Investigation of the mechanism of membrane potential generation by heme-copper respiratory oxidases in real time mode

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Heme-copper respiratory oxidases are highly efficient molecular machines. These membrane enzymes catalyze the final stage of cellular respiration of eukaryotes and many prokaryotes: the transfer of electrons from cytochromes or quinols to molecular oxygen and the reduction of O2 to water. The free energy released in this redox reaction is converted by heme-copper respiratory oxidases into a transmembrane gradient of the electrochemical potential of hydrogen ions (ΔµH+). Heme-copper respiratory oxidases have a unique mechanism for generation ΔµH+ - a redox-coupled proton pump. The use of a combination of a direct electrometric method for measuring the kinetics of membrane potential generation with approaches and methods of prestationary kinetics and directed mutagenesis in the study of heme-copper oxidases makes it possible to obtain unique information about the movement of protons inside the protein in real time. The review summarizes the results of the use of the permitted time.

About the authors

S. A Siletsky

Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University

Email: siletsky@belozersky.msu.ru
119991 Moscow, Russia

References

  1. Anraku, Y. (1988) Bacterial electron transport chains, Ann. Rev. Biochem., 57, 101-132, doi: 10.1146/annurev.bi.57.070188.000533.
  2. Garcia-Horsman, J. A., Barquera, B., Rumbley, J., Ma, J., and Gennis, R. B. (1994) The superfamily of heme-copper respiratory oxidases, J. Bacteriol., 176, 5587-5600, doi: 10.1128/jb.176.18.5587-5600.1994.
  3. Babcock, G. T., and Wikström, M. (1992) Oxygen activation and the conservation of energy in cell respiration, Nature, 356, 301-309, doi: 10.1038/356301a0.
  4. Ferguson-Miller, S., and Babcock, G. T. (1996) Heme/copper terminal oxidases, Chem. Rev., 7, 2889-2907, doi: 10.1021/cr950051s.
  5. Hemp, J., and Gennis, R. B. (2008) Diversity of the heme-copper superfamily in archaea: insights from genomics and structural modeling, Results Probl. Cell Differ., 45, 1-31, doi: 10.1007/400_2007_046.
  6. Rich, P. R. (2017) Mitochondrial cytochrome c oxidase: catalysis, coupling and controversies, Biochem. Soc. Trans., 45, 813-829, doi: 10.1042/BST20160139.
  7. Siletsky, S. A., and Borisov, V. B. (2021) Proton pumping and non-pumping terminal respiratory oxidases: active sites intermediates of these molecular machines and their derivatives, Int. J. Mol. Sci., 22, 10852, doi: 10.3390/ijms221910852.
  8. Pereira, M. M., Santana, M., and Teixeira, M. (2001) A novel scenario for the evolution of haem-copper oxygen reductases, Biochim. Biophys. Acta, 1505, 185-208, doi: 10.1016/S0005-2728(01)00169-4.
  9. Yoshikawa, S., and Shimada, A. (2015) Reaction mechanism of cytochrome c oxidase, Chem. Rev., 115, 1936-1989, doi: 10.1021/cr500266a.
  10. Fee, J. A., Yoshida, T., Surerus, K. K., and Mather, M. W. (1993) Cytochrome caa3 from the thermophilic bacterium Thermus thermophilus: a member of the heme-copper oxidase superfamily, J. Bioenerg. Biomembr., 25, 103-114, doi: 10.1007/BF00762852.
  11. Siletsky, S. A., Belevich, I., Soulimane, T., Verkhovsky, M. I., and Wikström, M. (2013) The fifth electron in the fully reduced caa3 from Thermus thermophilus is competent in proton pumping, Biochim. Biophys. Acta, 1827, 1-9, doi: 10.1016/j.bbabio.2012.09.013.
  12. Wikström, M., Krab, K., and Sharma, V. (2018) Oxygen activation and energy conservation by cytochrome c oxidase, Chem. Rev., 118, 2469-2490, doi: 10.1021/acs.chemrev.7b00664.
  13. Forte, E., Borisov, V. B., Siletsky, S. A., Petrosino, M., and Giuffre, A. (2019) In the respiratory chain of Escherichia coli cytochromes bd-I and bd-II are more sensitive to carbon monoxide inhibition than cytochrome bo3, Biochim. Biophys. Acta Bioenergetics, 1860, 148088, doi: 10.1016/j.bbabio.2019.148088.
  14. Bjorck, M. L., Vilhjalmsdottir, J., Hartley, A. M., Meunier, B., Nasvik Ojemyr, L., Marechal, A., and Brzezinski, P. (2019) Proton-transfer pathways in the mitochondrial S. cerevisiae cytochrome c oxidase, Sci. Rep., 9, 20207, doi: 10.1038/s41598-019-56648-9.
  15. Siletsky, S. A., and Gennis, R. B. (2021) Time-resolved electrometric study of the F → O transition in cytochrome c oxidase. The effect of Zn2+ ions on the positive side of the membrane, Biochemistry (Moscow), 86, 105-122, doi: 10.1134/S0006297921010107.
  16. Marechal, A., Xu, J. Y., Genko, N., Hartley, A. M., Haraux, F., Meunier, B., and Rich, P. R. (2020) A common coupling mechanism for A-type heme-copper oxidases from bacteria to mitochondria, Proc. Natl. Acad. Sci. USA, 117, 9349-9355, doi: 10.1073/pnas.2001572117.
  17. Siletsky, S. A. (2013) Steps of the coupled charge translocation in the catalytic cycle of cytochrome c oxidase, Front. Biosci. (Landmark Ed), 18, 36-57, doi: 10.2741/4086.
  18. Fee, J. A., Sanders, D., Slutter, C. E., Doan, P. E., Aasa, R., Karpefors, M., and Vänngård, T. (1995) Multi-frequency epr evidence for a binuclear CuA center in cytochrome c oxidase: studies with a 63Cu- and 65Cu-enriched, soluble domain of the cytochrome ba3, subunit II from Thermus Thermophilus, Biochem. Biophys. Res. Commun., 212, 77-83, doi: 10.1006/bbrc.1995.1938.
  19. Soulimane, T., Buse, G., Bourenkov, G. B., Bartunik, H. D., Huber, R., and Than, M. E. (2000) Structure and mechanism of the aberrant ba3-cytochrome c oxidase from Thermus thermophilus, EMBO J., 19, 1766-1776, doi: 10.1093/emboj/19.8.1766.
  20. Pitcher, R. S., and Watmough, N. J. (2004) The bacterial cytochrome cbb3 oxidases, Biochim. Biophys. Acta, 1655, 388-399, doi: 10.1016/j.bbabio.2003.09.017.
  21. Buschmann, S., Warkentin, E., Xie, H., Langer, J. D., Ermler, U., and Michel, H. (2010) The structure of cbb3 cytochrome oxidase provides insights into proton pumping, Science, 329, 327-330, doi: 10.1126/science.1187303.
  22. Mitchell, P. (1968) Chemiosmotic coupling and energy transduction, Glynn Research Ltd., Bodmin.
  23. Wikström, M. (1977) Proton pump coupled to cytochrome c oxidase in mitochondria, Nature, 266, 271-273, doi: 10.1038/266271a0.
  24. Wikström, M. (2004) Cytochrome c oxidase: 25 years of the elusive proton pump, Biochim. Biophys. Acta, 1655, 241-247, doi: 10.1016/j.bbabio.2003.07.013.
  25. Drachev, L. A., Jasaitis, A. A., Kaulen, A. D., Kondrashin, A. A., Liberman, E. A., Nemecek, I. B., Ostroumov, S. A., Semenov, A., and Skulachev, V. P. (1974) Direct measurement of electric current generation by cytochrome oxidase, H+-ATPase and bacteriorhodopsin, Nature, 249, 321-324, doi: 10.1038/249321a0.
  26. Drachev, L. A., Kaulen, A. D., Khitrina, L. V., and Skulachev, V. P. (1981) Fast stages of photoelectric processes in biological membranes. I. Bacteriorhodopsin, Eur. J. Biochem., 117, 461-470, doi: 10.1111/j.1432-1033.1981.tb06361.x.
  27. Belevich, I., Gorbikova, E., Belevich, N. P., Rauhamaki, V., Wikström, M., and Verkhovsky, M. I. (2010) Initiation of the proton pump of cytochrome c oxidase, Proc. Natl. Acad. Sci. USA, 107, 18469-18474, doi: 10.1073/pnas.1010974107.
  28. Siletsky, S. A., and Konstantinov, A. A. (2012) Cytochrome c oxidase: charge translocation coupled to single-electron partial steps of the catalytic cycle, Biochim. Biophys. Acta, 1817, 476-488, doi: 10.1016/j.bbabio.2011.08.003.
  29. Siletsky, S. A., Soulimane, T., Belevich, I., Gennis, R. B., and Wikström, M. (2021) Specific inhibition of proton pumping by the T315V mutation in the K channel of cytochrome ba3 from Thermus thermophilus, Biochim. Biophys. Acta Bioenergetics, 1862, 148450, doi: 10.1016/j.bbabio.2021.148450.
  30. Siletsky, S. A., Pawate, A. S., Weiss, K., Gennis, R. B., and Konstantinov, A. A. (2004) Transmembrane charge separation during the ferryl-oxo → oxidized transition in a non-pumping mutant of cytochrome c oxidase, J. Biol. Chem., 279, 52558-52565, doi: 10.1074/jbc.M407549200.
  31. Siletsky, S. A., Zhu, J., Gennis, R. B., and Konstantinov, A. A. (2010) Partial steps of charge translocation in the nonpumping N139L mutant of Rhodobacter sphaeroides cytochrome c oxidase with a blocked D-channel, Biochemistry, 49, 3060-3073, doi: 10.1021/bi901719e.
  32. Tsukihara, T., Aoyama, H., Yamashita, E., Takashi, T., Yamaguichi, H., Shinzawa-Itoh, K., Nakashima, R., Yaono, R., and Yoshikawa, S. (1996) The whole structure of the 13-subunit oxidized cytochrome c oxidase at 2.8 Å, Science, 272, 1136-1144, doi: 10.1126/science.272.5265.1136.
  33. Yoshikawa, S., Shinzawa-Itoh, K., Nakashima, R., Yaono, R., Inoue, N., Yao, M., Fei, M. J., Libeu, C. P., Mizushima, T., Yamaguchi, H., Tomizaki, T., and Tsukihara, T. (1998) Redox-coupled crystal structural changes in bovine heart cytochrome c oxidase, Science, 280, 1723-1729, doi: 10.1126/science.280.5370.1723.
  34. Tsukihara, T., Shimokata, K., Katayama, Y., Shimada, H., Muramoto, K., Aoyama, H., Mochizuki, M., Shinzawa-Itoh, K., Yamashita, E., Yao, M., Ishimura, Y., and Yoshikawa, S. (2003) The low-spin heme of cytochrome c oxidase as the driving element of the proton-pumping process, Proc. Natl. Acad. Sci. USA, 100, 15304-15309, doi: 10.1073/pnas.2635097100.
  35. Muramoto, K., Hirata, K., Shinzawa-Itoh, K., Yoko-o, S., Yamashita, E., Aoyama, H., Tsukihara, T., and Yoshikawa, S. (2007) A histidine residue acting as a controlling site for dioxygen reduction and proton pumping by cytochrome c oxidase, Proc. Natl. Acad. Sci. USA, 104, 7881-7886, doi: 10.1073/pnas.0610031104.
  36. Iwata, S., Ostermeier, C., Ludwig, B., and Michel, H. (1995) Structure at 2.8 Å resolution of cytochrome c oxidase from Paracoccus denitrificans, Nature, 376, 660-669, doi: 10.1038/376660a0.
  37. Ostermeier, C., Iwata, S., Ludwig, B., and Michel, H. (1995) FV fragment-mediated crystallization of the membrane protein bacterial cytochrome c oxidase, Nat. Struct. Biol., 2, 842, doi: 10.1038/nsb1095-842.
  38. Koepke, J., Olkhova, E., Angerer, H., Muller, H., Peng, G., and Michel, H. (2009) High resolution crystal structure of Paracoccus denitrificans cytochrome c oxidase: New insights into the active site and the proton transfer pathways, Biochim. Biophys. Acta, 1787, 635-645, doi: 10.1016/j.bbabio.2009.04.003.
  39. Svensson-Ek, M., Abramson, J., Larsson, G., Tornroth, S., Brzezinski, P., and Iwata, S. (2002) The X-ray crystal structures of wild-type and EQ(I-286) mutant cytochrome c oxidases from Rhodobacter sphaeroides, J. Mol. Biol., 321, 329-339, doi: 10.1016/S0022-2836(02)00619-8.
  40. Qin, L., Liu, J., Mills, D. A., Proshlyakov, D. A., Hiser, C., and Ferguson-Miller, S. (2009) Redox dependent conformational changes in cytochrome c oxidase suggest a gating mechanism for proton uptake, Biochemistry, 48, 5121-5130, doi: 10.1021/bi9001387.
  41. Abramson, J., Riistama, S., Larsson, G., Jasaitis, A., Svensson-Ek, M., Laakkonen, L., Puuustinen, A., Iwata, S., and Wikström, M. (2000) The structure of the ubiquinol oxidase from Escherichia coli and its ubiquinone binding site, Nat. Struct. Biol., 7, 910-917, doi: 10.1038/82824.
  42. Noor, M. R., and Soulimane, T. (2013) Structure of caa(3) cytochrome c oxidase - a nature-made enzyme-substrate complex, Biol. Chem., 394, 579-591, doi: 10.1515/hsz-2012-0343.
  43. Luna, V. M., Chen, Y., Fee, J. A., and Stout, C. D. (2008) Crystallographic studies of Xe and Kr binding within the large internal cavity of cytochrome ba3 from Thermus thermophilus: structural analysis and role of oxygen transport channels in the heme-Cu oxidases, Biochemistry, 47, 4657-4665, doi: 10.1021/bi800045y.
  44. Fetter, J. R., Qian, J., Shapleigh, J., Thomas, J. W., Garcia-Horsman, A., Schmidt, E., Hosler, J., Babcock, G. T., Gennis, R. B., and Ferguson-Miller, S. (1995) Possible proton relay pathways in cytochrome c oxidase, Proc. Natl. Acad. Sci. USA, 92, 1604-1608, doi: 10.1073/pnas.92.5.1604.
  45. Konstantinov, A. A., Siletsky, S., Mitchell, D., Kaulen, A., and Gennis, R. B. (1997) The roles of the two proton input channels in cytochrome c oxidase from Rhodobacter sphaeroides probed by the effects of site-directed mutations on time resolved electrogenic intraprotein proton transfer, Proc. Natl. Acad. Sci. USA, 94, 9085-9090, doi: 10.1073/pnas.94.17.9085.
  46. Gennis, R. B. (1998) Multiple proton-conducting pathways in cytochrome oxidase and a proposed role for the active-site tyrosine, Biochim. Biophys. Acta, 1365, 241-248, doi: 10.1016/S0005-2728(98)00075-9.
  47. Branden, M., Tomson, F., Gennis, R. B., and Brzezinski, P. (2002) The entry point of the K-proton-transfer pathway in cytochrome c oxidase, Biochemistry, 41, 10794-10798, doi: 10.1021/bi026093+.
  48. Hofacker, I., and Schulten, K. (1998) Proteins: Structure, Function, and Genetics, 30, 100-107, doi: 10.1002/(SICI)1097-0134(199801)30:1<100::AID-PROT9>3.0.CO;2-S.
  49. Popovic, D. M., and Stuchebrukhov, A. A. (2005) Proton exit channels in bovine cytochrome c oxidase, J. Phys. Chem. B, 109, 1999-2006, doi: 10.1021/jp0464371.
  50. Riistama, S., Puustinen, A., Verkhovsky, M. I., Morgan, J. E., and Wikström, M. (2000) Binding of O2 and its reduction are both retarded by replacement of valine 279 by isoleucine in cytochrome c oxidase from Paracoccus denitrificans, Biochemistry, 39, 6365-6372, doi: 10.1021/bi000123w.
  51. Salomonsson, L., Lee, A., Gennis, R. B., and Brzezinski, P. (2004) A single-amino-acid lid renders a gas-tight compartment within a membrane-bound transporter, Proc. Natl. Acad. Sci. USA, 101, 11617-11621, doi: 10.1073/pnas.0402242101.
  52. Schmidt, B., McCracken, J., and Ferguson-Miller, S. (2003) A discrete water exit pathway in the membrane protein cytochrome c oxidase, Proc. Natl. Acad. Sci. USA, 100, 15539-15542, doi: 10.1073/pnas.2633243100.
  53. Verkhovsky, M. I., Jasaitis, A., Verkhovskaya, M. L., Morgan, L., and Wikström, M. (1999) Proton translocation by cytochrome c oxidase, Nature, 400, 480-483, doi: 10.1038/22813.
  54. Chance, B., Saronio, C., and Leigh, J. S., Jr. (1975) Functional intermediates in the reaction of membrane-bound cytochrome oxidase with oxygen, J. Biol. Chem., 250, 9226-9237, doi: 10.1016/S0021-9258(19)40634-0.
  55. Hill, B. C., and Greenwood, C. (1983) Spectroscopic evidence for the participation of compound A (Fea32+-O2) in the reaction of mixed-valence cytochrome c oxidase with oxygen at room temperature, Biochem. J., 215, 659-667, doi: 10.1042/bj2150659.
  56. Muramoto, K., Ohta, K., Shinzawa-Itoh, K., Kanda, K., Taniguchi, M., Nabekura, H., Yamashita, E., Tsukihara, T., and Yoshikawa, S. (2010) Bovine cytochrome c oxidase structures enable O2 reduction with minimization of reactive oxygens and provide a proton-pumping gate, Proc. Natl. Acad. Sci. USA, 107, 7740-7745, doi: 10.1073/pnas.0910410107.
  57. Kitagawa, T., and Ogura, T. (1997) Oxygen activation mechanism at the binuclear site of heme-copper oxidase superfamily as revealed by time-resolved resonance Raman spectroscopy, in Progress in Inorganic Chemistry (Karlin, K. D., ed) Wiley & Sons, pp. 431-479, doi: 10.1002/9780470166468.ch6.
  58. Proshlyakov, D. A., Pressler, M. A., and Babcock, G. T. (1998) Dioxygen activation and bond cleavage by mixed-valence cytochrome c oxidase, Proc. Natl. Acad.Sci. USA, 95, 8020-8025, doi: 10.1073/pnas.95.14.8020.
  59. Proshlyakov, D. A., Pressler, M. A., DeMaso, C., Leykam, J. F., DeWitt, D. L., and Babcock, G. T. (2000) Oxygen activation and reduction in respiration: involvement of redox-active tyrosine 244, Science, 290, 1588-1591, doi: 10.1126/science.290.5496.1588.
  60. Buse, G., Soulimane, T., Dewor, M., Meyer, H. E., and Bloggel, M. (1999) Evidence for a copper coordinated histidine-tyrosine crosslink in the active site of cytochrome oxidase, Protein Sci., 8, 985-990, doi: 10.1110/ps.8.5.985.
  61. Rauhamaki, V., Baumann, M., Soliymani, R., Puustinen, A., and Wikström, M. (2006) Identification of histidin-tyrosin cross-link in the active site of the cbb3-type cytochrome c oxidase from Rhodobacter sphaeroides, Proc. Natl. Acad. Sci. USA, 103, 16135-16140, doi: 10.1073/pnas.0606254103.
  62. Babcock, G. T. (1999) How oxygen is activated and reduced in respiration, Proc. Natl. Acad. Sci. USA, 96, 12971-12973, doi: 10.1073/pnas.96.23.12971.
  63. Siletsky, S., Kaulen, A. D., and Konstantinov, A. A. (1999) Resolution of electrogenic steps coupled to conversion of cytochrome c oxidase from the peroxy to the ferryl-oxo state, Biochemistry, 38, 4853-4861, doi: 10.1021/bi982614a.
  64. Sharma, V., Karlin, K. D., and Wikstrom, M. (2013) Computational study of the activated OH state in the catalytic mechanism of cytochrome c oxidase, Proc. Natl. Acad. Sci. USA, 110, 16844-16849, doi: 10.1073/pnas.1220379110.
  65. Siletsky, S. A., Belevich, I., Wikström, M., Soulimane, T., and Verkhovsky, M. I. (2009) Time-resolved OH → EH transition of the aberrant ba3 oxidase from Thermus thermophilus, Biochim. Biophys. Acta, 1787, 201-205, doi: 10.1016/j.bbabio.2008.12.020.
  66. Siletsky, S. A., Belevich, I., Belevich, N. P., Soulimane, T., and Wikström, M. (2017) Time-resolved generation of membrane potential by ba3 cytochrome c oxidase from Thermus thermophilus coupled to single electron injection into the O and OH states, Biochim. Biophys. Acta, 1858, 915-926, doi: 10.1016/j.bbabio.2017.08.007.
  67. Siletsky, S. A., Mamedov, M. D., Lukashev, E. P., Balashov, S. P., Dolgikh, D. A., Rubin, A. B., Kirpichnikov, M. P., and Petrovskaya, L. E. (2016) Electrogenic steps of light-driven proton transport in ESR, a retinal protein from Exiguobacterium sibiricum, Biochim. Biophys. Acta, 1857, 1741-1750, doi: 10.1016/j.bbabio.2016.08.004.
  68. Kaulen, A. D. (2000) Electrogenic processes and protein conformational changes accompanying the bacteriorhodopsin photocycle, Biochim. Biophys. Acta, 1460, 204-219, doi: 10.1016/S0005-2728(00)00140-7.
  69. Gibson, Q. H., and Greenwood, C. (1963) Reactions of cytochrome oxidase with oxygen and carbon monoxide, Biochem. J., 86, 541-554, doi: 10.1042/bj0860541.
  70. Nilsson, T. (1992) Photoinduced electron transfer from tris(2,2′-bipyridyl)ruthenium to cytochrome c oxidase, Proc. Natl. Acad. Sci. USA, 89, 6497-6501, doi: 10.1073/pnas.89.14.6497.
  71. Belevich, I., and Verkhovsky, M. I. (2008) Molecular mechanism of proton translocation by cytochrome c oxidase, Antioxid. Redox Signal., 10, 1-29, doi: 10.1089/ars.2007.1705.
  72. Kaila, V. R., Verkhovsky, M. I., and Wikström, M. (2010) Proton-coupled electron transfer in cytochrome oxidase, Chem. Rev., 110, 7062-7081, doi: 10.1021/cr1002003.
  73. Zaslavsky, D., Kaulen, A., Smirnova, I. A., Vygodina, T. V., and Konstantinov, A. A. (1993) Flash-induced membrane potential generation by cytochrome c oxidase, FEBS Lett., 336, 389-393, doi: 10.1016/0014-5793(93)80843-J.
  74. Zaslavsky, D. L., Smirnova, I. A., Siletsky, S. A., Kaulen, A. D., Millett, F., and Konstantinov, A. A. (1995) Rapid kinetics of membrane potential generation by cytochrome c oxidase with the photoactive Ru(II)-tris-bipyridyl derivative of cytochrome c as electron donor, FEBS Lett., 359, 27-30, doi: 10.1016/0014-5793(94)01443-5.
  75. Siletsky, S. A., Kaulen, A. D., and Konstantinov, A. A. (1997) Electrogenic events associated with peroxy- to ferryl-oxo state transition in cytochrome c oxidase, Eur. J. Biophys., 26, 98.
  76. Verkhovsky, M. I., Tuukkanen, A., Backgren, C., Puustinen, A., and Wikström, M. (2001) Charge translocation coupled to electron injection into oxidized cytochrome c oxidase from Paracoccus denitrificans, Biochemistry, 40, 7077-7083, doi: 10.1021/bi010030u.
  77. Verkhovsky, M. I., Morgan, J. E., Verkhovskaya, M., and Wikström, M. (1997) Translocation of electrical charge during a single turnover of cytochrome c oxidase, Biochim. Biophys. Acta, 1318, 6-10, doi: 10.1016/S0005-2728(96)00147-8.
  78. Hinkle, P., and Mitchell, P. (1970) Effect of membrane potential on the redox poise between cytochrome a and cytochrome c in rat liver mitochondria, J. Bioenerg., 1, 45-60, doi: 10.1007/BF01516088.
  79. Wikström, M. (1989) Identification of the electron transfers in cytochrome oxidase that are coupled to proton-pumping, Nature, 338, 776-778, doi: 10.1038/338776a0.
  80. Wikström, M., Krab, K., and Saraste, M. (1981) Cytochrome Oxidase - A Synthesis, Academic Press, New York.
  81. Siletsky, S. A., Kaulen, A. D., Mitchell, D., Gennis, R. B., and Konstantinov, A. A. (1996) Resolution of two proton conduction pathways in cytochrome c oxidase, EBEC Short Rep., 9, 90.
  82. Lepp, H., Svahn, E., Faxen, K., and Brzezinski, P. (2008) Charge transfer in the K proton pathway linked to electron transfer to the catalytic site in cytochrome c oxidase, Biochemistry, 47, 4929-4935, doi: 10.1021/bi7024707.
  83. Ruitenberg, M., Kannt, A., Bamberg, E., Ludwig, B., Michel, H., and Fendler, K. (2000) Single-electron reduction of the oxidized state is coupled to proton uptake via the K pathway in Paracoccus denitrificans cytochrome c oxidase, Proc. Natl. Acad. Sci. USA, 97, 4632-4636, doi: 10.1073/pnas.080079097.
  84. Ruitenberg, M., Kannt, A., Bamberg, E., Fendler, K., and Michel, H. (2002) Reduction of cytochrome c oxidase by a second electron leads to proton translocation, Nature, 417, 99-102, doi: 10.1038/417099a.
  85. Bloch, D., Belevich, I., Jasaitis, A., Ribacka, C., Puustinen, A., Verkhovsky, M. I., and Wikström, M. (2004) The catalytic cycle of cytochrome c oxidase is not the sum of its two halves, Proc. Natl. Acad. Sci. USA, 101, 529-533, doi: 10.1073/pnas.0306036101.
  86. Belevich, I., Bloch, D. A., Wikström, M., and Verkhovsky, M. I. (2007) Exploring the proton pump mechanism of cytochrome c oxidase in real time, Proc. Natl. Acad. Sci. USA, 104, 2685-2690, doi: 10.1073/pnas.0608794104.
  87. Pawate, A. S., Morgan, J., Namslauer, A., Mills, D., Brzezinski, P., Ferguson-Miller, S., and Gennis, R. B. (2002) A mutation in subunit I of cytochrome oxidase from Rhodobacter sphaeroides results in an increase in steady-state activity but completely eliminates proton pumping, Biochemistry, 41, 13417-13423, doi: 10.1021/bi026582+.
  88. Pfitzner, U., Hoffmeier, K., Harrenga, A., Kannt, A., Michel, H., Bamberg, E., Richter, O.-M. H., and Ludwig, B. (2000) Tracing the D-pathway in reconstituted site-directed mutants of cytochrome c oxidase from Paracoccus denitrificans, Biochemistry, 39, 6756-6762, doi: 10.1021/bi992235x.
  89. Ribacka, C., Verkhovsky, M. I., Belevich, I., Bloch, D. A., Puustinen, A., and Wikström, M. (2005) An elementary reaction step of the proton pump is revealed by mutation of tryptophan-164 to phenylalanine in cytochrome c oxidase from Paracoccus denitrificans, Biochemistry, 44, 16502-16512, doi: 10.1021/bi0511336.
  90. Faxen, K., Gilderson, G., Adelroth, P., and Brzezinski, P. (2005) A mechanistic principle for proton pumping by cytochrome c oxidase, Nature, 437, 286-289, doi: 10.1038/nature03921.
  91. Brand, S. E., Rajagukguk, S., Ganesan, K., Geren, L., Fabian, M., Han, D., Gennis, R. B., Durham, B., and Millett, F. (2007) A new ruthenium complex to study single-electron reduction of the pulsed OH state of detergent-solubilized cytochrome oxidase, Biochemistry, 46, 14610-14618, doi: 10.1021/bi701424d.
  92. Siletsky, S. A., Belevich, I., Belevich, N. P., Soulimane, T., and Verkhovsky, M. I. (2011) Time-resolved single-turnover of caa3 oxidase from Thermus thermophilus. Fifth electron of the fully reduced enzyme converts OH into EH state, Biochim. Biophys. Acta, 1807, 1162-1169, doi: 10.1016/j.bbabio.2011.05.006.
  93. Thomas, J. W., Puustinen, A., Alben, J. O., Gennis, R. B., and Wikström, M. (1993) Substitution of asparagine for aspartate-135 in subunit I of the cytochrome bo ubiquinol oxidase of Escherichia coli eliminates proton-pumping activity, Biochemistry, 32, 10923-10928, doi: 10.1021/bi00091a048.
  94. Garcia-Horsman, J. A., Puustinen, A., Gennis, R. B., and Wikström, M. (1995) Proton transfer in cytochrome bo3 ubiquinol oxidase of Escherichia coli: second site mutations in subunit I that restore proton pumping in the decoupled mutant Asp135Asn, Biochemistry, 34, 4428-4433, doi: 10.1021/bi00013a035.
  95. Siletsky, S. A., Borisov, V. B., and Mamedov, M. D. (2017) Photosystem II and terminal respiratory oxidases: molecular machines operating in opposite directions, Front. Biosci. (Landmark Ed), 22, 1379-1426, doi: 10.2741/4550.
  96. Shimokata, K., Katayama, Y., Murayama, H., Suematsu, M., Tsukihara, T., Muramoto, K., Aoyama, H., Yoshikawa, S., and Shimada, H. (2007) The proton pumping pathway of bovine heart cytochrome c oxidase, Proc. Natl. Acad. Sci. USA, 104, 4200-4205, doi: 10.1073/pnas.0611627104.
  97. Yoshikawa, S., Shimada, A., and Shinzawa-Itoh, K. (2015) Respiratory conservation of energy with dioxygen: cytochrome c oxidase, Met. Ions Life Sci., 15, 89-130, doi: 10.1007/978-3-319-12415-5_4.
  98. Capitanio, N., Palese, L. L., Capitanio, G., Martino, P. L., Richter, O. M., Ludwig, B., and Papa, S. (2012) Allosteric interactions and proton conducting pathways in proton pumping aa(3) oxidases: heme a as a key coupling element, Biochim. Biophys. Acta, 1817, 558-566, doi: 10.1016/j.bbabio.2011.11.003.
  99. Rich, P. R., and Marechal, A. (2013) Functions of the hydrophilic channels in protonmotive cytochrome c oxidase, J. R. Soc. Interface, 10, 20130183, doi: 10.1098/rsif.2013.0183.
  100. Sharma, V., Jambrina, P. G., Kaukonen, M., Rosta, E., and Rich, P. R. (2017) Insights into functions of the H channel of cytochrome c oxidase from atomistic molecular dynamics simulations, Proc. Natl. Acad. Sci. USA, 114, E10339-E10348, doi: 10.1073/pnas.1708628114.
  101. Wikström, M., and Verkhovsky, M. I. (2007) Mechanism and energetics of proton translocation by the respiratory heme-copper oxidases, Biochim. Biophys. Acta, 1767, 1200-1214, doi: 10.1016/j.bbabio.2007.06.008.
  102. Salje, J., Ludwig, B., and Richter, O.-M. H. (2005) Is a third proton-conducting pathway operative in bacterial cytochrome c oxidase? Biochem. Soc. Trans., 33, 829-831, doi: 10.1042/BST0330829.
  103. Lee, H.-m., Das, T. K., Rousseau, D. L., Mills, D., Fergusson-Miller, S., and Gennis, R. (2000) Mutations in the putative H-channel in the cytochrome c oxidase from Rhodobacter sphaeroides show that this channel is not important for proton conduction but reveals modulation of the properties of heme a, Biochemistry, 39, 2989-2996, doi: 10.1021/bi9924821.
  104. Pfitzner, U., Odenwald, A., T.., O., Weingard, L., Ludwig, B., and Richter, O. M. (1998) Cytochrome c oxidase (heme aa3) from Paracoccus denitrificans: analysis of mutations in putative proton channels of subunit I, J. Bioenerg. Biomembr., 30, 89-97, doi: 10.1023/A:1020515713103.
  105. Kuznetsova, S. S., Azarkina, N. V., Vygodina, T. V., Siletsky, S. A., and Konstantinov, A. A. (2005) Zink ions as cytochrome c oxidase inhibitors: two sites of action, Biochemistry (Moscow), 70, 128-136, doi: 10.1007/s10541-005-0091-6.
  106. Sugitani, R., and Stuchebrukhov, A. A. (2009) Molecular dynamics simulation of water in cytochrome c oxidase reveals two water exit pathways and the mechanism of transport, Biochim. Biophys. Acta, 1787, 1140-1150, doi: 10.1016/j.bbabio.2009.04.004.
  107. Medvedev, D. M., Medvedev, E. S., Kotelnikov, A. I., and Stuchebrukhov, A. A. (2005) Analysis of the kinetics of the membrane potential generated by cytochrome c oxidase upon single electron injection, Biochim. Biophys. Acta, 1710, 47-56, doi: 10.1016/j.bbabio.2005.08.008.
  108. Siletsky, S., and Konstantinov, A. A. (2006) Electrogenic mechanism of cytochrome c oxidase, The 8th European Biological Chemistry Conference, p. 80.
  109. Siletsky, S. A., Han, D., Brand, S., Morgan, J. E., Fabian, M., Geren, L., Millett, F., Durham, B., Konstantinov, A. A., and Gennis, R. B. (2006) Single-electron photoreduction of the PM intermediate of cytochrome c oxidase, Biochim. Biophys. Acta, 1757, 1122-1132, doi: 10.1016/j.bbabio.2006.07.003.
  110. Sugitani, R., Medvedev, E. S., and Stuchebrukhov, A. A. (2008) Theoretical and computational analysis of the membrane potential generated by cytochrome c oxidase upon single electron injection into the enzyme, Biochim. Biophys. Acta, 1777, 1129-1139, doi: 10.1016/j.bbabio.2008.05.006.
  111. Kaila, V. R., Sharma, V., and Wikström, M. (2011) The identity of the transient proton loading site of the proton-pumping mechanism of cytochrome c oxidase, Biochim. Biophys. Acta, 1807, 80-84, doi: 10.1016/j.bbabio.2010.08.014.
  112. Popovic, D. M., and Stuchebryukhov, A. A. (2004) Proton pumping mechanism and catalytic cycle of cytochrome c oxidase: Coulomb pump model with kinetic gating, FEBS Lett., 566, 126-130, doi: 10.1016/j.febslet.2004.04.016.
  113. Lu, J., and Gunner, M. R. (2014) Characterizing the proton loading site in cytochrome c oxidase, Proc. Natl. Acad. Sci. USA, 111, 12414-12419, doi: 10.1073/pnas.1407187111.
  114. Rich, P. R. (1995) Towards an understanding of the chemistry of oxygen reduction and proton translocation in the iron-copper respiratory oxidases, Aust. J. Plant Physiol., 22, 479-486, doi: 10.1071/PP9950479.
  115. Wikström, M., and Sharma, V. (2018) Proton pumping by cytochrome c oxidase - a 40 year anniversary, Biochim. Biophys. Acta Bioenergetics, 1859, 692-698, doi: 10.1016/j.bbabio.2018.03.009.
  116. Zimmermann, B. H., Nitsche, C. I., Fee, J. A., Rusnak, F., and Munck, E. (1988) Properties of a copper-containing cytochrome ba3: a second terminal oxidase from the extreme thermophile Thermus Thermophilus, Proc. Natl. Acad. Sci. USA, 85, 5779-5783, doi: 10.1073/pnas.85.16.5779.
  117. Rauhamaki, V., Bloch, D. A., Verkhovsky, M. I., and Wikström, M. (2009) Active site of cytochrome cbb3, J. Biol. Chem., 284, 11301-11308, doi: 10.1074/jbc.M808839200.
  118. Rauhamaki, V., Bloch, D. A., and Wikström, M. (2012) Mechanistic stoichiometry of proton translocation by cytochrome cbb3, Proc. Natl. Acad. Sci. USA, 109, 7286-7291, doi: 10.1073/pnas.1202151109.
  119. Steimle, S., van Eeuwen, T., Ozturk, Y., Kim, H. J., Braitbard, M., Selamoglu, N., Garcia, B. A., Schneidman-Duhovny, D., Murakami, K., and Daldal, F. (2021) Cryo-EM structures of engineered active bc1-cbb3 type CIII2CIV super-complexes and electronic communication between the complexes, Nat. Commun., 12, 929, doi: 10.1038/s41467-021-21051-4.
  120. Borisov, V. B., Siletsky, S. A., Nastasi, M. R., and Forte, E. (2021) ROS defense systems and terminal oxidases in bacteria, Antioxidants (Basel), 10, 839, doi: 10.3390/antiox10060839.
  121. Siletskiy, S., Soulimane, T., Azarkina, N., Vygodina, T. V., Buse, G., Kaulen, A., and Konstantinov, A. (1999) Time-resolved generation of membrane potential by ba3 cytochrome c oxidase from Thermus thermophilus. Evidence for reduction-induced opening of the binuclear centre, FEBS Lett., 457, 98-102, doi: 10.1016/S0014-5793(99)01019-4.
  122. Siletsky, S. A., Belevich, I., Jasaitis, A., Konstantinov, A. A., Wikström, M., Soulimane, T., and Verkhovsky, M. I. (2007) Time-resolved single-turnover of ba3 oxidase from Thermus thermophilus, Biochim. Biophys. Acta, 1767, 1383-1392, doi: 10.1016/j.bbabio.2007.09.010.
  123. Kannt, A., Lancaster, C. R., and Michel, H. (1998) The coupling of electron transfer and proton translocation: electrostatic calculations on Paracocus denitrificans cytochrome c oxidase, Biophys. J., 74, 708-721, doi: 10.1016/S0006-3495(98)73996-7.
  124. Rauhamaki, V., and Wikström, M. (2014) The causes of reduced proton-pumping efficiency in type B and C respiratory heme-copper oxidases, and in some mutated variants of type A, Biochim. Biophys. Acta, 1837, 999-1003, doi: 10.1016/j.bbabio.2014.02.020.

Copyright (c) 2023 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies