Unstable DNA in neurons: counter of the life span and a driver of evolution

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

The data on postmitotic instability of neuronal DNA, which have been reported in the last decade, are changing the theoretical landscape not only of neuroscience, but more broadly, of biology. A. M. Olovnikov suggested in 2003 that it is the DNA of neurons that can be the “initial substrate of aging”. The current data significantly increases the likelihood of this hypothesis. How does neuronal DNA accumulate damage, in what regions of the genome, what factors contribute to its accumulation, and how can they be associated with aging and the life span? These questions will be considered in the review. In addition, instability of the neuronal DNA had apparently been accompanied by a search for various ways to reduce the biological costs of brain function in Metazoan evolution. Phenomena such as sleep, an increase in the number of neurons in the vertebrate brain evolution, adult neurogenesis, distributed neuronal activity, somatic polyploidy, RNA editing in cephalopods can be reconsidered in the light of “DNA plasticity-instability trade-off” in neurons. The topic is of obvious importance not only for fundamental neuroscience, but also for translational medicine.

Авторлар туралы

V. Dyakonova

Koltzov Institute of Developmental Biology of Russian Academy of Sciences

Email: dyakonova.varvara@gmail.com
119334 Moscow, Russia

Әдебиет тізімі

  1. Olovnikov, A. M. (1971) Principle of marginotomy in template synthesis of polynucleotides, Dokl. Akad. Nauk SSSR, 201, 1496-1499.
  2. Olovnikov, A. M. (1973) A theory of marginotomy. The incomplete copying of template margin in enzymic synthesis of polynucleotides and biological significance of the phenomenon, J. Theor. Biol., 41, 181-190, doi: 10.1016/0022-5193(73)90198-7.
  3. Оловников А. М. (2022) Планетарный метроном как регулятор продолжительности жизни и темпа старения: метрономная гипотеза, Биохимия, 87, 2019-2022.
  4. Оловников А. М. (2003) Редусомная гипотеза старения и контроля биологического времени в индивидуальном развитии, Биохимия, 68, 7-41.
  5. Dyakonova, V. E. (2020) Neuronal counter of the life span: does it exist? Russ. J. Dev. Biol., 51, 197-200, doi: 10.1134/S1062360420030066.
  6. Suberbielle, E., Sanchez, P. E., Kravitz, A. V., Wang, X., Ho, K., Eilertson, K., Devidze, N., Kreitzer, A. C., and Mucke, L. (2013) Physiologic brain activity causes DNA double-strand breaks in neurons, with exacerbation by amyloid-β, Nat. Neurosci., 16, 613-621, doi: 10.1038/nn.3356.
  7. Madabhushi, R., Gao, F., Pfenning, A. R., Pan, L., Yamakawa, S., Seo, J., Rueda, R., Phan, T. X., Yamakawa, H., Pao, P. C., Stott, R. T., Gjoneska, E., Nott, A., Cho, S., Kellis, M., and Tsai, L. H. (2015) Activity-induced DNA breaks govern the expression of neuronal early-response genes, Cell, 161, 1592-1605, doi: 10.1016/j.cell.2015.05.032.
  8. Delint-Ramirez, I., Konada, L., Heady, L., Rueda, R., Jacome, A. S. V., Marlin, E., Marchioni, C., Segev, A., Kritskiy, O., Yamakawa, S., Reiter, A. H., Tsai, L. H., and Madabhushi, R. (2022) Calcineurin dephosphorylates topoisomerase IIβ and regulates the formation of neuronal-activity-induced DNA breaks, Mol. Cell, 82, 3794-3809.e8, doi: 10.1016/j.molcel.2022.09.012.
  9. Shadfar, S., Parakh, S., Jamali, M. S., and Atkin, J. D. (2023) Redox dysregulation as a driver for DNA damage and its relationship to neurodegenerative diseases, Transl. Neurodegener., 12, 18, doi: 10.1186/s40035-023-00350-4.
  10. Wu, W., Hill, S. E., Nathan, W. J., Paiano, J., Callen, E., Wang, D., Shinoda, K., van Wietmarschen, N., Colón-Mercado, J. M., Zong, D., De Pace, R., Shih, H. Y., Coon, S., Parsadanian, M., Pavani, R., Hanzlikova, H., Park, S., Jung, S. K., McHugh, P. J., Canela, A., Chen, C., Casellas, R., Caldecott, K. W., Ward, M. E., and Nussenzweig, A. (2021) Neuronal enhancers are hotspots for DNA single-strand break repair, Nature, 593, 440-444, doi: 10.1038/s41586-021-03468-5.
  11. Dileep, V., and Tsai, L. H. (2021) Neuronal enhancers get a break, Neuron, 109, 1766-1768, doi: 10.1016/j.neuron.2021.05.008.
  12. Reid, D. A., Reed, P. J., Schlachetzki, J. C. M., Nitulescu, I. I., Chou, G., Tsui, E. C., Jones, J. R., Chandran, S., Lu, A. T., McClain, C. A., Ooi, J. H., Wang, T. W., Lana, A. J., Linker, S. B., Ricciardulli, A. S., Lau, S., Schafer, S. T., Horvath, S., Dixon, J. R., Hah, N., Glass, C. K., and Gage, F. H. (2021) Incorporation of a nucleoside analog maps genome repair sites in postmitotic human neurons, Science, 372, 91-94, doi: 10.1126/science.abb9032.
  13. Крушинский А. Л. (2013) Биофизические аспекты рассудочной деятельности, В кн.: "Формирование поведения животных в норме и патологии. к 100-летию со дня рождения Л. В. Крушинского (1911-1984)", Языки славянской культуры (под редакцией И.И. Полетаевой, З.А. Зориной), Москва, стр. 424-436.
  14. Крушинский А. Л. (2015) Плата за решение задачи: биофизические предпосылки и возможные эволюционные последствия, Российский журнал когнитивной науки, 2, 52-61.
  15. Navabpour, S., Rogers, J., McFadden, T., and Jarome, T. J. (2020) DNA double-strand breaks are a critical regulator of fear memory reconsolidation, Int. J. Mol. Sci., 21, 8995, doi: 10.3390/ijms21238995.
  16. Weber Boutros, S., Unni, V. K., and Raber, J. (2022) An adaptive role for DNA double-strand breaks in hippocampus-dependent learning and memory, Int. J. Mol. Sci., 23, 8352, doi: 10.3390/ijms23158352.
  17. Konopka, A., and Atkin, J. D. (2022) The role of DNA damage in neural plasticity in physiology and neurodegeneration, Front. Cell Neurosci., 16, 836885, doi: 10.3389/fncel.2022.836885.
  18. Welch, G., and Tsai, L. H. (2022) Mechanisms of DNA damage-mediated neurotoxicity in neurodegenerative disease, EMBO Rep., 23, e54217, doi: 10.15252/embr.20215421.
  19. Pollina, E. A., Gilliam, D. T., Landau, A. T., Lin, C., Pajarillo, N., Davis, C. P., Harmin, D. A., Yap, E. L., Vogel, I. R., Griffith, E. C., Nagy, M. A., Ling, E., Duffy, E. E., Sabatini, B. L., Weitz, C. J., and Greenberg, M. E. (2023) A NPAS4-NuA4 complex couples synaptic activity to DNA repair, Nature, 614, 732-741, doi: 10.1038/s41586-023-05711-7.
  20. Hazen, J. L., Faust, G. G., Rodriguez, A. R. Ferguson, W. C., Shumilina, S., Clark, R. A., Boland, M. J., Martin, G., Chubukov, P., Tsunemoto, R. K., Torkamani, A., Kupriyanov, S., Hall, I. M., and Baldwin, K. K. (2016) The complete genome sequences, unique mutational spectra, and developmental potency of adult neurons revealed by cloning, Neuron, 89, 1223-1236, doi: 10.1016/j.neuron.2016.02.004.
  21. Evrony, G. D., Cai, X., Lee, E., Hills, L. B., Elhosary, P. C., Lehmann, H. S., Parker, J. J., Atabay, K. D., Gilmore, E. C., Poduri, A., Park, P. J., and Walsh, C. A. (2012) Single-neuron sequencing analysis of L1 retrotransposition and somatic mutation in the human brain, Cell, 151, 483-496, doi: 10.1016/j.cell.2012.09.035.
  22. Bizzotto, S., and Walsh, C. A. (2022) Genetic mosaicism in the human brain: from lineage tracing to neuropsychiatric disorders, Nat. Rev. Neurosci., 23, 275-286, doi: 10.1038/s41583-022-00572-x.
  23. Luquette, L. J., Miller, M. B., Zhou, Z., Bohrson, C. L., Zhao, Y., Jin, H., Gulhan, D., Ganz, J., Bizzotto, S., Kirkham, S., Hochepied, T., Libert, C., Galor, A., Kim, J., Lodato, M. A., Garaycoechea, J. I., Gawad, C., West, J., Walsh, C. A., and Park, P. J. (2022) Single-cell genome sequencing of human neurons identifies somatic point mutation and indel enrichment in regulatory elements, Nat. Genet., 54, 1564-1571, doi: 10.1038/s41588-022-01180-2.
  24. Lodato, M., Rodin, R. E., Bohrson, C. L., Coulter, M. E., Barton, A. R., Kwon, M., Sherman, M. A., Vitzthum, C. M., Luquette, L. J., Yandava, C. N., Yang, P., Chittenden, T. W., Hatem, N. E., Ryu, S. C., Woodworth, M. B., Park, P. J., and Walsh, C. A. (2018) Aging and neurodegeneration are associated with increased mutations in single human neurons, Science, 359, 555-559, doi: 10.1126/science.aao4426.
  25. Li, X., Cao, G., Liu, X., Tang, T. S., Guo, C., and Liu, H. (2022) Polymerases and DNA repair in neurons: implications in neuronal survival and neurodegenerative diseases, Front. Cell. Neurosci., 16, 852002, doi: 10.3389/fncel.2022.852002.
  26. Scheijen, E. E. M., and Wilson, D. M. 3rd. (2022) Genome integrity and neurological disease, Int. J. Mol. Sci., 23, 4142, doi: 10.3390/ijms23084142.
  27. Zullo, J. M., Drake, D., Aron, L., O'Hern, P., Dhamne, S. C., Davidsohn, N., Mao, C. A., Klein, W. H., Rotenberg, A., Bennett, D. A., Church, G. M., Colaiácovo, M. P., and Yankner, B. A. (2019) Regulation of lifespan by neural excitation and REST, Nature, 574, 359-364, doi: 10.1038/s41586-019-1647-8.
  28. Lu, T., Aron. L., Zullo, J., Pan. Y., Kim, H., Chen, Y., Yang, T. H., Kim, H. M., Drake, D., Liu, X. S., Bennett, D. A., Colaiácovo, M. P., and Yankner, B. A. (2014) REST and stress resistance in ageing and Alzheimer's disease, Nature, 507, 448-454, doi: 10.1038/nature13163.
  29. Cruces, M. P., González, E., Pimentel, E., Jiménez, E., and Sánchez, P. (2022) Relationship between lifespan and somatic mutation in D. melanogaster after treatment with chlorophyllin, Environ. Toxicol. Pharmacol., 93, 103891, doi: 10.1016/j.etap.2022.103891
  30. Cagan, A., Baez-Ortega, A., Brzozowska, N., Abascal, F., Coorens, T. H. H., Sanders, M. A., Lawson, A. R. J., Harvey, L. M. R., Bhosle, S., Jones, D., Alcantara, R. E., Butler, T. M., Hooks, Y., Roberts, K., Anderson, E., Lunn, S., Flach, E., Spiro, S., Januszczak, I., Wrigglesworth, E., Jenkins, H., Dallas, T., Masters, N., Perkins, M. W., Deaville, R., Druce, M., Bogeska, R., Milsom, M. D., Neumann, B., Gorman, F., Constantino-Casas, F., Peachey, L., Bochynska, D., Smith, E. S. J., Gerstung, M., Campbell, P. J., Murchison, E. P., Stratton, M. R., and Martincorena, I. (2022) Somatic mutation rates scale with lifespan across mammals, Nature, 604, 517-524, doi: 10.1038/s41586-022-04618-z.
  31. Shen, X., Song, S., Li, C., and Zhang, J. (2022) Synonymous mutations in representative yeast genes are mostly strongly non-neutral, Nature, 606, 725-731, doi: 10.1038/s41586-022-04823-w.
  32. Zada, D., Bronshtein, I., Lerer-Goldshtein, T., Garini, Y., and Appelbaum, L. (2019) Sleep increases chromosome dynamics to enable reduction of accumulating DNA damage in single neurons, Nat. Commun., 10, 895, doi: 10.1038/s41467-019-08806-w.
  33. Zada, D., Sela, Y., Matosevich, N., Monsonego, A., Lerer-Goldshtein, T., Nir, Y., and Appelbaum, L. (2021) Parp1 promotes sleep, which enhances DNA repair in neurons, Mol. Cell., 81, 4979-4993.e7, doi: 10.1016/j.molcel.2021.10.026.
  34. Акифьев А. П., Потапенко А. И. (2001) Ядерный генетический материал как инициальный субстрат старения животных, Генетика, 37, 1445-1458.
  35. Ломброзо Ч. (1892) Гениальность и помешательство, Издание Ф. Павленкова, СПб.
  36. Gale, C. R., Batty, G. D., McIntosh, A. M., Porteous, D. J., Deary, I. J., and Rasmussen, F. (2013) Is bipolar disorder more common in highly intelligent people? A cohort study of a million men, Mol. Psychiatry, 18, 190-194, doi: 10.1038/mp.2012.26.
  37. Smith, D. J., Anderson, J., Zammit, S., Meyer, T. D., Pell, J. P., and Mackay, D. (2015) Childhood IQ and risk of bipolar disorder in adulthood: prospective birth cohort study, BJPsych. Open, 1, 74-80, doi: 10.1192/bjpo.bp.115.000455.
  38. Deary, I. J. (2012) Looking for ‘system integrity' in cognitive epidemiology, Gerontology, 58, 545-553, doi: 10.1159/000341157.
  39. Power, R. A., Steinberg, S., Bjornsdottir, G., Rietveld, C. A., Abdellaoui, A., Nivard, M. M., Johannesson, M., Galesloot, T. E., Hottenga, J. J., Willemsen, G., Cesarini, D., Benjamin, D. J., Magnusson, P. K., Ullén, F., Tiemeier, H., Hofman, A., van Rooij, F. J., Walters, G. B., Sigurdsson, E., Thorgeirsson, T. E., Ingason, A., Helgason, A., Kong, A., Kiemeney, L. A., Koellinger, P., Boomsma, D. I., Gudbjartsson, D., Stefansson, H., and Stefansson, K. (2015) Polygenic risk scores for schizophrenia and bipolar disorder predict creativity, Nature Neuroscience, 18, 953-955, doi: 10.1038/ nn.4040.
  40. Demange, P. A., Malanchini, M., Mallard, T. T., Biroli, P., Cox, S. R., Grotzinger, A. D., Tucker-Drob, E. M., Abdellaoui, A., Arseneault, L., van Bergen, E., Boomsma, D. I., Caspi, A., Corcoran, D. L., Domingue, B. W., Harris, K. M., Ip, H. F., Mitchell, C., Moffitt, T. E., Poulton, R., Prinz, J. A., Sugden, K., Wertz, J., Williams, B. S., de Zeeuw, E. L., Belsky, D. W., Harden, K. P., and Nivard, M. G. (2021) Investigating the genetic architecture of noncognitive skills using GWAS-by-subtraction, Nat. Genet., 53, 35-44, doi: 10.1038/s41588-020-00754-2.
  41. Золотарева Н. Н., Крушинская Н. Л., Дмитриева И. Л. (1987) Сравнительная характеристика метаболизма самцов крыс линии Трайона (Tryon maze dull and Tryon maze bright) и возможность прогнозирования их социального статуса по биохимическим показателям, Доклады АН СССР, 292, 751-755.
  42. Семиохина А. Ф., Очинская Е. И., Рубцова Н. Б., Крушинский Л. В. (1976) Новое в изучении экспериментальных неврозов, вызванных перенапряжением высшей нервной деятельности, Доклады АН СССР, 231, 503-505.
  43. Хоничева Н. М., Гуляева Н. В., Жданова И. В., Обедин А. Б., Дмитриева И. Л., Крушинская Н. Л. (1986) Тип поведения и активность супероксиддисмутазы в головном мозге у крыс (сравнение 2-х линий крыс), Бюллютень экспериментальной биологии и медицины, 102, 643-645.
  44. Amit, Z., and Smith, B. R. (1992) Differential ethanol intake in Tryon maze-bright and Tryon maze-dull rats: implications for the validity of the animal model of selectively bred rats for high ethanol consumption, Psychopharmacology, 108, 136-140, doi: 10.1007/BF02245298.
  45. Дьяконова В. Е. (2015) Сколько стоят когнитивные способности? Российский журнал когнитивной науки, 2, 70-77.
  46. Mery, F., and Kawecki, T. J. (2002) Experimental evolution of learning ability in fruit flies, Proc. Natl. Acad. Sci. USA, 99, 14274-14279, doi:10.1073/ pnas.222371199.
  47. Mery, F., and Kawecki, T. J. (2003) A fitness cost of learning ability in Drosophila melanogaster, Proc. R. Soc. Lond. B Biol. Sci., 270, 2465-2469, doi: 10.1098/rspb.2003.2548.
  48. Mery, F., and Kawecki, T. J. (2005) A cost of long-term memory in Drosophila, Science, 308, 1148-1148, doi: 10.1126/science.1111331.
  49. Burger, J., Kolss, M., Pont, J., and Kawecki, T. J. (2008) Learning ability and longevity: A symmetrical evolutionary trade-off in Drosophila, Evolution, 62, 1294-1304, doi: 10.1111/j.1558-5646.2008.00376.x.
  50. Burns, J. G., Foucaud, J., and Mery, F. (2011) Costs of memory: lessons from ‘mini' brains, Proc. R. Soc. Lond. B Biol. Sci., 278, 923-929, doi: 10.1098/rsbl.2008.0514.
  51. Dalesman, S., and Lukowiak, K. (2012) How stress alters memory in ‘smart' snails, PLoS One, 7, e32334, doi: 10.1371/journal.pone.0032334.
  52. Hughes, E., Shymansky, T., Swinton, E., Lukowiak, K. S., Swinton, C., Sunada, H., Protheroe, A., Phillips, I., and Lukowiak, K. (2017) Strain-specific differences of the effects of stress on memory in Lymnaea, J. Exp. Biol., 220, 891-899, doi: 10.1242/jeb.149161.
  53. Borodinova, A. A., and Balaban, P. M. (2020) Epigenetic regulation as a basis for long-term changes in the nervous system: in search of specificity mechanisms, Biochemistry (Moscow), 85, 994-966, doi: 10.1134/S0006297920090023.
  54. Borodinova, A. A., Kuznetsova, M. A., Alekseeva, V. S., and Balaban, P. M. (2019) Histone acetylation determines transcription of atypical protein kinases in rat neurons, Sci. Rep., 9, 4332, doi: 10.1038/s41598-019-40823-z.
  55. Shimaji, K., Tomida, S., Yamaguchi, M. (2019) Regulation of animal behavior by epigenetic regulators, Front. Biosci. (Landmark Ed), 24, 1071-1084, doi: 10.2741/4769.
  56. Zuzina, A. B., Vinarskaya, A. K., and Balaban, P. M. (2020) Histone deacetylase inhibitors rescue the impaired memory in terrestrial snails, J. Comp. Physiol. A, 206, 639-649, doi: 10.1007/s00359-020-01422-w.
  57. Levenson, J. M., and Sweatt, J. (2005) Epigenetic mechanisms in memory formation, Nat. Rev. Neurosci., 6, 108-118, doi: 10.1038/nrn1604.
  58. Reolon, G. K., Maurmann, N., Werenicz, A., Garcia, V. A., Schröder, N., Wood, M. A., and Roesler, R. (2011) Posttraining systemic administration of the histone deacetylase inhibitor sodium butyrate ameliorates aging-related memory decline in rats, Behav. Brain Res., 221, 329-332, doi: 10.1016/j.bbr.2011.03.033.
  59. Benjamin, J. S., Pilarowski, G. O., Carosso, G. A., Zhang, L., Huso, D. L., Goff, L. A., Vernon, H. J., Hansen, K. D., and Bjornsson, H. T. (2017) A ketogenic diet rescues hippocampal memory defects in a mouse model of Kabuki syndrome, Proc. Natl. Acad. Sci. USA, 114, 125-130, doi: 10.1073/pnas.1611431114.
  60. Bjornsson, H. T., Benjamin, J. S., Zhang, L., Weissman, J., Gerber, E. E., Chen, Y. C., Vaurio, R. G., Potter, M. C., Hansen, K. D., and Dietz. H. C. (2014) Histone deacetylase inhibition rescues structural and functional brain deficits in a mouse model of Kabuki syndrome, Sci. Transl. Med., 6, 256ra135, doi: 10.1126/scitranslmed.3009278.
  61. Sweatt, J. D. (2016) Neural plasticity and behavior - sixty years of conceptual advances, J. Neurochem., 139 (Suppl 2), 179-199, doi: 10.1111/jnc.13580.
  62. Espeso-Gil, S., Holik, A. Z., Bonnin, S., Jhanwar, S., Chandrasekaran, S., Pique-Regi, R., Albaigès-Ràfols, J., Maher, M., Permanyer, J., Irimia, M., Friedländer, M. R., Pons-Espinal, M., Akbarian, S., Dierssen, M., Maass, P. G., Hor, C. N., and Ossowski, S. (2021) Environmental enrichment induces epigenomic and genome organization changes relevant for cognition, Front. Mol. Neurosci., 14, 664912, doi: 10.3389/fnmol.2021.664912.
  63. McGreevy, K. R., Tezanos, P., Ferreiro-Villar, I., Pallé, A., Moreno-Serrano, M., Esteve-Codina, A., Lamas-Toranzo, I., Bermejo-Álvarez, P., Fernández-Punzano, J., Martín-Montalvo, A., Montalbán, R., Ferrón, S. R., Radford, E. J., Fontán-Lozano, Á., and Trejo, J. L. (2019) Intergenerational transmission of the positive effects of physical exercise on brain and cognition, Proc. Natl. Acad. Sci. USA, 116, 10103-10112, doi: 10.1073/pnas.1816781116.
  64. Mezheritskiy, M. I., and Dyakonova, V. E. (2022) Direct and inherited epigenetic changes in the nervous system caused by intensive locomotion: possible adaptive significance, Russ. J. Dev. Biol., 53, 317-331, doi: 10.1134/S1062360422050058.
  65. Yang, Y., Lagisz, M., Foo, Y. Z., Noble, D. W. A., Anwer, H., and Nakagawa, S. (2021) Beneficial intergenerational effects of exercise on brain and cognition: a multilevel meta-analysis of mean and variance, Biol. Rev., 96, 1504-1527, doi: 10.1111/brv.12712.
  66. Grassi, D., Franz, H., Vezzali, R., Bovio, P., Heidrich, S., Dehghanian, F., Lagunas, N., Belzung, C., Krieglstein, K., and Vogel, T. (2017) Neuronal activity, tgfβ-signaling and unpredictable chronic stress modulate transcription of gadd45 family members and DNA methylation in the hippocampus, Cereb. Cortex, 27, 4166-4181, doi: 10.1093/cercor/bhx095.
  67. Guo, J. U., Ma, D. K., Mo, H., Ball, M. P., Jang, M. H., Bonaguidi, M. A., Balazer, J. A., Eaves, H. L., Xie, B., Ford, E., Zhang, K., Ming, G. L., Gao, Y., and Song, H. (2011) Neuronal activity modifies the DNA methylation landscape in the adult brain, Nat. Neurosci., 14, 1345-1351, doi: 10.1038/nn.2900.
  68. Su, Y., Shin, J., Zhong, C., Wang, S., Roychowdhury, P., Lim, J., Kim, D., Ming, G. L., and Song, H. (2017) Neuronal activity modifies the chromatin accessibility landscape in the adult brain, Nat. Neurosci., 20, 476-483, doi: 10.1038/nn.4494.
  69. Dumitrache, L. C., and McKinnon, P. J. (2022) Out of LINE: Transposons, genome integrity, and neurodegeneration. Neuron, 110, 3217-3219, doi: 10.1016/j.neuron.2022.09.026.
  70. Beagan, J. A., Pastuzyn, E. D., Fernandez, L. R., Guo, M. H., Feng, K., Titus, K. R., Chandrashekar, H., Shepherd, J. D., and Phillips-Cremins, J. E. (2020) Three-dimensional genome restructuring across timescales of activity-induced neuronal gene expression, Nat. Neurosci., 23, 707-717, doi: 10.1038/s41593-020-0634-6.
  71. Belgrad, J., and Fields, R. D. (2018) Epigenome interactions with patterned neuronal activity, Neuroscientist, 24, 471-485, doi: 10.1177/1073858418760744.
  72. Bocharova, L. S., Borovyagin, V. L., Dyakonova, T. L., Warton, S. S., and Veprintsev, B. N. (1972) Ultrastructure and RNA synthesis in a molluscan giant neuron under electrical stimulation, Brain Res., 36, 371-84, doi: 10.1016/0006-8993(72)90741-x.
  73. D'Yakonova, T. L., Veprintsev, B. N., Chapas, A. F., and Brodskii, V. Y. (1966) Induction of RNA synthesis in neurons by electrical activity, Fed. Proc. Transl. Suppl., 25, 901-904.
  74. Lee, P. R., and Fields, R. D. (2021) Activity-dependent gene expression in neurons, Neuroscientist, 27, 355-366, doi: 10.1177/1073858420943515.
  75. Nandakumar, S., Grushko, O., and Buttitta, L. A. (2020) Polyploidy in the adult Drosophila brain, Elife, 9, e54385, doi: 10.7554/eLife.54385.
  76. Nandakumar, S., Rozich, E., and Buttitta, L. (2021) Cell cycle re-entry in the nervous system: from polyploidy to neurodegeneration, Front. Cell. Dev., 9, 698661, doi: 10.3389/fcell.2021.698661.
  77. Боровягин В. Л., Сахаров Д. А. (1968) Ультраструктура гигантских нейронов тритонии. Атлас, Наука, Москва.
  78. Сахаров Д. А. (1974) Генеалогия нейронов, Наука, Москва.
  79. Кирсанова И. А., Анисимов А. П. (2000) Соматическая полиплоидия в нейронах брюхоногих моллюсков. I. Морфологическая характеристика ганглиев и нейронов ЦНС улитки янтарки, Цитология, 42, 733-739.
  80. Arendt, T., Brückner, M. K., Mosch, B., and Lösche, A. (2010) Selective cell death of hyperploid neurons in Alzheimer's disease, Am. J. Pathol., 177, 15-20, doi: 10.2353/ajpath.2010.090955.
  81. Frade, J. M., and López-Sánchez, N. (2017) Neuronal tetraploidy in Alzheimer and aging, Aging (Albany NY), 9, 2014-2015, doi: 10.18632/aging.101312.
  82. Keinath, A. T., Mosser, C. A., and Brandon, M. P. (2022) The representation of context in mouse hippocampus is preserved despite neural drift, Nat. Commun., 13, 2415, doi: 10.1038/s41467-022-30198-7.
  83. Rule, M. E., and O'Leary, T. (2022) Self-healing codes: How stable neural populations can track continually reconfiguring neural representations, Proc. Natl. Acad. Sci. USA, 119, e2106692119, doi: 10.1073/pnas.2106692119.
  84. Марков А., Наймарк Е. (2022) Эволюция человека, В 3 кн. Кости, гены и культура, Издательство АСТ, CORPUS, Москва, 624 с.
  85. Угрюмов М. В. (2010) Болезнь Паркинсона: новые представления о патогенезе, диагностике и лечении. В кн. Болезни движений: медицинские и социальные аспекты (под ред. У. И. Гусева и А. Б. Гехт), АПКиППРО, Москва.
  86. Epp, J. R., Silva, M. R., Köhler, S., Josselyn, S. A., and Frankland, P. W. (2016) Neurogenesis-mediated forgetting minimizes proactive interference, Nat. Commun., 7, 10838, doi: 10.1038/ncomms10838
  87. Moroz, L. L., Nikitin, M. A., Poličar, P. G., Kohn, A. B., and Romanova, D. Y. (2021) Evolution of glutamatergic signaling and synapses, Neuropharmacology, 199, 108740, doi: 10.1016/j.neuropharm.2021.108740.
  88. Moroz, L. L. (2021) Multiple origins of neurons from secretory cells, Front. Cell. Dev. Biol., 9, 669087, doi: 10.3389/fcell.2021.669087.
  89. Moroz, L. L., Romanova, D. Y., and Kohn, A. B. (2021) Neural versus alternative integrative systems: molecular insights into origins of neurotransmitters, Philos. Trans. R. Soc. B, 376, 20190762, doi: 10.1098/rstb.2019.0762.
  90. Sultan, F. A., and Sweatt, J. D. (2013) The role of the gadd45 family in the nervous system: a focus on neurodevelopment, neuronal injury, and cognitive neuroepigenetics, in Gadd45. Stress Sensor Genes (Liebermann, D A., Hoffman, B., eds) Springer, pp. 81-121, doi: 10.1007/978-1-4614-8289-5_6.
  91. Crowe, S. L., Movsesyan, V. A., Jorgensen, T. J., and Kondratyev, A. (2006) Rapid phosphorylation of histone H2A.X following ionotropic glutamate receptor activation, Eur. J. Neurosci., 23, 2351-2361, doi: 10.1111/j.1460-9568.2006.04768.x.
  92. Dyakonova, V. E. (2022) Origin and evolution of the nervous system: new data from comparative whole genome studies of multicellular animals, Russ. J. Dev. Biol., 53, 55-64, doi: 10.1134/S1062360422010088.
  93. Liscovitch-Brauer, N., Alon, S., Porath, H. T., Elstein, B., Unger, R., Ziv, T., Admon, A., Levanon, E. Y., Rosenthal, J. J. C., and Eisenberg, E. (2017) Trade-off between transcriptome plasticity and genome evolution in cephalopods, Cell, 169, 191-202.e11, doi: 10.1016/j.cell.2017.03.025.
  94. Moldovan, M., Chervontseva, Z., Bazykin, G., and Gelfand, M. S. (2020) Adaptive evolution at mRNA editing sites in soft-bodied cephalopods, PeerJ, e10456, doi: 10.7717/peerj.10456.
  95. Yablonovitch, A. L., Deng, P., Jacobson, D., and Li, J. B. (2017) The evolution and adaptation of RNA editing, PLoS Genet., 13, e1007064, doi: 10.1371/journal.pgen.1007064.
  96. Garrett, S., and Rosenthal, J. J. C. (2012) RNA editing underlies temperature adaptation in K+ channels from polar octopuses, Science, 335, 848-851, doi: 10.1126/science.1212795.

© Russian Academy of Sciences, 2023

Осы сайт cookie-файлдарды пайдаланады

Біздің сайтты пайдалануды жалғастыра отырып, сіз сайттың дұрыс жұмыс істеуін қамтамасыз ететін cookie файлдарын өңдеуге келісім бересіз.< / br>< / br>cookie файлдары туралы< / a>