Retrotransposons and telomeres

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Transposable elements (TEs) comprise a significant part of eukaryotic genomes being a major source of genome instability and mutagenesis. Cellular defense systems suppress the TE expansion at all stages of their life cycle. Piwi proteins and Piwi-interacting RNAs (piRNAs) are key elements of the anti-transposon defense system, which control TE activity in metazoan gonads preventing inheritable transpositions and developmental defects. In this review, we discuss various regulatory mechanisms by which small RNAs combat TE activity. However, active transposons persist, suggesting these powerful anti-transposon defense mechanisms have a limited capacity. A growing body of evidence suggests that increased TE activity coincides with genome reprogramming and telomere lengthening in different species. In the Drosophila fruit fly, whose telomeres consist only of retrotransposons, a piRNA-mediated mechanism is required for telomere maintenance and their length control. Therefore, the efficacy of protective mechanisms must be finely balanced in order not only to suppress the activity of transposons, but also to maintain the proper length and stability of telomeres. Structural and functional relationship between the telomere homeostasis and LINE1 retrotransposon in human cells indicates a close link between selfish TEs and the vital structure of the genome, telomeres. This relationship, which permits the retention of active TEs in the genome, is reportedly a legacy of the retrotransposon origin of telomeres. The maintenance of telomeres and the execution of other crucial roles that TEs acquired during the process of their domestication in the genome serve as a type of payment for such a “service.”

作者简介

A. Kalmykova

Koltzov Institute of Developmental Biology, Russian Academy of Sciences

Email: allakalm@idbras.ru
119334 Moscow, Russia

O. Sokolova

Koltzov Institute of Developmental Biology, Russian Academy of Sciences

119334 Moscow, Russia

参考

  1. Fueyo, R., Judd, J., Feschotte, C., and Wysocka, J. (2022) Roles of transposable elements in the regulation of mammalian transcription, Nat. Rev. Mol. Cell Biol., 23, 481-497, doi: 10.1038/s41580-022-00457-y.
  2. Modzelewski, A. J., Gan Chong, J., Wang, T., and He, L. (2022) Mammalian genome innovation through transposon domestication, Nat. Cell Biol., 24, 1332-1340, doi: 10.1038/s41556-022-00970-4.
  3. Almojil, D., Bourgeois, Y., Falis, M., Hariyani, I., Wilcox, J., and Boissinot, S. (2021) The structural, functional and evolutionary impact of transposable elements in eukaryotes, Genes (Basel), 12, 918, doi: 10.3390/genes12060918.
  4. Nishihara, H. (2020) Transposable elements as genetic accelerators of evolution: contribution to genome size, gene regulatory network rewiring and morphological innovation, Genes Genet. Syst., 94, 269-281, doi: 10.1266/ggs.19-00029.
  5. Hartley, G., and O'Neill, R. J. (2019) Centromere repeats: hidden gems of the genome, Genes (Basel), 10, 223, doi: 10.3390/genes10030223.
  6. Chang, C. H., Chavan, A., Palladino, J., Wei, X., Martins, N. M. C., Santinello, B., Chen, C. C., Erceg, J., Beliveau, B. J., Wu, C. T., Larracuente, A. M., and Mellone, B. G. (2019) Islands of retroelements are major components of Drosophila centromeres, PLoS Biol., 17, e3000241, doi: 10.1371/journal.pbio.3000241.
  7. Chueh, A. C., Northrop, E. L., Brettingham-Moore, K. H., Choo, K. H., and Wong, L. H. (2009) LINE retrotransposon RNA is an essential structural and functional epigenetic component of a core neocentromeric chromatin, PLoS Genet., 5, e1000354, doi: 10.1371/journal.pgen.1000354.
  8. Nelson, J. O., Slicko, A., and Yamashita, Y. M. (2023) The retrotransposon R2 maintains Drosophila ribosomal DNA repeats, Proc. Natl. Acad. Sci. USA, 120, e2221613120, doi: 10.1073/pnas.2221613120.
  9. Olovnikov, A. M. (1971) Principle of marginotomy in template synthesis of polynucleotides [in Russian], Dokl. Akad. Nauk SSSR, 201, 1496-1499.
  10. Olovnikov, A. M. (1973) A theory of marginotomy. The incomplete copying of template margin in enzymic synthesis of polynucleotides and biological significance of the phenomenon, J. Theor. Biol., 41, 181-190, doi: 10.1016/0022-5193(73)90198-7.
  11. Blackburn, E. H. (1992) Telomerases, Annu. Rev. Biochem., 61, 113-129, doi: 10.1146/annurev.bi.61.070192.000553.
  12. Garavis, M., Gonzalez, C., and Villasante, A. (2013) On the origin of the eukaryotic chromosome: the role of noncanonical DNA structures in telomere evolution, Genome Biol. Evol., 5, 1142-1150, doi: 10.1093/gbe/evt079.
  13. Gladyshev, E. A., and Arkhipova, I. R. (2007) Telomere-associated endonuclease-deficient Penelope-like retroelements in diverse eukaryotes, Proc. Natl. Acad. Sci. USA, 104, 9352-9357, doi: 10.1073/pnas.0702741104.
  14. Nakamura, T. M., and Cech, T. R. (1998) Reversing time: origin of telomerase, Cell, 92, 587-590, doi: 10.1016/s0092-8674(00)81123-x.
  15. Eickbush, T. H. (1997) Telomerase and retrotransposons: which came first? Science, 277, 911-912, doi: 10.1126/science.277.5328.911.
  16. Kordyukova, M., Olovnikov, I., and Kalmykova, A. (2018) Transposon control mechanisms in telomere biology, Curr. Opin. Genet. Dev., 49, 56-62, doi: 10.1016/j.gde.2018.03.002.
  17. Morrish, T. A., Garcia-Perez, J. L., Stamato, T. D., Taccioli, G. E., Sekiguchi, J., and Moran, J. V. (2007) Endonuclease-independent LINE-1 retrotransposition at mammalian telomeres, Nature, 446, 208-212, doi: 10.1038/nature05560.
  18. Roth, C. W., Kobeski, F., Walter, M. F., and Biessmann, H. (1997) Chromosome end elongation by recombination in the mosquito Anopheles gambiae, Mol. Cell. Biol., 17, 5176-5183, doi: 10.1128/MCB.17.9.5176.
  19. Compton, A., Liang, J., Chen, C., Lukyanchikova, V., Qi, Y., Potters, M., Settlage, R., Miller, D., Deschamps, S., Mao, C., Llaca, V., Sharakhov, I. V., and Tu, Z. (2020) The beginning of the end: a chromosomal assembly of the new world malaria mosquito ends with a novel telomere, G3 (Bethesda), 10, 3811-3819, doi: 10.1534/g3.120.401654.
  20. Mason, J. M., Randall, T. A., and Capkova Frydrychova, R. (2016) Telomerase lost? Chromosoma, 125, 65-73, doi: 10.1007/s00412-015-0528-7.
  21. Pardue, M. L., and DeBaryshe, P. G. (2008) Drosophila telomeres: a variation on the telomerase theme, Fly, 2, 101-110, doi: 10.4161/fly.6393.
  22. Casacuberta, E. (2017) Drosophila: retrotransposons making up telomeres, Viruses, 9, 192, doi: 10.3390/v9070192.
  23. Fujiwara, H., Osanai, M., Matsumoto, T., and Kojima, K. K. (2005) Telomere-specific non-LTR retrotransposons and telomere maintenance in the silkworm, Bombyx mori, Chromosome Res., 13, 455-467, doi: 10.1007/s10577-005-0990-9.
  24. Guerra, M., Kenton, A., and Bennett, M. D. (1996) rDNA sites in mitotic and polytene chromosomes of Vigna unguiculata (L.) Walp. and Phaseolus coccineus L. revealed by in situ hybridization, Ann. Botany, 78, 157-161, doi: 10.1006/anbo.1996.0108.
  25. Iwata-Otsubo, A., Lin, J. Y., Gill, N., and Jackson, S. A. (2016) Highly distinct chromosomal structures in cowpea (Vigna unguiculata), as revealed by molecular cytogenetic analysis, Chromosome Res., 24, 197-216, doi: 10.1007/s10577-015-9515-3.
  26. Zhimulev, I. F. (1996) Morphology and structure of polytene chromosomes, Adv. Genet., 34, 1-497, doi: 10.1016/s0065-2660(08)60533-7.
  27. Jedlicka, P., Tokan, V., Kejnovska, I., Hobza, R., and Kejnovsky, E. (2023) Telomeric retrotransposons show propensity to form G-quadruplexes in various eukaryotic species, Mob. DNA, 14, 3, doi: 10.1186/s13100-023-00291-9.
  28. Wells, J. N., and Feschotte, C. (2020) A field guide to eukaryotic transposable elements, Annu. Rev. Genet., 54, 539-561, doi: 10.1146/annurev-genet-040620-022145.
  29. Merel, V., Boulesteix, M., Fablet, M., and Vieira, C. (2020) Transposable elements in Drosophila, Mob. DNA, 11, 23, doi: 10.1186/s13100-020-00213-z.
  30. Anwar, S. L., Wulaningsih, W., and Lehmann, U. (2017) Transposable elements in human cancer: causes and consequences of deregulation, Int. J. Mol. Sci., 18, 974, doi: 10.3390/ijms18050974.
  31. Huang, C. R., Burns, K. H., and Boeke, J. D. (2012) Active transposition in genomes, Annu. Rev. Genet., 46, 651-675, doi: 10.1146/annurev-genet-110711-155616.
  32. Lomberk, G., Wallrath, L., and Urrutia, R. (2006) The heterochromatin protein 1 family, Genome Biol., 7, 228, doi: 10.1186/gb-2006-7-7-228.
  33. Lyko, F. (2018) The DNA methyltransferase family: a versatile toolkit for epigenetic regulation, Nat. Rev. Genet., 19, 81-92, doi: 10.1038/nrg.2017.80.
  34. Ecco, G., Cassano, M., Kauzlaric, A., Duc, J., Coluccio, A., Offner, S., Imbeault, M., Rowe, H. M., Turelli, P., and Trono, D. (2016) Transposable elements and their KRAB-ZFP controllers regulate gene expression in adult tissues, Dev. Cell, 36, 611-623, doi: 10.1016/j.devcel.2016.02.024.
  35. Yang, P., Wang, Y., and Macfarlan, T. S. (2017) The role of KRAB-ZFPs in transposable element repression and mammalian evolution, Trends Genet., 33, 871-881, doi: 10.1016/j.tig.2017.08.006.
  36. Czech, B., Munafo, M., Ciabrelli, F., Eastwood, E. L., Fabry, M. H., Kneuss, E., and Hannon, G. J. (2018) piRNA-guided genome defense: from biogenesis to silencing, Annu. Rev. Genet., 52, 131-157, doi: 10.1146/annurev-genet-120417-031441.
  37. Ozata, D. M., Gainetdinov, I., Zoch, A., O'Carroll, D., and Zamore, P. D. (2019) PIWI-interacting RNAs: small RNAs with big functions, Nat. Rev. Genet., 20, 89-108, doi: 10.1038/s41576-018-0073-3.
  38. Andreev, V. I., Yu, C., Wang, J., Schnabl, J., Tirian, L., Gehre, M., Handler, D., Duchek, P., Novatchkova, M., Baumgartner, L., Meixner, K., Sienski, G., Patel, D. J., and Brennecke, J. (2022) Panoramix SUMOylation on chromatin connects the piRNA pathway to the cellular heterochromatin machinery, Nat. Struct. Mol. Biol., 29, 130-142, doi: 10.1038/s41594-022-00721-x.
  39. Brennecke, J., Aravin, A. A., Stark, A., Dus, M., Kellis, M., Sachidanandam, R., and Hannon, G. J. (2007) Discrete small RNA-generating loci as master regulators of transposon activity in Drosophila, Cell, 128, 1089-1103, doi: 10.1016/j.cell.2007.01.043.
  40. Aravin, A., Gaidatzis, D., Pfeffer, S., Lagos-Quintana, M., Landgraf, P., Iovino, N., Morris, P., Brownstein, M. J., Kuramochi-Miyagawa, S., Nakano, T., Chien, M., Russo, J. J., Ju, J., Sheridan, R., Sander, C., Zavolan, M., and Tuschl, T. (2006) A novel class of small RNAs bind to MILI protein in mouse testes, Nature, 442, 203-207, doi: 10.1038/nature04916.
  41. Sarot, E., Payen-Groschene, G., Bucheton, A., and Pelisson, A. (2004) Evidence for a piwi-dependent RNA silencing of the gypsy endogenous retrovirus by the Drosophila melanogaster flamenco gene, Genetics, 166, 1313-1321, doi: 10.1534/genetics.166.3.1313.
  42. Aguiar, E., de Almeida, J. P. P., Queiroz, L. R., Oliveira, L. S., Olmo, R. P., de Faria, I., Imler, J. L., Gruber, A., Matthews, B. J., and Marques, J. T. (2020) A single unidirectional piRNA cluster similar to the flamenco locus is the major source of EVE-derived transcription and small RNAs in Aedes aegypti mosquitoes, RNA, 26, 581-594, doi: 10.1261/rna.073965.119.
  43. Rozhkov, N. V., Zelentsova, E. S., Shostak, N. G., and Evgen'ev, M. B. (2011) Expression of Drosophila virilis retroelements and role of small RNAs in their intrastrain transposition, PLoS One, 6, e21883, doi: 10.1371/journal.pone.0021883.
  44. Van Lopik, J., Alizada, A., Trapotsi, M. A., Hannon, G. J., Bornel�v, S., and Czech Nicholson, B. (2023) Unistrand piRNA clusters are an evolutionarily conserved mechanism to suppress endogenous retroviruses across the Drosophila genus, Nat Commun., 14, 7337, doi: 10.1038/s41467-023-42787-1.
  45. Aravin, A. A., Sachidanandam, R., Bourc'his, D., Schaefer, C., Pezic, D., Toth, K. F., Bestor, T., and Hannon, G. J. (2008) A piRNA pathway primed by individual transposons is linked to de novo DNA methylation in mice, Mol. Cell, 31, 785-799, doi: 10.1016/j.molcel.2008.09.003.
  46. Andersen, P. R., Tirian, L., Vunjak, M., and Brennecke, J. (2017) A heterochromatin-dependent transcription machinery drives piRNA expression, Nature, 549, 54-59, doi: 10.1038/nature23482.
  47. Sato, K., and Siomi, M. C. (2020) The piRNA pathway in Drosophila ovarian germ and somatic cells, Proc. Jpn. Acad. Ser. B Phys. Biol. Sci., 96, 32-42, doi: 10.2183/pjab.96.003.
  48. Khurana, J. S., Wang, J., Xu, J., Koppetsch, B. S., Thomson, T. C., Nowosielska, A., Li, C., Zamore, P. D., Weng, Z., and Theurkauf, W. E. (2011) Adaptation to P element transposon invasion in Drosophila melanogaster, Cell, 147, 1551-1563, doi: 10.1016/j.cell.2011.11.042.
  49. Shpiz, S., Ryazansky, S., Olovnikov, I., Abramov, Y., and Kalmykova, A. (2014) Euchromatic transposon insertions trigger production of novel Pi- and endo-siRNAs at the target sites in the Drosophila germline, PLoS Genet., 10, e1004138, doi: 10.1371/journal.pgen.1004138.
  50. Speek, M. (2001) Antisense promoter of human L1 retrotransposon drives transcription of adjacent cellular genes, Mol. Cell. Biol., 21, 1973-1985, doi: 10.1128/MCB.21.6.1973-1985.2001.
  51. Yang, N., and Kazazian, H. H., Jr. (2006) L1 retrotransposition is suppressed by endogenously encoded small interfering RNAs in human cultured cells, Nat. Struct. Mol. Biol., 13, 763-771, doi: 10.1038/nsmb1141.
  52. Komarov, P. A., Sokolova, O., Akulenko, N., Brasset, E., Jensen, S., and Kalmykova, A. (2020) Epigenetic requirements for triggering heterochromatinization and Piwi-interacting RNA production from transgenes in the Drosophila germline, Cells, 9, 922, doi: 10.3390/cells9040922.
  53. De Vanssay, A., Bouge, A. L., Boivin, A., Hermant, C., Teysset, L., Delmarre, V., Antoniewski, C., and Ronsseray, S. (2012) Paramutation in Drosophila linked to emergence of a piRNA-producing locus, Nature, 490, 112-115, doi: 10.1038/nature11416.
  54. Josse, T., Teysset, L., Todeschini, A. L., Sidor, C. M., Anxolabehere, D., and Ronsseray, S. (2007) Telomeric trans-silencing: an epigenetic repression combining RNA silencing and heterochromatin formation, PLoS Genet., 3, 1633-1643, doi: 10.1371/journal.pgen.0030158.
  55. Muerdter, F., Olovnikov, I., Molaro, A., Rozhkov, N. V., Czech, B., Gordon, A., Hannon, G. J., and Aravin, A. A. (2012) Production of artificial piRNAs in flies and mice, RNA, 18, 42-52, doi: 10.1261/rna.029769.111.
  56. Akulenko, N., Ryazansky, S., Morgunova, V., Komarov, P. A., Olovnikov, I., Vaury, C., Jensen, S., and Kalmykova, A. (2018) Transcriptional and chromatin changes accompanying de novo formation of transgenic piRNA clusters, RNA, 24, 574-584, doi: 10.1261/rna.062851.117.
  57. Olovnikov, I., Ryazansky, S., Shpiz, S., Lavrov, S., Abramov, Y., Vaury, C., Jensen, S., and Kalmykova, A. (2013) De novo piRNA cluster formation in the Drosophila germ line triggered by transgenes containing a transcribed transposon fragment, Nucleic Acids Res., 41, 5757-5768, doi: 10.1093/nar/gkt310.
  58. Gebert, D., Neubert, L. K., Lloyd, C., Gui, J., Lehmann, R., and Teixeira, F. K. (2021) Large Drosophila germline piRNA clusters are evolutionarily labile and dispensable for transposon regulation, Mol. Cell, 81, 3965-3978, doi: 10.1016/j.molcel.2021.07.011.
  59. Brennecke, J., Malone, C. D., Aravin, A. A., Sachidanandam, R., Stark, A., and Hannon, G. J. (2008) An epigenetic role for maternally inherited piRNAs in transposon silencing, Science, 322, 1387-1392, doi: 10.1126/science.1165171.
  60. Blumenstiel, J. P. (2019) Birth, school, work, death, and resurrection: the life stages and dynamics of transposable element proliferation, Genes (Basel), 10, 336, doi: 10.3390/genes10050336.
  61. Wallau, G. L., Vieira, C., and Loreto, E. L. S. (2018) Genetic exchange in eukaryotes through horizontal transfer: connected by the mobilome, Mob. DNA, 9, 6, doi: 10.1186/s13100-018-0112-9.
  62. Jensen, S., Gassama, M. P., and Heidmann, T. (1999) Taming of transposable elements by homology-dependent gene silencing, Nat. Genet., 21, 209-212, doi: 10.1038/5997.
  63. Kordyukova, M., Sokolova, O., Morgunova, V., Ryazansky, S., Akulenko, N., Glukhov, S., and Kalmykova, A. (2020) Nuclear Ccr4-Not mediates the degradation of telomeric and transposon transcripts at chromatin in the Drosophila germline, Nucleic Acids Res., 48, 141-156, doi: 10.1093/nar/gkz1072.
  64. Collart, M. A., and Panasenko, O. O. (2012) The Ccr4-Not complex, Gene, 492, 42-53, doi: 10.1016/j.gene.2011.09.033.
  65. Rozhkov, N. V., Hammell, M., and Hannon, G. J. (2013) Multiple roles for Piwi in silencing Drosophila transposons, Genes Dev., 27, 400-412, doi: 10.1101/gad.209767.112.
  66. Shpiz, S., Olovnikov, I., Sergeeva, A., Lavrov, S., Abramov, Y., Savitsky, M., and Kalmykova, A. (2011) Mechanism of the piRNA-mediated silencing of Drosophila telomeric retrotransposons, Nucleic Acids Res., 39, 8703-8711, doi: 10.1093/nar/gkr552.
  67. Sienski, G., Donertas, D., and Brennecke, J. (2012) Transcriptional silencing of transposons by piwi and maelstrom and its impact on chromatin state and gene expression, Cell, 151, 964-980, doi: 10.1016/j.cell.2012.10.040.
  68. Akkouche, A., Mugat, B., Barckmann, B., Varela-Chavez, C., Li, B., Raffel, R., Pelisson, A., and Chambeyron, S. (2017) Piwi is required during Drosophila embryogenesis to license dual-strand piRNA clusters for transposon repression in adult ovaries, Mol. Cell, 66, 411-419, doi: 10.1016/j.molcel.2017.03.017.
  69. Gunawardane, L. S., Saito, K., Nishida, K. M., Miyoshi, K., Kawamura, Y., Nagami, T., Siomi, H., and Siomi, M. C. (2007) A slicer-mediated mechanism for repeat-associated siRNA 5' end formation in Drosophila, Science, 315, 1587-1590, doi: 10.1126/science.1140494.
  70. Han, B. W., Wang, W., Li, C., Weng, Z., and Zamore, P. D. (2015) Noncoding RNA. piRNA-guided transposon cleavage initiates Zucchini-dependent, phased piRNA production, Science, 348, 817-821, doi: 10.1126/science.aaa1264.
  71. Mohn, F., Handler, D., and Brennecke, J. (2015) Noncoding RNA. piRNA-guided slicing specifies transcripts for Zucchini-dependent, phased piRNA biogenesis, Science, 348, 812-817, doi: 10.1126/science.aaa1039.
  72. Lewis, S. H., Salmela, H., and Obbard, D. J. (2016) Duplication and diversification of dipteran argonaute genes, and the evolutionary divergence of Piwi and aubergine, Genome Biol. Evol., 8, 507-518, doi: 10.1093/gbe/evw018.
  73. Parhad, S. S., Tu, S., Weng, Z., and Theurkauf, W. E. (2017) Adaptive evolution leads to cross-species incompatibility in the piRNA transposon silencing machinery, Dev. Cell, 43, 60-70 e65, doi: 10.1016/j.devcel.2017.08.012.
  74. Vermaak, D., Henikoff, S., and Malik, H. S. (2005) Positive selection drives the evolution of rhino, a member of the heterochromatin protein 1 family in Drosophila, PLoS Genet., 1, 96-108, doi: 10.1371/journal.pgen.0010009.
  75. Savitsky, M., Kwon, D., Georgiev, P., Kalmykova, A., and Gvozdev, V. (2006) Telomere elongation is under the control of the RNAi-based mechanism in the Drosophila germline, Genes Dev., 20, 345-354, doi: 10.1101/gad.370206.
  76. Danilevskaya, O. N., Traverse, K. L., Hogan, N. C., DeBaryshe, P. G., and Pardue, M. L. (1999) The two Drosophila telomeric transposable elements have very different patterns of transcription, Mol. Cell. Biol., 19, 873-881, doi: 10.1128/MCB.19.1.873.
  77. Maxwell, P. H., Belote, J. M., and Levis, R. W. (2006) Identification of multiple transcription initiation, polyadenylation, and splice sites in the Drosophila melanogaster TART family of telomeric retrotransposons, Nucleic Acids Res., 34, 5498-5507, doi: 10.1093/nar/gkl709.
  78. Radion, E., Ryazansky, S., Akulenko, N., Rozovsky, Y., Kwon, D., Morgunova, V., Olovnikov, I., and Kalmykova, A. (2017) Telomeric retrotransposon HeT-A contains a bidirectional promoter that initiates divergent transcription of piRNA precursors in Drosophila germline, J. Mol. Biol., 429, 3280-3289, doi: 10.1016/j.jmb.2016.12.002.
  79. Shpiz, S., Kwon, D., Rozovsky, Y., and Kalmykova, A. (2009) rasiRNA pathway controls antisense expression of Drosophila telomeric retrotransposons in the nucleus, Nucleic Acids Res., 37, 268-278, doi: 10.1093/nar/gkn960.
  80. Tatsuke, T., Sakashita, K., Masaki, Y., Lee, J. M., Kawaguchi, Y., and Kusakabe, T. (2010) The telomere-specific non-LTR retrotransposons SART1 and TRAS1 are suppressed by Piwi subfamily proteins in the silkworm, Bombyx mori, Cell. Mol. Biol. Lett., 15, 118-133, doi: 10.2478/s11658-009-0038-9.
  81. Radion, E., Morgunova, V., Ryazansky, S., Akulenko, N., Lavrov, S., Abramov, Y., Komarov, P. A., Glukhov, S. I., Olovnikov, I., and Kalmykova, A. (2018) Key role of piRNAs in telomeric chromatin maintenance and telomere nuclear positioning in Drosophila germline, Epigenetics Chromatin, 11, 40, doi: 10.1186/s13072-018-0210-4.
  82. Wagner, E., Clement, S. L., and Lykke-Andersen, J. (2007) An unconventional human Ccr4-Caf1 deadenylase complex in nuclear Cajal bodies, Mol. Cell. Biol., 27, 1686-1695, doi: 10.1128/MCB.01483-06.
  83. Ryazansky, S., Radion, E., Mironova, A., Akulenko, N., Abramov, Y., Morgunova, V., Kordyukova, M. Y., Olovnikov, I., and Kalmykova, A. (2017) Natural variation of piRNA expression affects immunity to transposable elements, PLoS Genet., 13, e1006731, doi: 10.1371/journal.pgen.1006731.
  84. Maupetit-Mehouas, S., and Vaury, C. (2020) Transposon reactivation in the germline may be useful for both transposons and their host genomes, Cells, 9, 1172, doi: 10.3390/cells9051172.
  85. Dufourt, J., Dennis, C., Boivin, A., Gueguen, N., Theron, E., Goriaux, C., Pouchin, P., Ronsseray, S., Brasset, E., and Vaury, C. (2014) Spatio-temporal requirements for transposable element piRNA-mediated silencing during Drosophila oogenesis, Nucleic Acids Res., 42, 2512-2524, doi: 10.1093/nar/gkt1184.
  86. Theron, E., Maupetit-Mehouas, S., Pouchin, P., Baudet, L., Brasset, E., and Vaury, C. (2018) The interplay between the Argonaute proteins Piwi and Aub within Drosophila germarium is critical for oogenesis, piRNA biogenesis and TE silencing, Nucleic acids Res., 46, 10052-10065, doi: 10.1093/nar/gky695.
  87. Kordyukova, M., Morgunova, V., Olovnikov, I., Komarov, P. A., Mironova, A., Olenkina, O. M., and Kalmykova, A. (2018) Subcellular localization and Egl-mediated transport of telomeric retrotransposon HeT-A ribonucleoprotein particles in the Drosophila germline and early embryogenesis, PLoS One, 13, e0201787, doi: 10.1371/journal.pone.0201787.
  88. Sokolova, O., Morgunova, V., Sizova, T. V., Komarov, P. A., Olenkina, O. M., Babaev, D. S., Mikhaleva, E. A., Kwon, D. A., Erokhin, M., and Kalmykova, A. (2023) The insulator BEAF32 controls the spatial-temporal expression profile of the telomeric retrotransposon TART in the Drosophila germline, Development, 150, dev201678, doi: 10.1242/dev.201678.
  89. Zhang, L., Beaucher, M., Cheng, Y., and Rong, Y. S. (2014) Coordination of transposon expression with DNA replication in the targeting of telomeric retrotransposons in Drosophila, EMBO J., 33, 1148-1158, doi: 10.1002/embj.201386940.
  90. Rashkova, S., Karam, S. E., Kellum, R., and Pardue, M. L. (2002) Gag proteins of the two Drosophila telomeric retrotransposons are targeted to chromosome ends, J. Cell Biol., 159, 397-402, doi: 10.1083/jcb.200205039.
  91. Lopez-Panades, E., Gavis, E. R., and Casacuberta, E. (2015) Specific localization of the Drosophila telomere transposon proteins and RNAs, give insight in their behavior, control and telomere biology in this organism, PLoS One, 10, e0128573, doi: 10.1371/journal.pone.0128573.
  92. Lepesant, J. M. J., Iampietro, C., Galeota, E., Auge, B., Aguirrenbengoa, M., Merce, C., Chaubet, C., Rocher V., Haenlin, M., Waltzer, L., Pelizzola, M., and Di Stefano, L. (2020) A dual role of dLsd1 in oogenesis: regulating developmental genes and repressing transposons, Nucleic Acids Res., 48, 1206-1224, doi: 10.1093/nar/gkz1142.
  93. Yang, F., Quan, Z., Huang, H., He, M., Liu, X., Cai, T., and Xi, R. (2019) Ovaries absent links dLsd1 to HP1a for local H3K4 demethylation required for heterochromatic gene silencing, Elife, 8, e40806, doi: 10.7554/eLife.40806.
  94. Sienski, G., Batki, J., Senti, K. A., Donertas, D., Tirian, L., Meixner, K., and Brennecke, J. (2015) Silencio/CG9754 connects the Piwi-piRNA complex to the cellular heterochromatin machinery, Genes Dev., 29, 2258-2271, doi: 10.1101/gad.271908.115.
  95. Penke, T. J., McKay, D. J., Strahl, B. D., Matera, A. G., and Duronio, R. J. (2016) Direct interrogation of the role of H3K9 in metazoan heterochromatin function, Genes Dev., 30, 1866-1880, doi: 10.1101/gad.286278.116.
  96. Teo, R. Y. W., Anand, A., Sridhar, V., Okamura, K., and Kai, T. (2018) Heterochromatin protein 1a functions for piRNA biogenesis predominantly from pericentric and telomeric regions in Drosophila, Nat. Commun., 9, 1735, doi: 10.1038/s41467-018-03908-3.
  97. Wang, S. H., and Elgin, S. C. (2011) Drosophila Piwi functions downstream of piRNA production mediating a chromatin-based transposon silencing mechanism in female germ line, Proc. Natl. Acad. Sci. USA, 108, 21164-21169, doi: 10.1073/pnas.1107892109.
  98. Savitsky, M., Kravchuk, O., Melnikova, L., and Georgiev, P. (2002) Heterochromatin protein 1 is involved in control of telomere elongation in Drosophila melanogaster, Mol. Cell. Biol., 22, 3204-3218, doi: 10.1128/MCB.22.9.3204-3218.2002.
  99. Molaro, A., Falciatori, I., Hodges, E., Aravin, A. A., Marran, K., Rafii, S., McCombie, W. R., Smith, A. D., and Hannon, G. J. (2014) Two waves of de novo methylation during mouse germ cell development, Genes Dev., 28, 1544-1549, doi: 10.1101/gad.244350.114.
  100. Zoch, A., Auchynnikava, T., Berrens, R. V., Kabayama, Y., Schopp, T., Heep, M., Vasiliauskaite, L., Perez-Rico, Y. A., Cook, A. G., Shkumatava, A., Rappsilber, J., Allshire, R. C., and O'Carroll, D. (2020) SPOCD1 is an essential executor of piRNA-directed de novo DNA methylation, Nature, 584, 635-639, doi: 10.1038/s41586-020-2557-5.
  101. Zeng, Y., and Chen, T. (2019) DNA methylation reprogramming during mammalian development, Genes (Basel), 10, 257, doi: 10.3390/genes10040257.
  102. Shirane, K., Kurimoto, K., Yabuta, Y., Yamaji, M., Satoh, J., Ito, S., Watanabe, A., Hayashi, K., Saitou, M., and Sasaki, H. (2016) Global landscape and regulatory principles of DNA methylation reprogramming for germ cell specification by mouse pluripotent stem cells, Dev. Cell, 39, 87-103, doi: 10.1016/j.devcel.2016.08.008.
  103. Kohlrausch, F. B., Berteli, T. S., Wang, F., Navarro, P. A., and Keefe, D. L. (2022) Control of LINE-1 expression maintains genome integrity in germline and early embryo development, Reprod. Sci., 29, 328-340, doi: 10.1007/s43032-021-00461-1.
  104. Akiyama, T., Xin, L., Oda, M., Sharov, A. A., Amano, M., Piao, Y., Cadet, J. S., Dudekula, D. B., Qian, Y., Wang, W., Ko, S. B., and Ko, M. S. (2015) Transient bursts of Zscan4 expression are accompanied by the rapid derepression of heterochromatin in mouse embryonic stem cells, DNA Res., 22, 307-318, doi: 10.1093/dnares/dsv013.
  105. Dan, J., Rousseau, P., Hardikar, S., Veland, N., Wong, J., Autexier, C., and Chen, T. (2017) Zscan4 inhibits maintenance DNA methylation to facilitate telomere elongation in mouse embryonic stem cells, Cell Rep., 20, 1936-1949, doi: 10.1016/j.celrep.2017.07.070.
  106. Zalzman, M., Falco, G., Sharova, L. V., Nishiyama, A., Thomas, M., Lee, S. L., Stagg, C. A., Hoang, H. G., Yang, H. T., Indig, F. E., Wersto, R. P., and Ko, M. S. (2010) Zscan4 regulates telomere elongation and genomic stability in ES cells, Nature, 464, 858-863, doi: 10.1038/nature08882.
  107. Thool, M., Sundaravadivelu, P. K., Sudhagar, S., and Thummer, R. P. (2022) A comprehensive review on the role of ZSCAN4 in embryonic development, stem cells, and cancer, Stem Cell Rev. Rep., 18, 2740-2756, doi: 10.1007/s12015-022-10412-1.
  108. Dan, J., Zhou, Z., Wang, F., Wang, H., Guo, R., Keefe, D. L., and Liu, L. (2022) Zscan4 contributes to telomere maintenance in telomerase-deficient late generation mouse ESCs and human ALT cancer cells, Cells, 11, 456, doi: 10.3390/cells11030456.
  109. Peaston, A. E., Evsikov, A. V., Graber, J. H., de Vries, W. N., Holbrook, A. E., Solter, D., and Knowles, B. B. (2004) Retrotransposons regulate host genes in mouse oocytes and preimplantation embryos, Dev Cell., 7, 597-606, doi: 10.1016/j.devcel.2004.09.004.
  110. Kigami, D., Minami, N., Takayama, H., and Imai, H. (2003) MuERV-L is one of the earliest transcribed genes in mouse one-cell embryos, Biol. Reprod., 68, 651-654, doi: 10.1095/biolreprod.102.007906.
  111. Fadloun, A., Le Gras, S., Jost, B., Ziegler-Birling, C., Takahashi, H., Gorab, E., Carninci, P., and Torres-Padilla, M. E. (2013) Chromatin signatures and retrotransposon profiling in mouse embryos reveal regulation of LINE-1 by RNA, Nat. Struct. Mol. Biol., 20, 332-338, doi: 10.1038/nsmb.2495.
  112. Eckersley-Maslin, M. A., Svensson, V., Krueger, C., Stubbs, T. M., Giehr, P., Krueger, F., Miragaia, R. J., Kyriakopoulos, C., Berrens, R. V., Milagre, I., Walter, J., Teichmann, S. A., and Reik, W. (2016) MERVL/Zscan4 network activation results in transient genome-wide DNA demethylation of mESCs, Cell Rep., 17, 179-192, doi: 10.1016/j.celrep.2016.08.087.
  113. Wang, F., Chamani, I. J., Luo, D., Chan, K., Navarro, P. A., and Keefe, D. L. (2021) Inhibition of LINE-1 retrotransposition represses telomere reprogramming during mouse 2-cell embryo development, J. Assist Reprod. Genet., 38, 3145-3153, doi: 10.1007/s10815-021-02331-w.
  114. Percharde, M., Lin, C. J., Yin, Y., Guan, J., Peixoto, G. A., Bulut-Karslioglu, A., Biechele, S., Huang, B., Shen, X., and Ramalho-Santos, M. (2018) A LINE1-nucleolin partnership regulates early development and ESC identity, Cell, 174, 391-405, doi: 10.1016/j.cell.2018.05.043.
  115. Macfarlan, T. S., Gifford, W. D., Driscoll, S., Lettieri, K., Rowe, H. M., Bonanomi, D., Firth, A., Singer, O., Trono, D., and Pfaff, S. L. (2012) Embryonic stem cell potency fluctuates with endogenous retrovirus activity, Nature, 487, 57-63, doi: 10.1038/nature11244.
  116. Ghosh, S., and Zhou, Z. (2014) Genetics of aging, progeria and lamin disorders, Curr. Opin. Genet. Dev., 26, 41-46, doi: 10.1016/j.gde.2014.05.003.
  117. Gorbunova, V., Seluanov, A., Mita, P., McKerrow, W., Fenyo, D., Boeke, J. D., Linker, S. B., Gage, F. H., Kreiling, J. A., Petrashen, A. P., Woodham, T. A., Taylor, J. R., Helfand, S. L., and Sedivy, J. M. (2021) The role of retrotransposable elements in ageing and age-associated diseases, Nature, 596, 43-53, doi: 10.1038/s41586-021-03542-y.
  118. Aschacher, T., Wolf, B., Enzmann, F., Kienzl, P., Messner, B., Sampl, S., Svoboda, M., Mechtcheriakova, D., Holzmann, K., and Bergmann, M. (2016) LINE-1 induces hTERT and ensures telomere maintenance in tumour cell lines, Oncogene, 35, 94-104, doi: 10.1038/onc.2015.65.
  119. Aschacher, T., Wolf, B., Aschacher, O., Enzmann, F., Laszlo, V., Messner, B., Turkcan, A., Weis, S., Spiegl-Kreinecker, S., Holzmann, K., Laufer, G., Ehrlich, M., and Bergmann, M. (2020) Long interspersed element-1 ribonucleoprotein particles protect telomeric ends in alternative lengthening of telomeres dependent cells, Neoplasia, 22, 61-75, doi: 10.1016/j.neo.2019.11.002.
  120. Cosby, R. L., Chang, N. C., and Feschotte, C. (2019) Host-transposon interactions: conflict, cooperation, and cooption, Genes Dev., 33, 1098-1116, doi: 10.1101/gad.327312.119.
  121. Charlesworth, B., and Langley, C. H. (1989) The population genetics of Drosophila transposable elements, Annu. Rev. Genet., 23, 251-287, doi: 10.1146/annurev.ge.23.120189.001343.
  122. Kelleher, E. S., and Barbash, D. A. (2013) Analysis of piRNA-mediated silencing of active TEs in Drosophila melanogaster suggests limits on the evolution of host genome defense, Mol. Biol. Evol., 30, 1816-1829, doi: 10.1093/molbev/mst081.

版权所有 © Russian Academy of Sciences, 2023

##common.cookie##