russian and Italian astronauts, Adv. Space Res., 31, 1495-1503, doi: 10.1016/s0273-1177(03)00087-5.
  76. Lu, T., Zhang, Y., Kidane, Y., Feiveson, A., Stodieck, L., Karouia, F., Ramesh, G., Rohde, L., and Wu, H. (2017) Cellular responses and gene expression profile changes due to bleomycin-induced DNA damage in human fibroblasts in space, PLoS One, 12, e0170358, doi: 10.1371/journal.pone.0170358.
  77. Murphy, M. B., Moncivais, K., and Caplan, A. I. (2013) Mesenchymal stem cells: environmentally responsive therapeutics for regenerative medicine, Exp. Mol. Med., 45, e54, doi: 10.1038/emm.2013.94.
  78. Spees, J. L., Lee, R. H., and Gregory, C. A. (2016) Mechanisms of mesenchymal stem/stromal cell function, Stem Cell Res. Ther., 7, 125, doi: 10.1186/s13287-016-0363-7.
  79. Andreeva, E., Bobyleva, P., Gornostaeva, A., and Buravkova, L. (2017) Interaction of multipotent mesenchymal stromal and immune cells: bidirectional effects, Cytotherapy, 19, 1152-1166, doi: 10.1016/j.jcyt.2017.07.001.
  80. Fujii, S., and Miura, Y. (2022) Immunomodulatory and regenerative effects of MSC-derived extracellular vesicles to treat acute GVHD, Stem Cells, 40, 977-990, doi: 10.1093/stmcls/sxac057.
  81. Lv, W., Peng, X., Tu, Y., Shi, Y., Song, G., and Luo, Q. (2023) YAP inhibition alleviates simulated microgravity-induced mesenchymal stem cell senescence via targeting mitochondrial dysfunction, Antioxidants, 12, 990, doi: 10.3390/antiox12050990.
  82. Moretta, L., Uccelli, A., and Pistoia, V. (2015) Mesenchymal stromal cells and immunity: Introductory overview, Immunol. Lett., 168, 127-128, doi: 10.1016/j.imlet.2015.08.010.
  83. Yatagai, F., Honma, M., Dohmae, N., and Ishioka, N. (2019) Biological effects of space environmental factors: A possible interaction between space radiation and microgravity, Life Sci. Space Res., 20, 113-123, doi: 10.1016/j.lssr.2018.10.004.
  84. Moya, I. M., and Halder, G. (2019) Hippo-YAP/TAZ signalling in organ regeneration and regenerative medicine, Nat. Rev. Mol. Cell Biol., 20, 211-226, doi: 10.1038/s41580-018-0086-y.
  85. Pobbati, A. V., and Hong, W. (2020) A combat with the YAP/TAZ-TEAD oncoproteins for cancer therapy, Theranostics, 10, 3622-3635, doi: 10.7150/thno.40889.
  86. Childs, B. G., Gluscevic, M., Baker, D. J., Laberge, R. M., Marquess, D., Dananberg, J., and van Deursen, J. M. (2017) Senescent cells: an emerging target for diseases of ageing, Nat. Rev. Drug Discov., 16, 718-735, doi: 10.1038/nrd.2017.116.
  87. Xie, Q., Chen, J., Feng, H., Peng, S., Adams, U., Bai, Y., Huang, L., Li, J., Huang, J., Meng, S., and Yuan, Z. (2013) YAP/TEAD-mediated transcription controls cellular senescence, Cancer Res., 73, 3615-3624, doi: 10.1158/0008-5472.CAN-12-3793.
  88. Yeung, Y. T., Guerrero-Castilla, A., Cano, M., Muñoz, M. F., Ayala, A., and Argüelles, S. (2019) Dysregulation of the hippo pathway signaling in aging and cancer, Pharmacol. Res., 143, 151-165, doi: 10.1016/j.phrs.2019.03.018.
  89. Pala, R., Cruciani, S., Manca, A., Garroni, G., El Faqir, M. A., Lentini, V., Capobianco, G., Pantaleo, A., and Maioli, M. (2023) Mesenchymal stem cell behavior under microgravity: from stress response to a premature senescence, Int. J. Mol. Sci., 24, 7753, doi: 10.3390/ijms24097753.
  90. Turinetto, V., Vitale, E., and Giachino, C. (2016) Senescence in human mesenchymal stem cells: functional changes and implications in stem cell-based therapy, Int. J. Mol. Sci., 17, 1164, doi: 10.3390/ijms17071164.
  91. Li, Y., Wu, Q., Wang, Y., Li, L., Bu, H., and Bao, J. (2017) Senescence of mesenchymal stem cells (Review), Int. J. Mol. Sci., 39, 775-782, doi: 10.3892/ijmm.2017.2912.
  92. Merzlikina, N. V., Buravkova, L. B., and Romanov, Y. A. (2004) The primary effects of clinorotation on cultured human mesenchymal stem cells, J. Gravitat. Physiol., 11, P193-P194.
  93. Gershovich, J. G., and Buravkova, L. B. (2007) Morphofunctional status and osteogenic differentiation potential of human mesenchymal stromal precursor cells during in vitro modeling of microgravity effects, Bull. Exp. Biol. Med., 144, 608-613, doi: 10.1007/s10517-007-0387-1.
  94. Dai, Z. Q., Wang, R., Ling, S. K., Wan, Y. M., and Li, Y. H. (2007) Simulated microgravity inhibits the proliferation and osteogenesis of rat bone marrow mesenchymal stem cells, Cell Prolif., 40, 671-684, doi: 10.1111/j.1365-2184.2007.00461.x.
  95. Yuge, L., Kajiume, T., Tahara, H., Kawahara, Y., Umeda, C., Yoshimoto, R., Wu, S. L., Yamaoka, K., Asashima, M., Kataoka, K., and Ide, T. (2006) Microgravity potentiates stem cell proliferation while sustaining the capability of differentiation, Stem Cells Dev., 15, 921-929, doi: 10.1089/scd.2006.15.921.
  96. Ratushnyy, A. Yu., and Buravkova, L. B. (2016) Functional state of multipotent mesenchymal stromal cells during modeling the effects of microgravity [in Russian], Aviakosm. Ekol. Med., 50, 24-29.
  97. Nakamura, H., Kumei, Y., Morita, S., Shimokawa, H., Ohya, K., and Shinomiya, K. (2003) Antagonism between apoptotic (Bax/Bcl-2) and anti-apoptotic (IAP) signals in human osteoblastic cells under vector-averaged gravity condition, Ann. NY Acad. Sci., 1010, 143-147, doi: 10.1196/annals.1299.023.
  98. Kim, M., Kim, C., Choi, Y. S., Kim, M., Park, C., and Suh, Y. (2012) Age-related alterations in mesenchymal stem cells related to shift in differentiation from osteogenic to adipogenic potential: implication to age-associated bone diseases and defects, Mech. Ageing Dev., 133, 215-225, doi: 10.1016/j.mad.2012.03.014.
  99. Despars, G., Carbonneau, C. L., Bardeau, P., Coutu, D. L., and Beauséjour, C. M. (2013) Loss of the osteogenic differentiation potential during senescence is limited to bone progenitor cells and is dependent on p53, PLoS One, 8, e73206, doi: 10.1371/journal.pone.0073206.
  100. Yang, Y. K., Ogando, C. R., Wang See, C., Chang, T. Y., and Barabino, G. A. (2018) Changes in phenotype and differentiation potential of human mesenchymal stem cells aging in vitro, Stem Cell Res. Ther., 9, 131, doi: 10.1186/s13287-018-0876-3.
  101. Wagner, W., Horn, P., Castoldi, M., Diehlmann, A., Bork, S., Saffrich, R., Benes, V., Blake, J., Pfister, S., Eckstein, V., and Ho, A. D. (2008) Replicative senescence of mesenchymal stem cells: a continuous and organized process, PLoS One, 3, e2213, doi: 10.1371/journal.pone.0002213.
  102. Digirolamo, C. M., Stokes, D., Colter, D., Phinney, D. G., Class, R., and Prockop, D. J. (1999) Propagation and senescence of human marrow stromal cells in culture: a simple colony-forming assay identifies samples with the greatest potential to propagate and differentiate, Br. J. Haematol., 107, 275-281, doi: 10.1046/j.1365-2141.1999.01715.x.
  103. Cheng, H., Qiu, L., Ma, J., Zhang, H., Cheng, M., Li, W., Zhao, X., and Liu, K. (2011) Replicative senescence of human bone marrow and umbilical cord derived mesenchymal stem cells and their differentiation to adipocytes and osteoblasts, Mol. Biol. Rep., 38, 5161-5168, doi: 10.1007/s11033-010-0665-2.
  104. Ratushnyy, A. Yu., and Buravkova, L. B. (2022) Differentiation potential of the mesenchymal stromal cells during replicative senescence [in Russian], Aviakosm. Ekol. Med., 56, 64-69.
  105. Buravkova, L. B., Gershovich, P. M., Gershovich, J. G., and Grigor'ev, A. I. (2010) Mechanisms of gravitational sensitivity of osteogenic precursor cells, Acta Naturae, 2, 28-36, doi: 10.32607/actanaturae.10734.
  106. Nishikawa, M., Ohgushi, H., Tamai, N., Osuga, K., Uemura, M., Yoshikawa, H., and Myoui, A. (2005) The effect of simulated microgravity by three-dimensional clinostat on bone tissue engineering, Cell Transplant., 14, 829-835, doi: 10.3727/000000005783982477.
  107. Zayzafoon, M., Gathings, W. E., and McDonald, J. M. (2004) Modeled microgravity inhibits osteogenic differentiation of human mesenchymal stem cells and increases adipogenesis, Endocrinology, 145, 2421-2432, doi: 10.1210/en.2003-1156.
  108. Buravkova, L. B., Gershovich, P. M., Gershovich, J. G., and Grigoriev, A. I. (2013) Microgravity and mesenchymal stem cell response, Curr. Biotechnol., 2, 217-225, doi: 10.2174/22115501113029990016.
  109. Saxena, R., Pan, G., and McDonald, J. M. (2007) Osteoblast and osteoclast differentiation in modeled microgravity, Ann. NY Acad. Sci., 1116, 494-498, doi: 10.1196/annals.1402.033.
  110. Meyers, V. E., Zayzafoon, M., Gonda, S. R., Gathings, W. E., and McDonald, J. M. (2004) Modeled microgravity disrupts collagen I/integrin signaling during osteoblastic differentiation of human mesenchymal stem cells, J. Cell. Biochem., 93, 697-707, doi: 10.1002/jcb.20229.
  111. Sheyn, D., Pelled, G., Netanely, D., Domany, E., and Gazit, D. (2010) The effect of simulated microgravity on human mesenchymal stem cells cultured in an osteogenic differentiation system: a bioinformatics study, Tissue Eng. Part A, 16, 3403-3412, doi: 10.1089/ten.tea.2009.0834.
  112. Chen, J., Liu, R., Yang, Y., Li, J., Zhang, X., Li, J., Wang, Z., and Ma, J. (2011) The simulated microgravity enhances the differentiation of mesenchymal stem cells into neurons, Neurosci. Lett., 505, 171-175, doi: 10.1016/j.neulet.2011.10.014.
  113. Xue, L., Li, Y., and Chen, J. (2017) Duration of simulated microgravity affects the differentiation of mesenchymal stem cells, Mol. Med. Rep., 15, 3011-3018, doi: 10.3892/mmr.2017.6357.
  114. Coppé, J. P., Desprez, P. Y., Krtolica, A., and Campisi, J. (2010) The senescence-associated secretory phenotype: the dark side of tumor suppression, Annu. Rev. Pathol., 5, 99-118, doi: 10.1146/annurev-pathol-121808-102144.
  115. Gershovich, Iu. G., and Buravkova, L. B. (2009) Interleukine production in culture of mesenchymal stromal cells of humans during simulation of the microgravity effects [in Russian], Aviakosm. Ecolog. Med., 43, 44-50.
  116. Kurose, T., Takahashi, S., Otsuka, T., Nakagawa, K., Imura, T., Sueda, T., and Yuge, L. (2019) Simulated microgravity-cultured mesenchymal stem cells improve recovery following spinal cord ischemia in rats, Stem Cell Res., 41, 101601, doi: 10.1016/j.scr.2019.101601.
  117. Ratushnyy, A., Yakubets, D., Andreeva, E., and Buravkova, L. (2019) Simulated microgravity modulates the mesenchymal stromal cell response to inflammatory stimulation, Sci. Rep., 9, 9279, doi: 10.1038/s41598-019-45741-8.
  118. Zhivodernikov, I. V., Ratushnyy, A. Y., and Buravkova, L. B. (2021) Secretory activity of mesenchymal stromal cells with different degree of commitment under conditions of simulated microgravity, Bull. Exp. Biol. Med., 170, 560-564, doi: 10.1007/s10517-021-05106-6.
  119. Aamodt, J. M., and Grainger, D. W. (2016) Extracellular matrix-based biomaterial scaffolds and the host response, Biomaterials, 86, 68-82, doi: 10.1016/j.biomaterials.2016.02.003.
  120. Choudhury, D., Tun, H. W., Wang, T., and Naing, M. W. (2018) Organ-derived decellularized extracellular matrix: a game changer for bioink manufacturing? Trends Biotechnol., 36, 787-805, doi: 10.1016/j.tibtech.2018.03.003.
  121. Hospodiuk, M., Dey, M., Sosnoski, D., and Ozbolat, I. T. (2017) The bioink: A comprehensive review on bioprintable materials, Biotechnol. Adv., 35, 217-239, doi: 10.1016/j.biotechadv.2016.12.006.
  122. Mavrogonatou, E., Pratsinis, H., Papadopoulou, A., Karamanos, N. K., and Kletsas, D. (2019) Extracellular matrix alterations in senescent cells and their significance in tissue homeostasis, Matrix Biol., 75-76, 27-42, doi: 10.1016/j.matbio.2017.10.004.
  123. Choi, H. R., Cho, K. A., Kang, H. T., Lee, J. B., Kaeberlein, M., Suh, Y., Chung, I. K., and Park, S. C. (2011) Restoration of senescent human diploid fibroblasts by modulation of the extracellular matrix, Aging Cell, 10, 148-157, doi: 10.1111/j.1474-9726.2010.00654.x.
  124. Sun, Y., Li, W., Lu, Z., Chen, R., Ling, J., Ran, Q., Jilka, R. L., and Chen, X. D. (2011) Rescuing replication and osteogenesis of aged mesenchymal stem cells by exposure to a young extracellular matrix, FASEB J., 25, 1474-1485, doi: 10.1096/fj.10-161497.
  125. Lynch, K., and Pei, M. (2014) Age associated communication between cells and matrix: a potential impact on stem cell-based tissue regeneration strategies, Organogenesis, 10, 289-298, doi: 10.4161/15476278.2014.970089.
  126. Ebnerasuly, F., Hajebrahimi, Z., Tabaie, S. M., and Darbouy, M. (2018) Simulated microgravity condition alters the gene expression of some ECM and adhesion molecules in adipose derived stem cells, Int. J. Mol. Cell. Med., 7, 146-157, doi: 10.22088/IJMCM.BUMS.7.3.146.
  127. Zhivodernikov, I., Ratushnyy, A., and Buravkova, L. (2021) Simulated microgravity remodels extracellular matrix of osteocommitted mesenchymal stromal cells, Int. J. Mol. Sci., 22, 5428, doi: 10.3390/ijms22115428.
  128. Carmeliet, G., Nys, G., and Bouillon, R. (1997) Microgravity reduces the differentiation of human osteoblastic MG-63 cells, J. Bone Min. Res., 12, 786-794, doi: 10.1359/jbmr.1997.12.5.786.
  129. Zhang, C., Li, L., Jiang, Y., Wang, C., Geng, B., Wang, Y., Chen, J., Liu, F., Qiu, P., Zhai, G., Chen, P., Quan, R., and Wang, J. (2018) Space microgravity drives transdifferentiation of human bone marrow-derived mesenchymal stem cells from osteogenesis to adipogenesis, FASEB J., 32, 4444-4458, doi: 10.1096/fj.201700208RR.
  130. Libertini, G. (2014) The programmed aging paradigm: how we get old, Biochemistry (Moscow), 79, 1004-1016, doi: 10.1134/S0006297914100034.

Declaração de direitos autorais © Russian Academy of Sciences, 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies