Olovnikov, telomeres and telomerase. is it possible to prolong a healthy life?

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The science of telomeres and telomerase has made tremendous progress in recent decades. In this review, we consider it first in a historical context (the Carrel-Hayflick-Olovnikov-Blackburn chain of discoveries) and then review current knowledge of telomere structure and dynamics in norm and pathology. Central to the review are the consequences of telomere shortening, including telomere position effects, DNA damage signaling, and increased genetic instability. Cell senescence and the role of telomere length in its development are discussed separately. Therapeutic aspects and risks of telomerase and other telomere lengthening methods are also discussed.

作者简介

Y. Yegorov

Engelhardt Institute of Molecular Biology, Russian Academy of Sciences

Email: yegorov58@gmail.com
119991 Moscow, Russia

参考

  1. Muller, H. J. (1938) The remaking of chromosomes, Coll. Net., 8, 182-195.
  2. McClintock, B. (1938) The fusion of broken ends of sister half-chromatids following chromatid breakage at meiotic anaphases, Missouri Agric. Exp. Sta. Res. Bull., 290, 1-48.
  3. McClintock, B. (1939) The behavior in successive nuclear divisions of a chromosome broken at meiosis, Proc. Nat. Acad. Sci. USA, 25, 405-416, doi: 10.1073/pnas.25.8.405.
  4. McClintock, B. (1941) The stability of broken ends in zea mays, Genetics, 26, 234-282, doi: 10.1093/genetics/26.2.234.
  5. Вильсон Э. (1936) Клетка и ее роль в развитии и наследственности, М.-Л. ГИБМЛ, стр. 211-212.
  6. Carrel, A. (1912) On the permanent life of tissues outside of the organism, J. Exp. Med., 15, 516-528, doi: t10.1084/jem.15.5.516.
  7. Hayflick, L., and Moorhead, P. S. (1961) The serial cultivation of human diploid cell strains, Exp. Cell Res., 25, 585-621, doi: 10.1016/0014-4827(61)90192-6.
  8. Hayflick, L. (1998) Conference: Telomeres and Telomerase: Implications for Cell Immortality, Cancer, and Age Related Disease, California.
  9. Benveniste, G. L. (2013) Alexis Carrel: the good, the bad, the ugly, ANZ J. Surg., 83, 609-611, doi: 10.1111/ans.12167.
  10. Dutkowski, P., de Rougemont, O., and Clavien, P.-A. (2008) Alexis Carrel: genius, innovator and ideologist, Am. J. Transplant., 8, 1998-2003, doi: 10.1111/j.1600-6143.2008.02364.x.
  11. Carrel, A. (1939) Man, the Unknown, New York: Harper & Brothers.
  12. Оловников А. М. (1971) Принцип маргинотомии в матричном синтезе полинуклеотидов, Докл. Акад. Наук, 201, 1496-1499.
  13. Greider, C. W., and Blackburn, E. (1985) Identification of a specific telomere terminal transferase activity in Tetrahymena extracts, Cell, 43, 405-413, doi: 10.1016/0092-8674(85)90170-9.
  14. Greider, C. W., and Blackburn, E. H. (1996) Telomeres, Telomerase and Cancer, Sci. Am., 274, 92-97, doi: 10.1038/scientificamerican0296-92.
  15. Оловников А. М. (1992) Старение есть результат укорочения "дифферотены" в теломере из-за концевой недорепликации и недорепарации ДНК, Известия АН СССР. Сер. Биол., 4, 641-643.
  16. Olovnikov, A. M. (1995) The role of incomplete terminal repair of chromosomal DNA in the aging of neurons and postmitotic organisms [in Russian], Biol. Bull., 4, 504-507.
  17. Von Zglinicki, T., Saretzki, G., Docke, W., and Lotze, C. (1995) Mild hyperoxia shortens telomeres and inhibits proliferation of fibroblasts: a model for senescence? Exp. Cell. Res., 220, 186-193, doi: 10.1006/excr.1995.1305.
  18. Von Zglinicki, T. (2002) Oxidative stress shortens telomeres, Trends Biochem. Sci., 27, 339-344, doi: 10.1016/S0968-0004(02)02110-2.
  19. Оловников А. М. (2003) Редусомная гипотеза старения и контроля биологического времени в индивидуальном развитии, Биохимия, 68, 7-41.
  20. Olovnikov, A. M. (1973) A theory of marginotomy, J. Theor. Biol., 41, 181-190, doi: 10.1016/0022-5193(73)90198-7.
  21. Doksani, Y. (2019) The response to DNA damage at telomeric repeats and its consequences for telomere function, Genes, 10, 318, doi: 10.3390/genes10040318.
  22. Runnberg, R., Narayanan, S., Itriago, H., and Cohn, M. (2019) Either Rap1 or Cdc13 can protect telomeric single-stranded 3′ overhangs from degradation in vitro, Sci. Rep., 9, 19181, doi: 10.1038/s41598-019-55482-3.
  23. Burge, S., Parkinson, G. N., Hazel, P., Todd, A. K., and Neidle, S. (2006) Quadruplex DNA: sequence, topology and structure, Nucleic Acids Res., 34, 5402-5415, doi: 10.1093/nar/gkl655.
  24. Griffith, J. D., Comeau, L., Rosenfield, S., Stansel, R. M., Bianchi, A., Moss, H., and De Lange, T. (1999) Mammalian telomeres end in a large duplex loop, Cell, 97, 503-514, doi: 10.1016/s0092-8674(00)80760-6.
  25. De Lange, T. (2018) Shelterin-mediated telomere protection, Annu. Rev. Genet., 52, 223-247, doi: 10.1146/annurev-genet-032918-021921.
  26. De Lange, T. (2018) What I got wrong about shelterin, J. Biol. Chem., 293, 10453-10456, doi: 10.1074/jbc.AW118.003234.
  27. Azzalin, C. M., Reichenbach, P., Khoriauli, L., Giulotto, E., and Lingner, J. (2007) Telomeric repeat containing RNA and RNA surveillance factors at mammalian chromosome ends, Science, 318, 798-801, doi: 10.1126/science.1147182.
  28. Porro, A., Feuerhahn, S., Delafontaine, J., Riethman, H., Rougemont, J., and Lingner, J. (2014) Functional characterization of the TERRA transcriptome at damaged telomeres, Nat. Commun., 5, 5379, doi: 10.1038/ncomms6379.
  29. Kwapisz, M., and Morillon, A. (2020) Subtelomeric transcription and its regulation, J. Mol. Biol., 432, 4199-4219, doi: 10.1016/j.jmb.2020.01.026.
  30. Feretzaki, M., Nunes, P. R., and Lingner, J. (2019) Expression and differential regulation of human TERRA at several chromosome ends, RNA, 25, 1470-1480, doi: 10.1261/rna.072322.119.
  31. Montero, J. J., de Silanes, I., Graña, O., and Blasco, M. A. (2016) Telomeric RNAs are essential to maintain telomeres, Nat. Commun., 7, 12534, doi: 10.1038/ncomms12534.
  32. Bettin, N., Pegorar, C., and Cusanelli, E. (2019) The emerging roles of TERRA in telomere maintenance and genome stability, Cells, 8, E246, doi: 10.3390/cells8030246.
  33. Koskas, S., Decottignies, A., Dufour, S., Pezet, M., Verdel, A., Vourc'h, C., and Faure, V. (2017) Heat shock factor 1 promotes TERRA transcription and telomere protection upon heat stress, Nucleic Acids Res., 45, 6321-6333, doi: 10.1093/nar/gkx208.
  34. Galigniana, N. M., Charó, N. L., Uranga, R., Cabanillas, A. M., and Piwien-Pilipuk, G. (2020) Oxidative stress induces transcription of telomeric repeat-containing RNA (TERRA) by engaging PKA signaling and cytoskeleton dynamics, Biochim. Biophys. Acta Mol. Cell Res., 1867, 118643, doi: 10.1016/j.bbamcr.2020.118643.
  35. Le Berre, G., Hossard, V., Riou, J.-F., and Guieysse-Peugeot, A.-L. (2019) Repression of TERRA expression by subtelomeric DNA methylation is dependent on NRF1 binding, Int. J. Mol. Sci., 20, E2791, doi: 10.3390/ijms20112791.
  36. Wang, Z., Deng, Z., Dahmane, N., Tsai, K., Wang, P., Williams, D. R., Kossenkov, A. V., Showe, L. C., Zhang, R., Huang, Q., Conejo-Garcia, J. R., and Lieberman, P. M. (2015) Telomeric repeat-containing RNA (TERRA) constitutes a nucleoprotein component of extracellular inflammatory exosomes, Proc. Natl Acad. Sci. USA, 112, E6293-E6300, doi: 10.1073/pnas.1505962112.
  37. Aguado, J., Sola-Carvajal, A., Cancila, V., Revêchon, G., Ong, P. F., Jones-Weinert, C. W., Wallén Arzt, E., Lattanzi, G., Dreesen, O., Tripodo, C., Rossiello, F., Eriksson, M., and d'Adda di Fagagna, F. (2019) Inhibition of DNA damage response at telomeres improves the detrimental phenotypes of Hutchinson-Gilford progeria syndrome, Nat. Commun., 10, 4990, doi: 10.1038/s41467-019-13018-3.
  38. Kroupa, M., Tomasova, K., Kavec, M., Skrobanek, P., Buchler, T., Kumar, R., Vodickova, L., and Vodicka, P. (2022) TElomeric repeat-containing RNA (TERRA): physiological functions and relevance in cancer, Front. Oncol., 12, 913314, doi: 10.3389/fonc.2022.913314.
  39. Chebly, A., Ropio, J., Baldasseroni, L., Prochazkova-Carlotti, M., Idrissi, Y., Ferrer, J., Farra, C., Beylot-Barry, M., Merlio, J.-P., and Chevret, E. (2022) Telomeric repeat-containing RNA (TERRA): a review of the literature and first assessment in cutaneous T-cell lymphomas, Genes, 13, 539, doi: 10.3390/genes13030539.
  40. Pérez-Martínez, L., Wagner, T., and Luke, B. (2022) Telomere interacting proteins and TERRA regulation, Front. Genet., 13, 872636, doi: 10.3389/fgene.2022.872636.
  41. Bhargava, R., Lynskey, M. L., and O'Sullivan, R. J. (2022) New twists to the ALTernative endings at telomeres, DNA Repair (Amst), 115, 103342, doi: 10.1016/j.dnarep.2022.103342.
  42. Fernandes, R. V., Feretzaki, M., and Lingner, J. (2021) The makings of TERRA R-loops at chromosome ends, Cell Cycle, 20, 1745-1759, doi: 10.1080/15384101.2021.1962638.
  43. Smith, E. M., Pendlebury, D. F., and Nandakumar, J. (2020) Structural biology of telomeres and telomerase, Cell. Mol. Life Sci., 77, 61-79, doi: 10.1007/s00018-019-03369-x.
  44. Roake, C. M., and Artandi, S. E. (2020) Regulation of human telomerase in homeostasis and disease, Nat. Rev. Mol. Cell Biol., 21, 384-397, doi: 10.1038/s41580-020-0234-z.
  45. Liu, X., Wang, Y., Chang, G., Wang, F., Wang, F., and Geng, X. (2017) Alternative splicing of hTERT Pre-mRNA: a potential strategy for the regulation of telomerase activity, Int. J. Mol. Sci., 18, 567, doi: 10.3390/ijms18030567.
  46. Jeung, H. C., Rha, S. Y., Shin, S. J., Ahn, J. B., Park, K. H., Kim, T. S., Kim, J. J., Roh, J. K., and Chung, H. C. (2017) Changes in telomerase activity due to alternative splicing of human telomerase reverse transcriptase in colorectal cancer, Oncol. Lett., 14, 2385-2392, doi: 10.3892/ol.2017.6438.
  47. Ludlow, A. T., Slusher, A. L., and Sayed, M. E. (2019) Insights into telomerase/hTERT alternative splicing regulation using bioinformatics and network analysis in cancer, Cancers, 11, 666, doi: 10.3390/cancers11050666.
  48. Ramlee, M. K., Wang, J., Toh, W. X., and Li, S. (2016) Transcription regulation of the human telomerase reverse transcriptase (hTERT) gene, Genes, 7, 50, doi: 10.3390/genes7080050.
  49. Daniel, M., Peek, G. W., and Tollefsbol, T. O. (2012) Regulation of the human catalytic subunit of telomerase (hTERT), Gene, 498, 135-146, doi: 10.1016/j.gene.2012.01.095.
  50. Leão, R., Apolónio, J. D., Lee, D., Figueiredo, A., Tabori, U., and Castelo-Branco, P. (2018) Mechanisms of human telomerase reverse transcriptase (hTERT) regulation: clinical impacts in cancer, J. Biomed. Sci., 25, 22, doi: 10.1186/s12929-018-0422-8.
  51. Abreu, E., Terns, R. M., and Terns, M. P. (2017) Visualization of human telomerase localization by fluorescence microscopy techniques, Adv. Struct. Saf. Stud., 1587, 113-125, doi: 10.1007/978-1-4939-6892-3_11.
  52. Venteicher, A. S., and Artandi, S. E. (2009) TCAB1: driving telomerase to Cajal bodies, Cell Cycle, 8, 1329-1331, doi: 10.4161/cc.8.9.8288.
  53. Nguyen, K. T. T. T., and Wong, J. M. Y. (2020) Telomerase biogenesis and activities from the perspective of its direct interacting partners, Cancers, 12, 1679, doi: 10.3390/cancers12061679.
  54. González-Suárez, E., Samper, E., Ramírez, A., Flores, J. M., Martín-Caballero, J., Jorcano, J. L., and Blasco, M. A. (2001) Increased epidermal tumors and increased skin wound healing in transgenic mice overexpressing the catalytic subunit of telomerase, mTERT, in basal keratinocytes, EMBO J., 20, 2619-2630, doi: 10.1093/emboj/20.11.2619.
  55. Chen, K.-H., Guo, Y., Li, L., Qu, S., Zhao, W., Lu, Q.-T., Mo, Q.-Y., Yu, B.-B., Zhou, L., Lin, G.-X., Sun, Y.-C. and Zhu, X.-D. (2018) Cancer stem cell-like characteristics and telomerase activity of the nasopharyngeal carcinoma radioresistant cell line CNE-2R, Cancer Med., 7, 4755-4764, doi: 10.1002/cam4.1729.
  56. Walter, M., Davies, J. P., and Ioannou, Y. A. (2003) Telomerase immortalization upregulates Rab9 expression and restores LDL cholesterol egress from Niemann-Pick C1 late endosomes, J. Lipid Res., 44, 243-253, doi: 10.1194/jlr.M200230-JLR200.
  57. Bagheri, S., Nosrati, M., Li, S., Fong, S., Torabian, S., Rangel, J., Moore, D. H., Federman, S., Laposa, R. R., Baehner, F. L., Sagebiel, R. W., Cleaver, J. E., Haqq, C., Debs, R. J., Blackburn, E. H., and Kashani-Sabet, M. (2006) Genes and pathways downstream of telomerase in melanoma metastasis, Proc. Natl. Acad. Sci. USA, 103, 11306-11311, doi: 10.1073/pnas.0510085103.
  58. Liu, Z., Li, Q., Li, K., Chen, L., Li, W., Hou, M., Liu, T., Yang, J., Lindvall, C., Björkholm, M., Jia, J., and Xu, D. (2013) Telomerase reverse transcriptase promotes epithelial-mesenchymal transition and stem cell-like traits in cancer cells, Oncogene, 32, 4203-4213, doi: 10.1038/onc.2012.441.
  59. Ghosh, A., Saginc, G., Leow, S. C., Khattar, E., Shin, E. M., Yan, T. D., Wong, M., Zhang, Z., Li, G., Sung, W.-K., Zhou, J., Chng, W. J., Li, S., Liu, E., and Tergaonkar, V. (2012) Telomerase directly regulates NF-κB-dependent transcription, Nat. Cell Biol., 14, 1270-1281, doi: 10.1038/ncb2621.
  60. Chen, K., Chen, L., Li, L., Qu, S., Yu, B., Sun, Y., Wan, F., Chen, X., Liang, R., and Zhu, X. (2020) A positive feedback loop between Wnt/β-catenin signaling and hTERT regulates the cancer stem cell-like traits in radioresistant nasopharyngeal carcinoma cells, J. Cell. Biochem., 121, 4612-4622, doi: 10.1002/jcb.29681.
  61. Rosen, J., Jakobs, P., Ale-Agha, N., Altschmied, J., and Haendeler, J. (2020) Non-canonical functions of Telomerase Reverse Transcriptase-Impact on redox homeostasis, Redox Biol., 34, 101543, doi: 10.1016/j.redox.2020.101543.
  62. Zhang, Q., Wang, H. Y., Woetmann, A., Raghunath, P. N., Odum, N., and Wasik, M. A. (2006) STAT3 induces transcription of the DNA methyltransferase 1 gene (DNMT1) in malignant T lymphocytes, Blood, 108, 1058-1064, doi: 10.1182/blood-2005-08-007377.
  63. Maida, Y., Yasukawa, M., Furuuchi, M., Lassmann, T., Possemato, R., Okamoto, N., Kasim, V., Hayashizaki, Y., Hahn, W. C., and Masutomi, K. (2009) An RNA-dependent RNA polymerase formed by TERT and the RMRP RNA, Nat. Cell Biol., 461, 230-235, doi: 10.1038/nature08283.
  64. Ridanpää, M., Van Eenennaam, H., Pelin, K., Chadwick, R., Johnson, C., Yuan, B., Vanvenrooij, W., Pruijn, G., Salmela, R., Rockas, S., Mäkitie, O., Kaitila, I., and de la Chapelle, A. (2001) Mutations in the RNA component of RNase MRP cause a pleiotropic human disease, cartilage-hair hypoplasia, Cell, 104, 195-203, doi: 10.1016/s0092-8674(01)00205-7.
  65. Sharma, N. K., Reyes, A., Green, P., Caron, M. J., Bonini, M. G., Gordon, D. M., Holt, I. J., and Santos, J. H. (2011) Human telomerase acts as a hTR-independent reverse transcriptase in mitochondria, Nucleic Acids Res., 40, 712-725, doi: 10.1093/nar/gkr758.
  66. Чернов Д. Н., Егоров Е. Е., Акимов С. С. (1996) Теломеразная активность клеток мыши при спонтанной трансформации, Докл. Акад. Наук, 349, 121-123.
  67. Lue, N. F., Bosoy, D., Moriarty, T. J., Autexier, C., Altman, B., and Leng, S. (2005) Telomerase can act as a template- and RNA-independent terminal transferase, Proc. Natl. Acad. Sci. USA, 102, 9778-9783, doi: 10.1073/pnas.0502252102.
  68. Baur, J. A., Zou, Y., Shay, J. W., and Wright, W. E. (2001) Telomere position effect in human cells, Science, 292, 2075-2077, doi: 10.1126/science.1062329.
  69. Lou, Z., Wei, J., Riethman, H., Baur, J. A., Voglauer, R., Shay, J. W., and Wright, W. E. (2009) Telomere length regulates ISG15 expression in human cells, Aging, 1, 608-621, doi: 10.18632/aging.100066.
  70. Stadler, G., Rahimov, F., King, O. D., Chen, J. C., Robin, J. D., Wagner, K. R., Shay, J. W., Emerson, C. P., Jr., and Wright, W. E. (2013) Telomere position effect regulates DUX4 in human facioscapulohumeral muscular dystrophy, Nat. Struct. Mol. Biol., 20, 671-678, doi: 10.1038/nsmb.2571.
  71. Kim, W., Ludlow, A. T., Min, J., Robin, J. D., Stadler, G., Mender, I., Lai, T. P., Zhang, N., Wright, W. E., and Shay, J. W. (2016) Regulation of the human telomerase gene TERT by Telomere Position Effect-Over Long Distances (TPE-OLD): implications for aging and cancer, PLoS Biol., 14, e2000016, doi: 10.1371/journal.pbio.2000016.
  72. Sharma, S., and Chowdhury, S. (2022) Emerging mechanisms of telomerase reactivation in cancer, Trends Cancer, 8, 632-641, doi: 10.1016/j.trecan.2022.03.005.
  73. Yegorov, Y. E., Chernov, D. N., Akimov, S. S., Akhmalisheva, A. K., Smirnova, Y. B., Shinkarev, D. B., Semenova, I. V., Yegorova, I. N., and Zelenin, A. V. (1997) Blockade of telomerase function by nucleoside analogs, Biochemistry (Moscow), 62, 1296-1305.
  74. Harley, C. B. (2008) Telomerase and cancer therapeutics, Nat. Rev. Cancer, 8, 167-179, doi: 10.1038/nrc2275.
  75. Lansdorp, P. (2022) Telomere length regulation, Front. Oncol., 12, 943622, doi: 10.3389/fonc.2022.943622.
  76. Montpetit, A. J., Alhareeri, A. A., Montpetit, M., Starkweather, A. R., Elmore, L. W., Filler, K., Mohanraj, L., Burton, C. W., Menzies, V. S., Lyon, D. E., and Jackson-Cook, C. K. (2014) Telomere length: a review of methods for measurement, Nurs. Res., 63, 289-299, doi: 10.1097/NNR.0000000000000037.
  77. Lai, T.-P., Wright, W. E., and Shay, J. W. (2018) Comparison of telomere length measurement methods, Philos. Trans. R. Soc. Lond. B Biol. Sci., 373, 20160451, doi: 10.1098/rstb.2016.0451.
  78. Lin, J., and Epel, E. (2022) Stress and telomere shortening: insights from cellular mechanisms, Ageing Res. Rev., 73, 101507, doi: 10.1016/j.arr.2021.101507.
  79. Tham, C. Y., Poon, L., Yan, T., Koh, J. Y. P., Ramlee, M. K., Teoh, V. S. I., Zhang, S., Cai, Y., Hong, Z., Lee, G. S., Liu, J., Song, H. W., Hwang, W. Y. K., Teh, B. T., Tan, P., Xu, L., Koh, A. S., Osato, M., and Li, S. (2023) High-throughput telomere length measurement at nucleotide resolution using the PacBio high fidelity sequencing platform, Nat. Commun., 14, 281, doi: 10.1038/s41467-023-35823-7.
  80. Yegorov, Y. E., Poznyak, A. V., Nikiforov, N. G., Starodubova, A. V., and Orekhov, A. N. (2021) Role of telomeres shortening in atherogenesis: an overview, Cells, 10, 395, doi: 10.3390/cells10020395.
  81. Di Fagagna, D., Reaper, F., Clay-Farrace, P. M., Fiegler, L., Carr, H., Von Zglinicki, T., Saretzki, G., Carter, N. P., and Jackson, S.P. (2003) A DNA damage checkpoint response in telomere initiated senescence, Nature, 426, 194-198, doi: 10.1038/nature02118.
  82. Fumagalli, M., Rossiello, F., Clerici, M., Barozzi, S., Cittaro, D., Kaplunov, J. M., Bucci, G., Dobreva, M., Matti, V., Beausejour, C. M., Herbig, U., Longhese, M. P., and d'Adda di Fagagna, F. (2012) Telomeric DNA damage is irreparable and causes persistent DNA-damage-response activation, Nat. Cell Biol., 14, 355-365, doi: 10.1038/ncb2466.
  83. Di Leonardo, A., Linke, S. P., Clarkin, K., and Wahl, G. M. (1994) DNA damage triggers a prolonged p53-dependent G1arrest and long-term induction of Cip1 in normal human fibroblasts, Genes Dev., 8, 2540-2551, doi: 10.1101/gad.8.21.2540.
  84. Sikora, E., Bielak-Zmijewska, A., and Mosieniak, G. (2018) What is and what is not cell senescence, Postepy Biochem., 64, 110-118, doi: 10.18388/pb.2018_120.
  85. Gems, D., and Kern, C. C. (2022) Is "cellular senescence" a misnomer? Geroscience, 44, 2461-2469, doi: 10.1007/s11357-022-00652-x.
  86. Nakamura, A. J., Chiang, Y. J., Hathcock, K. S., Horikawa, I., Sedelnikova, O. A., Hodes, R. J., and Bonner, W. M. (2008) Both telomeric and non-telomeric DNA damage are determinants of mammalian cellular senescence, Epigenet. Chromatin, 1, 6, doi: 10.1186/1756-8935-1-6.
  87. Gorgoulis, V., Adams, P. D., Alimonti, A., Bennett, D. C., Bischof, O., Bishop, C., Campisi, J., Collado, M., Evangelou, K., Ferbeyre, G., Gil, J., Hara, E., Krizhanovsky, V., Jurk, D., Maier, A. B., Narita, M., Niedernhofer, L., Passos, J. F., Robbins, P. D., Schmitt, C. A., Sedivy, J., Vougas, K., von Zglinicki, T., Zhou, D., Serrano, M., and Demaria, M. (2019) Cellular senescence: defining a path forward, Cell, 179, 813-827, doi: 10.1016/j.cell.2019.10.005.
  88. Yegorov, Y. E., Akimov, S. S., Hass, R., Zelenin, A. V., and Prudovsky, I. A. (1998) Endogenous beta-galactosidase activity in continuously nonproliferating cells, Exp. Cell Res., 243, 207-211, doi: 10.1006/excr.1998.4169.
  89. Passos, J. F., Nelson, G., Wang, C., Richter, T., Simillion, C., Proctor, C. J., Miwa, S., Olijslagers, S., Hallinan, J., Wipat, A., Saretzki, G., Rudolph, K. L., Kirkwood, T. B. L., and von Zglinicki, T. (2010) Feedback between p21 and reactive oxygen production is necessary for cell senescence, Mol. Systems Biol., 6, 347, doi: 10.1038/msb.2010.5.
  90. Correia-Melo, C., Marques, F. D. M., Anderson, R., Hewitt, G., Hewitt, R., Cole, J., Carroll, B. M., Miwa, S., Birch, J., Merz, A., Rushton, M. D., Charles, M., Jurk, D., Tait, S. W. G., Czapiewski, R., Greaves, L., Nelson, G., Bohlooly-Y, M., Rodriguez-Cuenca, S., Vidal-Puig, A., Mann, D., Saretzki, G., Quarato, G., Green, D. R., Adams, P. D., von Zglinicki, T., Korolchuk, V. I., and Passos, J. F. (2016) Mitochondria are required for pro-ageing features of the senescent phenotype, EMBO J., 35, 724-742, doi: 10.15252/embj.201592862.
  91. De Cecco, M., Ito, T., Petrashen, A. P., Elias, A. E., and Skvir, N. J., (2019) L1 drives IFN in senescent cells and promotes age-associated inflammation, Nature, 566, 73-78, doi: 10.1038/s41586-018-0784-9.
  92. Zhao, N., Yin, G., Liu, C., Zhang, W., Shen, Y., Wang, D., Lin, Z., Yang, J., Mao, J., Guo, R., Zhang, Y., Wang, F., Liu, Z., Lu, X., and Liu, L. (2023) Critically short telomeres derepress retrotransposons to promote genome instability in embryonic stem cells, Cell Discov., 9, 45, doi: 10.1038/s41421-023-00538-y.
  93. Liu, X., Liu, Z., Wu, Z., Ren, J., Fan, Y., et al. (2023) Resurrection of endogenous retroviruses during aging reinforces senescence, Cell, 186, 287-304, doi: 10.1016/j.cell.2022.12.017.
  94. Pal, S., and Tyler, J. K. (2016) Epigenetics and aging, Sci. Adv., 2, e1600584, doi: 10.1126/sciadv.1600584.
  95. Gorbunova, V., Seluanov, A., Mita, P., McKerrow, W., Fenyö, D., Boeke, J. D., Linker, S. B., Gage, F. H., Kreiling, J. A., Petrashen, A. P., Woodham, T. A., Taylor, J. R., Helfand, S. L., and Sedivy, J. M. (2021) The role of retrotransposable elements in ageing and age-associated diseases, Nature, 596, 43-53, doi: 10.1038/s41586-021-03542-y.
  96. Miller, K. N., Victorelli, S. G., Salmonowicz, H., Dasgupta, N., Liu, T., Passos, J. F., and Adams, P. D. (2021) Cytoplasmic DNA: sources, sensing, and role in aging and disease, Cell, 184, 5506-5526, doi: 10.1016/j.cell.2021.09.034.
  97. Chandrasekaran, A., Idelchik, M. P. S., and Melendez, J. A. (2017) Redox control of senescence and age-related disease, Redox Biol., 11, 91-102, doi: 10.1016/j.redox.2016.11.005.
  98. Martini, H., and Passos, J. F. (2023) Cellular senescence: all roads lead to mitochondria, FEBS J., 290, 1186-1202, doi: 10.1111/febs.16361.
  99. Kirkland, J. L., and Tchkonia, T. (2017) Cellular senescence: a translational perspective, EBioMed., 21, 21-28, doi: 10.1016/j.ebiom.2017.04.013.
  100. Kumari, R., and Jat, P. (2021) Mechanisms of cellular senescence: cell cycle arrest and senescence associated secretory phenotype, Front. Cell Dev. Biol., 9, 645593, doi: 10.3389/fcell.2021.645593.
  101. Shay, J. W., Wright, W. E., and Werbin, H. (1993) Toward a molecular understanding of human breast cancer: a hypothesis, Breast Cancer Res. Treat., 25, 83-94, doi: 10.1007/BF00662404.
  102. Nassour, J., Aguiar, L. G., Correia, A., Schmidt, T. T., Mainz, L., Przetocka, S., Haggblom, C., Tadepalle, N., Williams, A., Shokhirev, M. N., Akincilar, S. C., Tergaonkar, V., Shadel, G. S., and Karlseder, J. (2023) Telomere-to-mitochondria signalling by ZBP1 mediates replicative crisis, Nature, 614, 767-773, doi: 10.1038/s41586-023-05710-8.
  103. Nassour, J., Radford, R., Correia, A., Fusté, J. M., Schoell, B., Jauch, A., Shaw, R. J., and Karlseder, J. (2019) Autophagic cell death restricts chromosomal instability during replicative crisis, Nature, 565, 659-663, doi: 10.1038/s41586-019-0885-0.
  104. Maciejowski, J., and de Lange, T. (2017) Telomeres in cancer: tumour suppression and genome instability, Nat. Rev. Mol. Cell Biol., 18, 175-186, doi: 10.1038/nrm.2016.171.
  105. Maciejowski, J., Li, Y., Bosco, N., Campbell, P. J., and de Lange, T. (2015) Chromothripsis and kataegis induced by telomere crisis, Cell, 163, 1641-1654, doi: 10.1016/j.cell.2015.11.054.
  106. Lo, A. W. I., Sabatier, L., Fouladi, B., Pottier, G., Ricoul, M., and Murnane, J. P. (2002) DNA amplification by breakage/fusion/bridge cycles initiated by spontaneous telomere loss in a human cancer cell line, Neoplasia, 4, 531-538, doi: 10.1038/sj.neo.7900267.
  107. Bignell, G. R., Santarius, T., Pole, J. C. M., Butler, A. P., Perry, J., Pleasance, E., Greenman, C., Menzies, A., Taylor, S., Edkins, S., Campbell, P., Quail, M., Plumb, B., Matthews, L., McLay, K., Edwards, P. A. W., Rogers, J., Wooster, R., Futreal, P. A., and Stratton, M. R. (2007) Architectures of somatic genomic rearrangement in human cancer amplicons at sequence-level resolution, Genome Res., 17, 1296-1303, doi: 10.1101/gr.6522707.
  108. Campbell, P. J., Yachida, S., Mudie, L. J., Stephens, P. J., Pleasance, E. D., Stebbings, L. A., Morsberger, L. A., Latimer, C., McLaren, S., Lin, M.-L., McBride, D. J., Varela, I., Nik-Zainal, S. A., Leroy, C., Jia, M., Menzies, A., Butler, A. P., Teague, J. W., Griffin, C. A., Burton, J., Swerdlow, H., Quail, M. A., Stratton, M. R., Iacobuzio-Donahue, C., and Futreal, P. A. (2010) The patterns and dynamics of genomic instability in metastatic pancreatic cancer, Nature, 467, 1109-1113, doi: 10.1038/nature09460.
  109. Lin, T. T., Letsolo, B. T., Jones, R. E., Rowson, J., Pratt, G., Hewamana, S., Fegan, C., Pepper, C., and Baird, D. M. (2010) Telomere dysfunction and fusion during the progression of chronic lymphocytic leukemia: evidence for a telomere crisis, Blood, 116, 1899-1907, doi: 10.1182/blood-2010-02-272104.
  110. Tanaka, H., Abe, S., Huda, N., Tu, L., Beam, M. J., Grimes, B., and Gilley, D. (2012) Telomere fusions in early human breast carcinoma, Proc. Natl. Acad. Sci. USA, 109, 14098-14103, doi: 10.1073/pnas.1120062109.
  111. Davoli, T., and de Lange, T. (2012) Telomere-driven tetraploidization occurs in human cells undergoing crisis and promotes transformation of mouse cells, Cancer Cell, 21, 765-776, doi: 10.1016/j.ccr.2012.03.044.
  112. Li, Y., Schwab, C., Ryan, S., Papaemmanuil, E., Robinson, H. M., Jacobs, P., Moorman, A. V., Dyer, S., Borrow, J., Griffiths, M., Heerema, N. A., Carroll, A. J., Talley, P., Bown, N., Telford, N., Ross, F. M., Gaunt, L., McNally, R. J. Q., Young, B. D., Sinclair, P., Rand, V., Teixeira, M. R., Joseph, O., Robinson, B., Maddison, M., Dastugue, N., Vandenberghe, P., Stephens, P. J., Cheng, J., Loo, P. V., Stratton, M. R., Campbell, P. J., and Harrison, C. J. (2014) Constitutional and somatic rearrangement of chromosome 21 in acute lymphoblastic leukaemia, Nature, 508, 102, doi: 10.1038/nature13115.
  113. Waddell, N., Pajic, M., Patch, A. M., Chang, D. K., Kassahn, K. S., Bailey, P., Johns, A. L., Miller, D., Nones, K., Quek, K., Quinn, M. C. J., Robertson, A. J., Fadlullah, M. Z. H., Bruxner, T. J. C., Christ, A. N., Harliwong, I., Idrisoglu, S., Manning, S., Nourse, C., et al. (2015) Whole genomes redefine the mutational landscape of pancreatic cancer, Nature, 518, 495-501, doi: 10.1038/nature14169.
  114. De Lange, T., Shiue, L., Myers, R. M., Cox, D. R., Naylor, S. L., Killery, A. M., and Varmus, H. E. (1990) Structure and variability of human chromosome ends, Mol. Cell. Biol., 10, 518-527, doi: 10.1128/mcb.10.2.518-527.1990.
  115. Morales, C. P., Holt, S. E., Ouellette, M., Kaur, K. J., Yan, Y., Wilson, K. S., White, M. A., Wright, W. E., and Shay, J. W. (1999) Absence of cancer-associated changes in human fibroblasts immortalized with telomerase, Nat. Genet., 21, 115-118, doi: 10.1038/5063.
  116. Yegorov, Y. E., Moldaver, M. V., Vishnyakova, K. S., Terekhov, S. M., Dashinimaev, E. B., Cheglakov, I. B., Toropygin, I. Y., Yarygin, K. N., Chumakov, P. M., Korochkin, L. I., Antonova, G. A., Rybalkina, E. I., Saburina, I. N., Burnaevskiĭ, N. S., and Zelenin, A. V. (2007) Enhanced control of proliferation in telomerized cells, Russ. J. Dev. Biol., 38, 76-89.
  117. Harley, C. B. (2002) Telomerase is not an oncogene, Oncogene, 21, 494-502, doi: 10.1038/sj.onc.1205076.
  118. Hanahan, D., and Weinberg, R. A. (2011) Hallmarks of cancer: the next generation, Cell, 144, 646-674, doi: 10.1016/j.cell.2011.02.013.
  119. Akincilar, S. C., Unal, B., and Tergaonkar, V. (2016) Reactivation of telomerase in cancer, Cell. Mol. Life Sci., 73, 1659-1670, doi: 10.1007/s00018-016-2146-9.
  120. Weinhold, N., Jacobsen, A., Schultz, N., Sander, C., and Lee, W. (2014) Genome- wide analysis of noncoding regulatory mutations in cancer, Nat. Genet., 46, 1160-1165, doi: 10.1038/ng.3101.
  121. Killela, P. J., Reitman, Z. J., Jiao, Y., Bettegowda, C., Agrawal, N., Diaz Jr, L. A., Friedman, A. H., Friedman, H., Gallia, G. L., Giovanella, B. C., Grollman, A. P., He, T.-C., He, Y., Hruban, R. H., Jallo, G. I., Mandahl, N., Meeker, A. K., Mertens, F., Netto, G. J., et al. (2013) TERT promoter mutations occur frequently in gliomas and a subset of tumors derived from cells with low rates of self- renewal, Proc. Natl Acad. Sci. USA, 110, 6021-6026, doi: 10.1073/pnas.1303607110.
  122. Nault, J. C., Mallet, M., Pilati, C., Calderaro, J., Bioulac-Sage, P., Laurent, C., Laurent, A., Cherqui, D., Balabaud, C., and Zucman-Rossi, J. (2013) High frequency of telomerase reverse- transcriptase promoter somatic mutations in hepatocellular carcinoma and preneoplastic lesions, Nat. Commun., 4, 2218, doi: 10.1038/ncomms3218.
  123. Shain, A. H., Yeh, I., Kovalyshyn, I., Sriharan, A., Talevich, E., Gagnon, A., Dummer, R., North, J., Pincus, L., Ruben, B., Rickaby, W., D'Arrigo, C., Robson, A., and Bastian, B. C. (2015) The genetic evolution of melanoma from precursor lesions, N. Engl. J. Med., 373, 1926-1936, doi: 10.1056/NEJMoa1502583.
  124. Kawai- Kitahata, F., Asahina, Y., Tanaka, S., Kakinuma, S., Murakawa, M., Nitta, S., Watanabe, T., Otani, S., Taniguchi, M., Goto, F., Nagata, H., Kaneko, S., Tasaka-Fujita, M., Nishimura-Sakurai, Y., Azuma, S., Itsui, Y., Nakagawa, M., Tanabe, M., Takano, S., Fukasawa, M., Sakamoto, M., Maekawa, S., Enomoto, N., and Watanabe, M. (2016) Comprehensive analyses of mutations and hepatitis B virus integration in hepatocellular carcinoma with clinicopathological features, J. Gastroenterol., 51, 473-486, doi: 10.1007/s00535-015-1126-4.
  125. Valentijn, L. J., Koster, J., Zwijnenburg, D. A., Hasselt, N. E., van Sluis, P., Volckmann, R., van Noesel, M. M., George, R. E., Tytgat, G. A. M., Molenaar, J. J., and Versteeg, R. (2015) TERT rearrangements are frequent in neuroblastoma and identify aggressive tumors, Nat. Genet., 47, 1411-1414, doi: 10.1038/ng.3438.
  126. Peifer, M., Hertwig, F., Roels, F., Dreidax, D., Gartlgruber, M., Menon, R., Krämer, A., Roncaioli, J.L., Sand, F., Heuckmann, J. M., Ikram, F., Schmidt, R., Ackermann, S., Engesser, A., Kahlert, Y., Vogel, W., Altmüller, J., Nürnberg, P., Thierry-Mieg, J., et al. (2015) Telomerase activation by genomic rearrangements in high- risk neuroblastoma, Nature, 526, 700-704, doi: 10.1038/nature14980.
  127. Barthel, F. P., Wei, W., Tang, M., Martinez-Ledesma E., Hu, X., Amin, S. B., Akdemir, K. C., Seth, S., Song, X., Wang, Q., Lichtenberg, T., Hu, J., Zhang, J., Zheng, S., and Verhaak, R. G. W. (2017) Systematic analysis of telomere length and somatic alterations in 31 cancer types, Nat. Genet., 49, 349-357, doi: 10.1038/ng.3781.
  128. Koh, C. M., Khattar, E., Leow, S. C., Liu, C. Y., Muller, J., Ang, W. X., Li, Y., Franzoso, G., Li, S., Guccione, E., and Tergaonkar, V. (2015) Telomerase regulates MYC-driven oncogenesis independent of its reverse transcriptase activity, J. Clin. Invest., 125, 2109-2122, doi: 10.1172/JCI79134.
  129. Low, K. C., and Tergaonkar, V. (2013) Telomerase: central regulator of all of the hallmarks of cancer, Trends Biochem. Sci., 38, 426-434, doi: 10.1016/j.tibs.2013.07.001.
  130. Hiyama, E., Hiyama, K., Yokoyama, T., Matsuura, Y., Piatyszek, M. A., and Shay, J. W. (1995) Correlating telomerase activity levels with human neuroblastoma outcomes, Nat. Med., 1, 249-255, doi: 10.1038/nm0395-249.
  131. Hiyama, E., Kodama, T., Shinbara, K., Iwao, T., Itoh, M., Hiyama, K., Shay, J. W., Matsuura, Y., and Yokoyama, T. (1997) Telomerase activity is detected in pancreatic cancer but not in benign tumors, Cancer Res., 57, 326-331.
  132. Naito, Y., Takagi, T., Handa, O., Ishikawa, T., Matsumoto, N., Yoshida, N., Kato, H., Ando, T., Takemura, T., Itani, K., Hisatomi, H., Tsuchihashi, Y., and Yoshikawa, T. (2001) Telomerase activity and expression of telomerase RNA component and catalytic subunits in precancerous and cancerous colorectal lesions, Tumor Biol., 22, 374-382, doi: 10.1159/000050640.
  133. Ouellette, M. M., Liao, M., Herbert, B.-S., Johnson, M., Holt, S. E., Liss, H. S., Shay, J. W., and Wright, W. E. (2000) Subsenescent telomere lengths in fibroblasts immortalized by limiting amounts of telomerase, J. Biol. Chem., 275, 10072-10076, doi: 10.1074/jbc.275.14.10072.
  134. Marinaccio, J., Micheli, E., Udroiu, I., Di Nottia, M., Carrozzo, R., Baranzini, N., Grimaldi, A., Leone, S., Moreno, S., Muzzi, M., and Sgura, A. (2023) TERT extra-telomeric roles: antioxidant activity and mitochondrial protection, Int. J. Mol. Sci., 24, 4450, doi: 10.3390/ijms24054450.
  135. Martens, A., Schmid, B., Akintola, O., and Saretzki, G. (2020) Telomerase does not improve DNA repair in mitochondria upon stress but increases MnSOD protein under serum-free conditions, Int. J. Mol. Sci., 21, 27, doi: 10.3390/ijms21010027.
  136. De Jesus, B. B., Vera, E., Schneeberger, K., Tejera, A. M., Ayuso, E., Bosch, F., and Blasco, M. A. (2012) Telomerase gene therapy in adult and old mice delays aging and increases longevity without increasing cancer, EMBO Mol. Med., 4, 691-704, doi: 10.1002/emmm.201200245.
  137. De Jesus, B. B., Schneeberger, K., Vera, E., Tejera, A., Harley, C. B., and Blasco, M. A. (2011) The telomerase activator TA-65 elongates short telomeres and increases health span of adult/old mice without increasing cancer incidence, Aging Cell, 10, 604-621, doi: 10.1111/j.1474-9726.2011.00700.x.
  138. Fernandez, M. L., Thomas, M. S., Lemos, B. S., DiMarco, D. M., Missimer, A., Melough, M., Chun, O. K., Murillo, A. G., Alyousef, H. M., and Medina-Vera, I. (2018) TA-65, a telomerase activator improves cardiovascular markers in patients with metabolic syndrome, Curr. Pharm. Des., 24, 1905-1911, doi: 10.2174/1381612824666180316114832.
  139. Bawamia, B., Spray, L., Wangsaputra, V. K., Bennaceur, K., Vahabi, S., Stellos, K., Kharatikoopaei, E., Ogundimu, E., Gale, C. P., Keavney, B., Maier, R., Hancock, H., Richardson, G., Austin, D., and Spyridopoulos, I. (2023) Activation of telomerase by TA-65 enhances immunity and reduces inflammation post myocardial infarction, Geroscience, doi: 10.1007/s11357-023-00794-6.
  140. Yegorov, Y. E., Poznyak, A. V., Bezsonov, E. E., Zhuravlev, A. D., Nikiforov, N. G., Vishnyakova, K. S., and Orekhov, A. N. (2022) Somatic mutations of hematopoietic cells are an additional mechanism of body aging, conducive to comorbidity and increasing chronification of inflammation, Biomedicines, 10, 782, doi: 10.3390/biomedicines10040782.
  141. Yegorov, Y. E. (2022) Telomerase: role in health and aging, Biomedicines, 10, 2957, doi: 10.3390/biomedicines10112957.
  142. Gutkin, A., Uziel, O., Beery, E., Nordenberg, J., Pinchasi, M., Goldvaser, H., Henick, S., Goldberg, M., and Lahav, M. (2016) Tumor cells derived exosomes contain hTERT mRNA and transform nonmalignant fibroblasts into telomerase positive cells, Oncotarget, 7, 59173-59188, doi: 10.18632/oncotarget.10384.
  143. Likonen, D., Pinchasi, M., Beery, E., Sarsor, Z., Signorini, L. F., Gervits, A., Sharan, R., Lahav, M., Raanani, P., and Uziel, O. (2022) Exosomal telomerase transcripts reprogram the microRNA transcriptome profile of fibroblasts and partially contribute to CAF formation, Sci. Rep., 12, 16415, doi: 10.1038/s41598-022-20186-8.
  144. Lanna, A., Vaz, B., D'Ambra, C., Valvo, S., Vuotto, C., Chiurchiù, V., Devine, O., Sanchez, M., Borsellino, G., Akbar, A. N., De Bardi, M., Gilroy, D. W., Dustin, M. L., Blumer, B., and Karin, M. (2022) An intercellular transfer of telomeres rescues T cells from senescence and promotes long-term immunological memory, Nat. Cell Biol., 24, 1461-1474, doi: 10.1038/s41556-022-00991-z.
  145. Wang, S., Madu, C. O., and Lu, Y. (2019) Telomere and its role in diseases, Oncomedicine, 4, 1-9, doi: 10.7150/oncm.28210.

版权所有 © Russian Academy of Sciences, 2023

##common.cookie##