Features of proton transport mechanism in ESR, a retinal protein from Exiguobacterium sibiricum

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Retinal-containing photosensitive proteins, rhodopsins, have been detected in many microorganisms. The interest in them is largely explained by their role in storing light energy and photoregulation in microorganisms and the prospects for use in optogenetics in order to control the activity of neurons, including for the treatment of various diseases. One of the representatives of microbial rhodopsins is ESR, a retinal protein from Exiguobacterium sibiricum. The presence of a lysine residue (Lys96) as a proton donor for the Schiff base distinguishes ESR from homologous proteins. This feature, along with the hydrogen bonding of the proton acceptor Asp85 with the His57 residue, determines its functional characteristics as a proton pump. The review examines the results of ESR studies conducted using various methods, including the method of direct electrometry. Comparison of the obtained data with the results of spatial structure determination and with other retinal proteins allows drawing conclusions about the mechanisms of transport of hydrogen ions in the ESR molecule and similar retinal proteins.

About the authors

L. E Petrovskaya

Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences

Email: lpetr65@yahoo.com
117997 Moscow, Russia

S. A Siletsky

Belozersky Institute of Physical-Chemical Biology, Lomonosov Moscow State University

119991 Moscow, Russia

M. D Mamedov

Belozersky Institute of Physical-Chemical Biology, Lomonosov Moscow State University

119991 Moscow, Russia

E. P Lukashev

Department of Biology, Lomonosov Moscow State University

119234 Moscow, Russia

S. P Balashov

University of California

Irvine 92697, USA

D. A Dolgikh

Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences;Department of Biology, Lomonosov Moscow State University

117997 Moscow, Russia;119234 Moscow, Russia

M. P Kirpichnikov

Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences;Department of Biology, Lomonosov Moscow State University

117997 Moscow, Russia;119234 Moscow, Russia

References

  1. Engelhard, M. (2022) Molecular Biology of Microbial Rhodopsins, in Rhodopsin: Methods and Protocols (Gordeliy, V., ed) Springer US, New York, NY, pp. 53-69, doi: 10.1007/978-1-0716-2329-9_2.
  2. Govorunova, E. G., Sineshchekov, O. A., Li, H., and Spudich, J. L. (2017) Microbial rhodopsins: diversity, mechanisms, and optogenetic applications, Annu. Rev. Biochem., 86, 845-872, doi: 10.1146/annurev-biochem-101910-144233.
  3. Rozenberg, A., Inoue, K., Kandori, H., and Béjà, O. (2021) Microbial rhodopsins: the last two decades, Annu. Rev. Microbiol., 75, 427-447, doi: 10.1146/annurev-micro-031721-020452.
  4. Gushchin, I., and Gordeliy, V. (2018) Microbial Rhodopsins, in Membrane Protein Complexes: Structure and Function (Harris, J. R., and Boekema, E. J., eds) Springer Singapore, Singapore. pp 19-56, doi: 10.1007/978-981-10-7757-9_2.
  5. Brown, L. S. (2022) Light-driven proton transfers and proton transport by microbial rhodopsins - A biophysical perspective, Biochim. Biophys. Acta Biomembranes, 1864, 183867, doi: 10.1016/j.bbamem.2022.183867.
  6. Kandori, H. (2020) Biophysics of rhodopsins and optogenetics, Biophys. Rev., 12, 355-361, doi: 10.1007/s12551-020-00645-0.
  7. Lanyi, J. K. (2006) Proton transfers in the bacteriorhodopsin photocycle, Biochim. Biophys. Acta, 1757, 1012-1018, doi: 10.1016/j.bbabio.2005.11.003.
  8. Skulachev, V. P., Bogachev, A. V., and Kasparinsky, F. O. (2013) Bacteriorhodopsin, in Principles of Bioenergetics, Springer-Verlag. Berlin, Heidelberg, pp. 139-156, doi: 10.1007/978-3-642-33430-6_6.
  9. Oesterhelt, D., and Stoeckenius, W. (1971) Rhodopsin-like protein from the purple membrane of Halobacterium halobium, Nat. New Biol., 233, 149-152, doi: 10.1038/newbio233149a0.
  10. Balashov, S. P. (2000) Protonation reactions and their coupling in bacteriorhodopsin, Biochim. Biophys. Acta Bioenergetics, 1460, 75-94, doi: 10.1016/S0005-2728(00)00131-6.
  11. Neutze, R., Pebay-Peyroula, E., Edman, K., Royant, A., Navarro, J., and Landau, E. M. (2002) Bacteriorhodopsin: a high-resolution structural view of vectorial proton transport, Biochim. Biophys. Acta Biomembranes, 1565, 144-167, doi: 10.1016/S0005-2736(02)00566-7.
  12. Luecke, H., Schobert, B., Richter, H.-T., Cartailler, J.-P., and Lanyi, J. K. (1999) Structural changes in bacteriorhodopsin during ion transport at 2 angstrom resolution, Science, 286, 255-260, doi: 10.1126/science.286.5438.255.
  13. Nango, E., Royant, A., Kubo, M., Nakane, T., Wickstrand, C., Kimura, T., Tanaka, T., Tono, K., Song, C., Tanaka, R., Arima, T., Yamashita, A., Kobayashi, J., Hosaka, T., Mizohata, E., Nogly, P., Sugahara, M., et al. (2016) A three-dimensional movie of structural changes in bacteriorhodopsin, Science, 354, 1552-1557, doi: 10.1126/science.aah3497.
  14. Pushkarev, A., and Béjà, O. (2016) Functional metagenomic screen reveals new and diverse microbial rhodopsins, ISME J., 10, 2331-2335, doi: 10.1038/ismej.2016.7.
  15. Inoue, K. (2021) Diversity, Mechanism, and Optogenetic Application of Light-Driven Ion Pump Rhodopsins, in Optogenetics: Light-Sensing Proteins and Their Applications in Neuroscience and Beyond (Yawo, H., Kandori, H., Koizumi, A., and Kageyama, R., eds) Springer Singapore, Singapore, pp. 89-126, doi: 10.1007/978-981-15-8763-4_6.
  16. Bamann, C., Bamberg, E., Wachtveitl, J., and Glaubitz, C. (2014) Proteorhodopsin, Biochim. Biophys. Acta Bioenergetics, 1837, 614-625, doi: 10.1016/j.bbabio.2013.09.010.
  17. Brown, L. S. (2014) Eubacterial rhodopsins - unique photosensors and diverse ion pumps, Biochim. Biophys. Acta Bioenergetics, 1837, 553-561, doi: 10.1016/j.bbabio.2013.05.006.
  18. Bergo, V. B., Sineshchekov, O. A., Kralj, J. M., Partha, R., Spudich, E. N., Rothschild, K. J., and Spudich, J. L. (2009) His-75 in proteorhodopsin, a novel component in light-driven proton translocation by primary pumps, J. Biol. Chem., 284, 2836-2843, doi: 10.1074/jbc.M803792200.
  19. Hempelmann, F., Holper, S., Verhoefen, M. K., Woerner, A. C., Kohler, T., Fiedler, S. A., Pfleger, N., Wachtveitl, J., and Glaubitz, C. (2011) His75-Asp97 cluster in green proteorhodopsin, J. Am. Chem. Soc., 133, 4645-4654, doi: 10.1021/Ja111116a.
  20. Petrovskaya, L. E., Lukashev, E. P., Chupin, V. V., Sychev, S. V., Lyukmanova, E. N., Kryukova, E. A., Ziganshin, R. H., Spirina, E. V., Rivkina, E. M., Khatypov, R. A., Erokhina, L. G., Gilichinsky, D. A., Shuvalov, V. A., and Kirpichnikov, M. P. (2010) Predicted bacteriorhodopsin from Exiguobacterium sibiricum is a functional proton pump, FEBS Lett., 584, 4193-4196, doi: 10.1016/j.febslet.2010.09.005.
  21. Petrovskaya, L., Balashov, S., Lukashev, E., Imasheva, E., Gushchin, I. Y., Dioumaev, A., Rubin, A., Dolgikh, D., Gordeliy, V., Lanyi, J., and Kirpichnikov, M. (2015) ESR - A retinal protein with unusual properties from Exiguobacterium sibiricum, Biochemistry (Moscow), 80, 688-700, doi: 10.1134/S000629791506005X.
  22. Drachev, L. A., Jasaitis, A. A., Kaulen, A. D., Kondrashin, A. A., Liberman, E. A., Nemecek, I. B., Ostroumov, S. A., Semenov, A. Y., and Skulachev, V. P. (1974) Direct measurement of electric current generation by cytochrome oxidase, H+-ATPase and bacteriorhodopsin, Nature, 249, 321-324, doi: 10.1038/249321a0.
  23. Drachev, L. A., Kaulen, A. D., Semenov, A. Y., Severina, I. I., and Skulachev, V. P. (1979) Lipid-impregnated filters as a tool for studying the electric current-generating proteins, Anal. Biochem., 96, 250-262, doi: 10.1016/0003-2697(79)90580-3.
  24. Drachev, L. A., Kaulen, A. D., Khitrina, L. V., and Skulachev, V. P. (1981) Fast stages of photoelectric processes in biological membranes. I. Bacteriorhodopsin, Eur. J. Biochem., 117, 461-470, doi: 10.1111/j.1432-1033.1981.tb06361.x.
  25. Siletsky, S. A., Mamedov, M. D., Lukashev, E. P., Balashov, S. P., and Petrovskaya, L. E. (2022) Application of direct electrometry in studies of microbial rhodopsins reconstituted in proteoliposomes, Biophys. Rev., 14, 771-778, doi: 10.1007/s12551-022-00986-y.
  26. Kovalev, K., Volkov, D., Astashkin, R., Alekseev, A., Gushchin, I., Haro-Moreno, J. M., Chizhov, I., Siletsky, S., Mamedov, M., and Rogachev, A. (2020) High-resolution structural insights into the heliorhodopsin family, Proc. Natl. Acad. Sci. USA, 117, 4131-4141, doi: 10.1073/pnas.1915888117.
  27. Rokitskaya, T. I., Maliar, N. L., Siletsky, S. A., Gordeliy, V., and Antonenko, Y. N. (2022) Electrophysiological Characterization of Microbial Rhodopsin Transport Properties: Electrometric and ΔpH Measurements Using Planar Lipid Bilayer, Collodion Film, and Fluorescent Probe Approaches, in Rhodopsin: Methods and Protocols (Gordeliy, V. ed) Springer US, New York, NY, pp. 259-275, doi: 10.1007/978-1-0716-2329-9_12.
  28. Mamedov, M. D., Beshta, O. E., Samuilov, V. D., and Semenov, A. Y. (1994) Electrogenicity at the secondary quinone acceptor site of cyanobacterial photosystem II, FEBS Lett., 350, 96-98, doi: 10.1016/0014-5793(94)00742-X.
  29. Mamedov, M., Gadzhieva, R., Gourovskaya, K., Drachev, L., and Semenov, A. Y. (1996) Electrogenicity at the donor/acceptor sides of cyanobacterial photosystem I, J. Bioenerg. Biomembr., 28, 517-522, doi: 10.1007/BF02110441.
  30. Mamedov, M. D., Tyunyatkina, A. A., Siletsky, S. A., and Semenov, A. Y. (2006) Voltage changes involving photosystem II quinone-iron complex turnover, Eur. Biophys. J., 35, 647-654, doi: 10.1007/s00249-006-0069-3.
  31. Siletsky, S. A., and Konstantinov, A. A. (2012) Cytochrome c oxidase: charge translocation coupled to single-electron partial steps of the catalytic cycle, Biochim. Biophys. Acta Bioenergetics, 1817, 476-488, doi: 10.1016/j.bbabio.2011.08.003.
  32. Siletsky, S. A., Soulimane, T., Belevich, I., Gennis, R. B., and Wikström, M. (2021) Specific inhibition of proton pumping by the T315V mutation in the K channel of cytochrome ba3 from Thermus thermophilus, Biochim. Biophys. Acta Bioenergetics, 1862, 148450, doi: 10.1016/j.bbabio.2021.148450.
  33. Siletsky, S. A., and Gennis, R. B. (2021) Time-resolved electrometric study of the F→O transition in cytochrome c oxidase. The effect of Zn2+ ions on the positive side of the membrane, Biochemistry (Moscow), 86, 105-122, doi: 10.1134/S0006297921010107.
  34. Siletsky, S. A., Belevich, I., Belevich, N. P., Soulimane, T., and Wikström, M. (2017) Time-resolved generation of membrane potential by ba3 cytochrome c oxidase from Thermus thermophilus coupled to single electron injection into the O and OH states, Biochim. Biophys. Acta Bioenergetics, 1858, 915-926, doi: 10.1016/j.bbabio.2017.08.007.
  35. Siletsky, S. A., Belevich, I., Belevich, N. P., Soulimane, T., and Verkhovsky, M. I. (2011) Time-resolved single-turnover of caa3 oxidase from Thermus thermophilus. Fifth electron of the fully reduced enzyme converts OH into EH state, Biochim. Biophys. Acta Bioenergetics, 1807, 1162-1169, doi: 10.1016/j.bbabio.2011.05.006.
  36. Lozier, R. H., Bogomolni, R. A., and Stoeckenius, W. (1975) Bacteriorhodopsin: A light-driven proton pump in Halobacterium halobium, Biophys. J., 15, 955-963, doi: 10.1016/S0006-3495(75)85875-9.
  37. Dioumaev, A. K., Brown, L. S., Shih, J., Spudich, E. N., Spudich, J. L., and Lanyi, J. K. (2002) Proton transfers in the photochemical reaction cycle of proteorhodopsin, Biochemistry, 41, 5348-5358, doi: 10.1021/bi025563x.
  38. Balashov, S. P., Petrovskaya, L. E., Lukashev, E. P., Imasheva, E. S., Dioumaev, A. K., Wang, J. M., Sychev, S. V., Dolgikh, D. A., Rubin, A. B., Kirpichnikov, M. P., and Lanyi, J. K. (2012) Aspartate-histidine interaction in the retinal Schiff base counterion of the light-driven proton pump of Exiguobacterium sibiricum, Biochemistry, 51, 5748-5762, doi: 10.1021/bi300409m.
  39. Siletsky, S. A., Mamedov, M. D., Lukashev, E. P., Balashov, S. P., Dolgikh, D. A., Rubin, A. B., Kirpichnikov, M. P., and Petrovskaya, L. E. (2016) Electrogenic steps of light-driven proton transport in ESR, a retinal protein from Exiguobacterium sibiricum, Biochim. Biophys. Acta Bioenergetics, 1857, 1741-1750, doi: 10.1016/j.bbabio.2016.08.004.
  40. Dioumaev, A. K., Petrovskaya, L. E., Wang, J. M., Balashov, S. P., Dolgikh, D. A., Kirpichnikov, M. P., and Lanyi, J. K. (2013) Photocycle of Exiguobacterium sibiricum rhodopsin characterized by low-temperature trapping in the IR and time-resolved studies in the visible, J. Phys. Chem. B, 117, 7235-7253, doi: 10.1021/jp402430w.
  41. Balashov, S. P., Petrovskaya, L. E., Imasheva, E. S., Lukashev, E. P., Dioumaev, A. K., Wang, J. M., Sychev, S. V., Dolgikh, D. A., Rubin, A. B., Kirpichnikov, M. P., and Lanyi, J. K. (2013) Breaking the carboxyl rule: lysine 96 facilitates reprotonation of the Schiff base in the photocycle of a retinal protein from Exiguobacterium sibiricum, J. Biol. Chem., 288, 21254-21265, doi: 10.1074/jbc.M113.465138.
  42. Huang, K.-S., Bayley, H., and Khorana, H. G. (1980) Delipidation of bacteriorhodopsin and reconstitution with exogenous phospholipid, Proc. Nat. Acad. Sci. USA, 77, 323-327, doi: 10.1073/pnas.77.1.323.
  43. Kaulen, A. D. (2000) Electrogenic processes and protein conformational changes accompanying the bacteriorhodopsin photocycle, Biochim. Biophys. Acta Bioenergetics, 1460, 204-219, doi: 10.1016/S0005-2728(00)00140-7.
  44. Gushchin, I., Chervakov, P., Kuzmichev, P., Popov, A. N., Round, E., Borshchevskiy, V., Ishchenko, A., Petrovskaya, L., Chupin, V., Dolgikh, D. A., Arseniev, A. S., Kirpichnikov, M., and Gordeliy, V. (2013) Structural insights into the proton pumping by unusual proteorhodopsin from nonmarine bacteria, Proc. Natl. Acad. Sci. USA, 110, 12631-12636, doi: 10.1073/pnas.1221629110.
  45. Zscherp, C., Schlesinger, R., Tittor, J., Oesterhelt, D., and Heberle, J. (1999) In situ determination of transient pKa changes of internal amino acids of bacteriorhodopsin by using time-resolved attenuated total reflection Fourier-transform infrared spectroscopy, Proc. Natl. Acad. Sci. USA, 96, 5498-5503, doi: 10.1073/pnas.96.10.5498.
  46. Petrovskaya, L. E., Lukashev, E. P., Siletsky, S. A., Imasheva, E. S., Wang, J. M., Mamedov, M. D., Kryukova, E. A., Dolgikh, D. A., Rubin, A. B., Kirpichnikov, M. P., Balashov, S. P., and Lanyi, J. K. (2022) Proton transfer reactions in donor site mutants of ESR, a retinal protein from Exiguobacterium sibiricum, J. Photochem. Photobiol. B, 234, 112529, doi: 10.1016/j.jphotobiol.2022.112529.
  47. Siletsky, S. A., Mamedov, M. D., Lukashev, E. P., Balashov, S. P., Dolgikh, D. A., Rubin, A. B., Kirpichnikov, M. P., and Petrovskaya, L. E. (2019) Elimination of proton donor strongly affects directionality and efficiency of proton transport in ESR, a light-driven proton pump from Exiguobacterium sibiricum, Biochim. Biophys. Acta Bioenergetics, 1860, 1-11, doi: 10.1016/j.bbabio.2018.09.365.
  48. Otto, H., Marti, T., Holtz, M., Mogi, T., Lindau, M., Khorana, H. G., and Heyn, M. P. (1989) Aspartic acid-96 is the internal proton donor in the reprotonaion of the Schiff base of bacteriorhodopsin, Proc. Natl. Acad. Sci. USA, 86, 9228-9232, doi: 10.1073/pnas.86.23.9228.
  49. Holz, M., Drachev, L. A., Mogi, T., Otto, H., Kaulen, A. D., Heyn, M. P., Skulachev, V. P., and Khorana, H. G. (1989) Replacement of aspartic acid-96 by asparagine in bacteriorhodopsin slows both the decay of the M intermediate and the associated proton movement, Proc. Natl. Acad. Sci. USA, 86, 2167-2171, doi: 10.1073/pnas.86.7.2167.
  50. Dioumaev, A. K., Brown, L. S., Needleman, R., and Lanyi, J. K. (2001) Coupling of the reisomerization of the retinal, proton uptake, and reprotonation of Asp-96 in the N photointermediate of bacteriorhodopsin, Biochemistry, 40, 11308-11317, doi: 10.1021/bi011027d.
  51. Sasaki, S., Tamogami, J., Nishiya, K., Demura, M., and Kikukawa, T. (2021) Replaceability of Schiff base proton donors in light-driven proton pump rhodopsins, J. Biol. Chem., 297, 101013, doi: 10.1016/j.jbc.2021.101013.
  52. Balashov, S. P., Imasheva, E. S., Boichenko, V. A., Antón, J., Wang, J. M., and Lanyi, J. K. (2005) Xanthorhodopsin: a proton pump with a light-harvesting carotenoid antenna, Science, 309, 2061-2064, doi: 10.1126/science.1118046.
  53. Luecke, H., Schobert, B., Stagno, J., Imasheva, E. S., Wang, J. M., Balashov, S. P., and Lanyi, J. K. (2008) Crystallographic structure of xanthorhodopsin, the light-driven proton pump with a dual chromophore, Proc. Natl. Acad. Sci. USA, 105, 16561-16565, doi: 10.1073/pnas.0807162105.
  54. Ran, T., Ozorowski, G., Gao, Y., Sineshchekov, O. A., Wang, W., Spudich, J. L., and Luecke, H. (2013) Cross-protomer interaction with the photoactive site in oligomeric proteorhodopsin complexes, Acta Cryst., D69, 1965-1980, doi: 10.1107/S0907444913017575.
  55. Maciejko, J., Kaur, J., Becker-Baldus, J., and Glaubitz, C. (2019) Photocycle-dependent conformational changes in the proteorhodopsin cross-protomer Asp-His-Trp triad revealed by DNP-enhanced MAS-NMR, Proc. Nat. Acad. Sci. USA, 116, 8342-8349, doi: 10.1073/pnas.1817665116.
  56. Morizumi, T., Ou, W.-L., Van Eps, N., Inoue, K., Kandori, H., Brown, L. S., and Ernst, O. P. (2019) X-ray crystallographic structure and oligomerization of Gloeobacter rhodopsin, Sci. Rep., 9, 1-14, doi: 10.1038/s41598-019-47445-5.
  57. Siletsky, S. A., Lukashev, E. P., Mamedov, M. D., Borisov, V. B., Balashov, S. P., Dolgikh, D. A., Rubin, A. B., Kirpichnikov, M. P., and Petrovskaya, L. E. (2021) His57 controls the efficiency of ESR, a light-driven proton pump from Exiguobacterium sibiricum at low and high pH, Biochim. Biophys. Acta Bioenergetics, 1862, 148328, doi: 10.1016/j.bbabio.2020.148328.
  58. Luecke, H., Schobert, B., Richter, H.-T., Cartailler, J.-P., and Lanyi, J. K. (1999) Structure of bacteriorhodopsin at 1.55 Å resolution, J. Mol. Biol., 291, 899-911, doi: 10.1006/jmbi.1999.3027.
  59. Iverson, V., Morris, R. M., Frazar, C. D., Berthiaume, C. T., Morales, R. L., and Armbrust, E. V. (2012) Untangling genomes from metagenomes: revealing an uncultured class of marine Euryarchaeota, Science, 335, 587-590, doi: 10.1126/science.1212665.
  60. Martin-Cuadrado, A. B., Garcia-Heredia, I., Molto, A. G., Lopez-Ubeda, R., Kimes, N., Lopez-Garcia, P., Moreira, D., and Rodriguez-Valera, F. (2015) A new class of marine Euryarchaeota group II from the Mediterranean deep chlorophyll maximum, ISME J., 9, 1619-1634, doi: 10.1038/ismej.2014.249.
  61. Finkel, O. M., Béjà, O., and Belkin, S. (2013) Global abundance of microbial rhodopsins, ISME J., 7, 448-451, doi: 10.1038/ismej.2012.112.
  62. Gómez-Consarnau, L., Raven, J. A., Levine, N. M., Cutter, L. S., Wang, D., Seegers, B., Arístegui, J., Fuhrman, J. A., Gasol, J. M., and Sañudo-Wilhelmy, S. A. (2019) Microbial rhodopsins are major contributors to the solar energy captured in the sea, Sci. Adv., 5, eaaw8855, doi: 10.1126/sciadv.aaw8855.
  63. Kojima, K., Shibukawa, A., and Sudo, Y. (2020) The unlimited potential of microbial rhodopsins as optical tools, Biochemistry, 59, 218-229, doi: 10.1021/acs.biochem.9b00768.
  64. De Grip, W. J., and Ganapathy, S. (2022) Rhodopsins: an excitingly versatile protein species for research, development and creative engineering, Front. Chem., 10, 879609, doi: 10.3389/fchem.2022.879609.
  65. Emiliani, V., Entcheva, E., Hedrich, R., Hegemann, P., Konrad, K. R., Lüscher, C., Mahn, M., Pan, Z.-H., Sims, R. R., Vierock, J., and Yizhar, O. (2022) Optogenetics for light control of biological systems, Nat. Rev. Meth. Primers, 2, 55, doi: 10.1038/s43586-022-00136-4.

Copyright (c) 2023 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies