Relationships among development, growth, body size, reproduction, aging, and longevity - trade-offs and pace-of-life

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Relationships of growth, metabolism, reproduction, and body size to the biological process of aging and longevity have been studied for decades and various unifying “theories of aging” have been proposed to account for the observed associations. In general, fast development, early sexual maturation leading to early reproductive effort, as well as production of many offspring, have been linked to shorter lifespans. The relationship of adult body size to longevity includes a remarkable contrast between the positive correlation in comparisons between different species and the negative correlation seen in comparisons of individuals within the same species. We now propose that longevity and presumably also the rate of aging are related to the “pace-of-life.” A slow pace-of-life including slow growth, late sexual maturation, and a small number of offspring, predicts slow aging and long life. The fast pace of life (rapid growth, early sexual maturation, and major reproductive effort) is associated with faster aging and shorter life, presumably due to underlying trade-offs. The proposed relationships between the pace-of-life and longevity apply to both inter- and intra-species comparisons as well as to dietary, genetic, and pharmacological interventions that extend life and to evidence for early life programming of the trajectory of aging. Although available evidence suggests the causality of at least some of these associations, much further work will be needed to verify this interpretation and to identify mechanisms that are responsible.

Sobre autores

R. Yuan

Southern Illinois University School of Medicine

Email: ryuan@siumed.edu
19628 Springfield, Illinois, USA

E. Hascup

Southern Illinois University School of Medicine

19628 Springfield, Illinois, USA

K. Hascup

Southern Illinois University School of Medicine

19628 Springfield, Illinois, USA

A. Bartke

Southern Illinois University School of Medicine

19628 Springfield, Illinois, USA

Bibliografia

  1. Speakman, J. R. (2005) Body size, energy metabolism and lifespan, J. Exp. Biol., 208, 1717-1730, doi: 10.1242/jeb.01556.
  2. Brunet-Rossinni, A. K., and Austad, S. N. (2004) Ageing studies on bats: a review, Biogerontology, 5, 211-222, doi: 10.1023/B:BGEN.0000038022.65024.d8.
  3. Ruby, J. G., Smith, M., and Buffenstein, R. (2018) Naked mole-rat mortality rates defy gompertzian laws by not increasing with age, Elife, 7, e31157, doi: 10.7554/eLife.31157.
  4. Santrock, J. (2007) Life Expectancy, in A topical Approach to: Lifespan Development, The McGraw-Hill Companies, Inc, New York. pp 128-132.
  5. Abegglen, L. M., Caulin, A. F., Chan, A., Lee, K., Robinson, R., Campbell, M. S., Kiso, W. K., Schmitt, D. L., Waddell, P. J., Bhaskara, S., Jensen, S. T., Maley, C. C., and Schiffman, J. D. (2015) Potential mechanisms for cancer resistance in elephants and comparative cellular response to DNA damage in humans, JAMA, 314, 1850-1860, doi: 10.1001/jama.2015.13134.
  6. Keane, M., Semeiks, J., Webb, A. E., Li, Y. I., Quesada, V., Craig, T., Madsen, L. B., van Dam, S., Brawand, D., Marques, P. I., Michalak, P., Kang, L., Bhak, J., Yim, H. S., Grishin, N. V., Nielsen, N. H., Heide-Jorgensen, M. P., Oziolor, E. M., Matson, C. W., Church, G. M., et al. (2015) Insights into the evolution of longevity from the bowhead whale genome, Cell Rep., 10, 112-122, doi: 10.1016/j.celrep.2014.12.008.
  7. Buffenstein, R. (2005) The naked mole-rat: a new long-living model for human aging research, J. Gerontol. A Biol. Sci. Med. Sci., 60, 1369-1377, doi: 10.1093/gerona/60.11.1369.
  8. Park, T. J., Smith, E. S. J., Reznick, J., Bennett, N. C., Applegate, D. T., Larson, J., and Lewin, G. R. (2021) African naked mole-rats demonstrate extreme tolerance to hypoxia and hypercapnia, Adv. Exp. Med. Biol., 1319, 255-269, doi: 10.1007/978-3-030-65943-1_9.
  9. Bartke, A., Sun, L. Y., and Longo, V. (2013) Somatotropic signaling: trade-offs between growth, reproductive development, and longevity, Physiol. Rev., 93, 571-598, doi: 10.1152/physrev.00006.2012.
  10. Greer, K. A., Canterberry, S. C., and Murphy, K. E. (2007) Statistical analysis regarding the effects of height and weight on life span of the domestic dog, Res. Vet. Sci., 82, 208-214, doi: 10.1016/j.rvsc.2006.06.005.
  11. Miller, R. A., Harper, J. M., Galecki, A., and Burke, D. T. (2002) Big mice die young: early life body weight predicts longevity in genetically heterogeneous mice, Aging Cell, 1, 22-29, doi: 10.1046/j.1474-9728.2002.00006.x.
  12. Kraus, C., Pavard, S., and Promislow, D. E. (2013) The size-life span trade-off decomposed: why large dogs die young, Am. Nat., 181, 492-505, doi: 10.1086/669665.
  13. Bartke, A. (2003) Can growth hormone (GH) accelerate aging? Evidence from GH-transgenic mice, Neuroendocrinology, 78, 210-216, doi: 10.1159/000073704.
  14. Roberts, R. C. (1961) The lifetime growth and reproduction of selected strains of mice, Heredity, 16, 369-381, doi: 10.1038/hdy.1961.46.
  15. Eklund, J., and Bradford, G. E. (1977) Longeveity and lifetime body weight in mice selected for rapid growth, Nature, 265, 48-49, doi: 10.1038/265048b0.
  16. Bartke, A., Wright, J. C., Mattison, J. A., Ingram, D. K., Miller, R. A., and Roth, G. S. (2001) Extending the lifespan of long-lived mice, Nature, 414, 412, doi: 10.1038/35106646.
  17. Brown-Borg, H. M., Borg, K. E., Meliska, C. J., and Bartke, A. (1996) Dwarf mice and the aging process, Nature, 384, 33, doi: 10.1038/384033a0.
  18. Patronek, G. J., Waters, D. J., and Glickman, L. T. (1997) Comparative longevity of pet dogs and humans: implications for gerontology research, J. Gerontol. A Biol. Sci. Med. Sci., 52, B171-B178, doi: 10.1093/gerona/52a.3.b171.
  19. Rollo, C. D. (2002) Growth negatively impacts the life span of mammals, Evol. Dev., 4, 55-61, doi: 10.1046/j.1525-142x.2002.01053.x.
  20. Brosnahan, M. M., and Paradis, M. R. (2003) Demographic and clinical characteristics of geriatric horses: 467 cases (1989-1999), J. Am. Vet. Med. Assoc., 223, 93-98, doi: 10.2460/javma.2003.223.93.
  21. Samaras, T. T., and Elrick, H. (1999) Height, body size and longevity, Acta Med. Okayama, 53, 149-169.
  22. Shindyapina, A. V., Cho, Y., Kaya, A., Tyshkovskiy, A., Castro, J. P., Deik, A., Gordevicius, J., Poganik, J. R., Clish, C. B., Horvath, S., Peshkin, L., and Gladyshev, V. N. (2022) Rapamycin treatment during development extends life span and health span of male mice and Daphnia magna, Sci. Adv., 8, eabo5482, doi: 10.1126/sciadv.abo5482, doi: 10.1126/sciadv.abo5482.
  23. Aiello, G., Sabino, C., Pernici, D., Audano, M., Antonica, F., Gianesello, M., Ballabio, C., Quattrone, A., Mitro, N., Romanel, A., Soldano, A., and Tiberi, L. (2022) Transient rapamycin treatment during developmental stage extends lifespan in Mus musculus and Drosophila melanogaster, EMBO Rep., 23, e55299, doi: 10.15252/embr.202255299.
  24. Vangipurapu, J., Stancáková, A., Jauhiainen, R., Kuusisto, J., and Laakso, M. (2017) Short adult stature predicts impaired β-cell function, insulin resistance, glycemia, and type 2 diabetes in finnish men, J. Clin. Endocrinol. Metab., 102, 443-450, doi: 10.1210/jc.2016-2933.
  25. Aguiar-Oliveira, M. H., and Bartke, A. (2019) Growth hormone deficiency: health and longevity, Endocr. Rev., 40, 575-601, doi: 10.1210/er.2018-00216.
  26. Bartke, A. (2017) Somatic growth, aging, and longevity, NPJ Aging Mech. Dis., 3, 14, doi: 10.1038/s41514-017-0014-y.
  27. Stuart, J. A., and Page, M. M. (2010) Plasma IGF-1 is negatively correlated with body mass in a comparison of 36 mammalian species, Mech. Ageing Dev., 131, 591-598, doi: 10.1016/j.mad.2010.08.005.
  28. Yakar, S., Wu, Y., Setser, J., and Rosen, C. J. (2002) The role of circulating IGF-I: lessons from human and animal models, Endocrine, 19, 239-248, doi: 10.1385/ENDO:19:3:239.
  29. Tomasetti, C., Poling, J., Roberts, N. J., London, N. R., Jr., Pittman, M. E., Haffner, M. C., Rizzo, A., Baras, A., Karim, B., Kim, A., Heaphy, C. M., Meeker, A. K., Hruban, R. H., Iacobuzio-Donahue, C. A., and Vogelstein, B. (2019) Cell division rates decrease with age, providing a potential explanation for the age-dependent deceleration in cancer incidence, Proc. Natl. Acad. Sci. USA, 116, 20482-20488, doi: 10.1073/pnas.1905722116.
  30. Papsdorf, K., Miklas, J. W., Hosseini, A., Cabruja, M., Morrow, C. S., Savini, M., Yu, Y., Silva-Garcia, C. G., Haseley, N. R., Murphy, L. M., Yao, P., de Launoit, E., Dixon, S. J., Snyder, M. P., Wang, M. C., Mair, W. B., and Brunet, A. (2023) Lipid droplets and peroxisomes are co-regulated to drive lifespan extension in response to mono-unsaturated fatty acids, Nat. Cell Biol., 25, 672-684, doi: 10.1038/s41556-023-01136-6.
  31. MacRae, S. L., Croken, M. M., Calder, R. B., Aliper, A., Milholland, B., White, R. R., Zhavoronkov, A., Gladyshev, V. N., Seluanov, A., Gorbunova, V., Zhang, Z. D., and Vijg, J. (2015) DNA repair in species with extreme lifespan differences, Aging (Albany NY), 7, 1171-1184, doi: 10.18632/aging.100866.
  32. Adwan Shekhidem, H., Sharvit, L., Leman, E., Manov, I., Roichman, A., Holtze, S., Huffman, D., Cohen, H., Hildebrandt, T., Shams, I., and Atzmon, G. (2019) Telomeres and longevity: a cause or an effect? Int. J. Mol. Sci., 20, 3233, doi: 10.3390/ijms20133233.
  33. Mitteldorf, J. (2019) What is antagonistic pleiotropy? Biochemistry (Moscow), 84, 1458-1468, doi: 10.1134/S0006297919120058.
  34. Gems, D. (2022) The hyperfunction theory: an emerging paradigm for the biology of aging, Ageing Res. Rev., 74, 101557, doi: 10.1016/j.arr.2021.101557.
  35. Sakai, T., Matsui, M., Mikami, A., Malkova, L., Hamada, Y., Tomonaga, M., Suzuki, J., Tanaka, M., Miyabe-Nishiwaki, T., Makishima, H., Nakatsukasa, M., and Matsuzawa, T. (2013) Developmental patterns of chimpanzee cerebral tissues provide important clues for understanding the remarkable enlargement of the human brain, Proc. Biol. Sci., 280, 20122398, doi: 10.1098/rspb.2012.2398.
  36. Gonzalez-Lagos, C., Sol, D., and Reader, S. M. (2010) Large-brained mammals live longer, J. Evol. Biol., 23, 1064-1074, doi: 10.1111/j.1420-9101.2010.01976.x.
  37. Allman, J., McLaughlin, T., and Hakeem, A. (1993) Brain weight and life-span in primate species, Proc. Natl. Acad. Sci. USA, 90, 118-122, doi: 10.1073/pnas.90.1.118.
  38. Dunbar, R. I. (2009) The social brain hypothesis and its implications for social evolution, Ann Hum Biol, 36, 562-572, doi: 10.1080/03014460902960289.
  39. Bartke, A., Turyn, D., Aguilar, C. C., Sotelo, A. I., Steger, R. W., Chen, X. Z., and Kopchick, J. J. (1994) Growth hormone (GH) binding and effects of GH analogs in transgenic mice, Proc. Soc. Exp. Biol. Med., 206, 190-194, doi: 10.3181/00379727-206-43740.
  40. Bartke, A., Brown-Borg, H. M., Bode, A. M., Carlson, J., Hunter, W. S., and Bronson, R. T. (1998) Does growth hormone prevent or accelerate aging? Exp. Gerontol., 33, 675-687, doi: 10.1016/s0531-5565(98)00032-1.
  41. Sun, L. Y., Spong, A., Swindell, W. R., Fang, Y., Hill, C., Huber, J. A., Boehm, J. D., Westbrook, R., Salvatori, R., and Bartke, A. (2013) Growth hormone-releasing hormone disruption extends lifespan and regulates response to caloric restriction in mice, Elife, 2, e01098, doi: 10.7554/eLife.01098.
  42. Coschigano, K. T., Holland, A. N., Riders, M. E., List, E. O., Flyvbjerg, A., and Kopchick, J. J. (2003) Deletion, but not antagonism, of the mouse growth hormone receptor results in severely decreased body weights, insulin, and insulin-like growth factor I levels and increased life span, Endocrinology, 144, 3799-3810, doi: 10.1210/en.2003-0374.
  43. Coschigano, K. T., Clemmons, D., Bellush, L. L., and Kopchick, J. J. (2000) Assessment of growth parameters and lifespan of GHR/BP gene-disrupted mice, Endocrinology, 141, 2608-2613, doi: 10.1210/endo.141.7.7586.
  44. Fabris, N., Pierpaoli, W., and Sorkin, E. (1972) Lymphocytes, hormones, and ageing, Nature, 240, 557-559, doi: 10.1038/240557a0.
  45. Silberberg, R. (1972) Articular aging and osteoarthrosis in dwarf mice, Pathol. Microbiol., 38, 417-430, doi: 10.1159/000162458.
  46. Schneider, G. B. (1976) Immunological competence in Snell-Bagg pituitary dwarf mice: response to the contact-sensitizing agent oxazolone, Am. J. Anat., 145, 371-394, doi: 10.1002/aja.1001450306.
  47. Shire, J. G. (1973) Growth hormone and premature ageing, Nature, 245, 215-216, doi: 10.1038/245215a0.
  48. Sun, L. Y., Fang, Y., Patki, A., Koopman, J. J., Allison, D. B., Hill, C. M., Masternak, M. M., Darcy, J., Wang, J., McFadden, S., and Bartke, A. (2017) Longevity is impacted by growth hormone action during early postnatal period, Elife, 6, e24059, doi: 10.7554/eLife.24059.
  49. Sadagurski, M., Landeryou, T., Cady, G., Kopchick, J. J., List, E. O., Berryman, D. E., Bartke, A., and Miller, R. A. (2015) Growth hormone modulates hypothalamic inflammation in long-lived pituitary dwarf mice, Aging Cell, 14, 1045-1054, doi: 10.1111/acel.12382.
  50. Li, X., McPherson, M., Hager, M., Fang, Y., Bartke, A., and Miller, R. A. (2022) Transient early life growth hormone exposure permanently alters brain, muscle, liver, macrophage, and adipocyte status in long-lived Ames dwarf mice, FASEB J., 36, e22394, doi: 10.1096/fj.202200143R.
  51. Zhang, F., Icyuz, M., Bartke, A., and Sun, L. Y. (2020) The effects of early-life growth hormone intervention on tissue specific histone H3 modifications in long-lived Ames dwarf mice, Aging (Albany NY), 13, 1633-1648, doi: 10.18632/aging.202451.
  52. Colao, A., Ferone, D., Marzullo, P., and Lombardi, G. (2004) Systemic complications of acromegaly: epidemiology, pathogenesis, and management, Endocr. Rev., 25, 102-152, doi: 10.1210/er.2002-0022.
  53. Jadresic, A., Banks, L. M., Child, D. F., Diamant, L., Doyle, F. H., Fraser, T. R., and Joplin, G. F. (1982) The acromegaly syndrome. Relation between clinical features, growth hormone values and radiological characteristics of the pituitary tumours, Quart. J. Med., 51, 189-204.
  54. Orme, S. M., McNally, R. J., Cartwright, R. A., and Belchetz, P. E. (1998) Mortality and cancer incidence in acromegaly: a retrospective cohort study. United Kingdom Acromegaly Study Group, J. Clin. Endocrinol. Metab., 83, 2730-2734, doi: 10.1210/jcem.83.8.5007.
  55. Pendergrass, W. R., Li, Y., Jiang, D., and Wolf, N. S. (1993) Decrease in cellular replicative potential in "giant" mice transfected with the bovine growth hormone gene correlates to shortened life span, J. Cell Physiol., 156, 96-103, doi: 10.1002/jcp.1041560114.
  56. Wolf, E., Kahnt, E., Ehrlein, J., Hermanns, W., Brem, G., and Wanke, R. (1993) Effects of long-term elevated serum levels of growth hormone on life expectancy of mice: lessons from transgenic animal models, Mech. Ageing Dev., 68, 71-87, doi: 10.1016/0047-6374(93)90141-d.
  57. Aguiar-Oliveira, M. H., Oliveira, F. T., Pereira, R. M., Oliveira, C. R., Blackford, A., Valenca, E. H., Santos, E. G., Gois-Junior, M. B., Meneguz-Moreno, R. A., Araujo, V. P., Oliveira-Neto, L. A., Almeida, R. P., Santos, M. A., Farias, N. T., Silveira, D. C., Cabral, G. W., Calazans, F. R., Seabra, J. D., Lopes, T. F., Rodrigues, E. O., et al. (2010) Longevity in untreated congenital growth hormone deficiency due to a homozygous mutation in the GHRH receptor gene, J. Clin. Endocrinol. Metab., 95, 714-721, doi: 10.1210/jc.2009-1879.
  58. Laron, Z. (2011) Life span and mortality of patients with Laron Syndrome, in Laron syndrome - from Man to Mouse: Lessons from Clinical and Experimental Experience (Laron, Z., and Kopchick, J. J., eds) 1 Edn., Springer, Berlin, Heidelberg, doi: 10.1007/978-3-642-11183-9_41.
  59. Besson, A., Salemi, S., Gallati, S., Jenal, A., Horn, R., Mullis, P. S., and Mullis, P. E. (2003) Reduced longevity in untreated patients with isolated growth hormone deficiency, J. Clin. Endocrinol. Metab., 88, 3664-3667, doi: 10.1210/jc.2002-021938.
  60. Guevara-Aguirre, J., Balasubramanian, P., Guevara-Aguirre, M., Wei, M., Madia, F., Cheng, C. W., Hwang, D., Martin-Montalvo, A., Saavedra, J., Ingles, S., de Cabo, R., Cohen, P., and Longo, V. D. (2011) Growth hormone receptor deficiency is associated with a major reduction in pro-aging signaling, cancer, and diabetes in humans, Sci. Transl. Med., 3, 70ra13, doi: 10.1126/scitranslmed.3001845.
  61. Krzisnik, C., Grguric, S., Cvijovic, K., and Laron, Z. (2010) Longevity of the hypopituitary patients from the island Krk: a follow-up study, Pediatr. Endocrinol. Rev., 7, 357-362.
  62. Schoenmaker, M., de Craen, A. J., de Meijer, P. H., Beekman, M., Blauw, G. J., Slagboom, P. E., and Westendorp, R. G. (2006) Evidence of genetic enrichment for exceptional survival using a family approach: the Leiden Longevity Study, Eur. J. Hum. Genet., 14, 79-84, doi: 10.1038/sj.ejhg.5201508.
  63. Rozing, M. P., Westendorp, R. G., de Craen, A. J., Frolich, M., de Goeij, M. C., Heijmans, B. T., Beekman, M., Wijsman, C. A., Mooijaart, S. P., Blauw, G. J., Slagboom, P. E., and van Heemst, D. (2010) Favorable glucose tolerance and lower prevalence of metabolic syndrome in offspring without diabetes mellitus of nonagenarian siblings: the Leiden longevity study, J. Am. Geriatr. Soc., 58, 564-569, doi: 10.1111/j.1532-5415.2010.02725.x.
  64. De Goeij, M. C., Halbesma, N., Dekker, F. W., Wijsman, C. A., van Heemst, D., Maier, A. B., Mooijaart, S. P., Slagboom, P. E., Westendorp, R. G., and de Craen, A. J. (2014) Renal function in familial longevity: the Leiden Longevity Study, Exp. Gerontol., 51, 65-70, doi: 10.1016/j.exger.2013.12.012.
  65. Kroft, L. J., van der Bijl, N., van der Grond, J., Altmann-Schneider, I., Slagboom, P. E., Westendorp, R. G., de Roos, A., and de Craen, A. J. (2014) Low computed tomography coronary artery calcium scores in familial longevity: the Leiden Longevity Study, Age (Dordr), 36, 9668, doi: 10.1007/s11357-014-9668-6.
  66. Altmann-Schneider, I., de Craen, A. J. M., Slagboom, P. E., Westendorp, R. G. J., van Buchem, M. A., Maier, A. B., and van der Grond, J. (2012) Brain tissue volumes in familial longevity: the Leiden Longevity Study, Aging Cell, 11, 933-939, doi: 10.1111/j.1474-9726.2012.00868.x.
  67. Altmann-Schneider, I., van der Grond, J., Slagboom, P. E., Westendorp, R. G., Maier, A. B., van Buchem, M. A., and de Craen, A. J. (2013) Lower susceptibility to cerebral small vessel disease in human familial longevity: the Leiden Longevity Study, Stroke, 44, 9-14, doi: 10.1161/STROKEAHA.112.671438.
  68. Stijntjes, M., de Craen, A. J. M., van Heemst, D., Meskers, C. G. M., van Buchem, M. A., Westendorp, R. G. J., Slagboom, P. E., and Maier, A. B. (2013) Familial longevity is marked by better cognitive performance at middle age: The Leiden Longevity Study, PLoS One, 8, e57962, doi: 10.1371/journal.pone.0057962.
  69. Westendorp, R. G., van Heemst, D., Rozing, M. P., Frolich, M., Mooijaart, S. P., Blauw, G. J., Beekman, M., Heijmans, B. T., de Craen, A. J., and Slagboom, P. E. for the Leiden Longevity Study Group (2009) Nonagenarian siblings and their offspring display lower risk of mortality and morbidity than sporadic nonagenarians: The Leiden Longevity Study, J. Am. Geriatr. Soc., 57, 1634-1637, doi: 10.1111/j.1532-5415.2009.02381.x.
  70. Van der Spoel, E., Jansen, S. W., Akintola, A. A., Ballieux, B. E., Cobbaert, C. M., Slagboom, P. E., Blauw, G. J., Westendorp, R. G. J., Pijl, H., Roelfsema, F., and van Heemst, D. (2016) Growth hormone secretion is diminished and tightly controlled in humans enriched for familial longevity, Aging Cell, 15, 1126-1131, doi: 10.1111/acel.12519.
  71. Zhang, W. B., Ye, K., Barzilai, N., and Milman, S. (2021) The antagonistic pleiotropy of insulin-like growth factor 1, Aging Cell, 20, e13443, doi: 10.1111/acel.13443.
  72. Yuan, R., Tsaih, S. W., Petkova, S. B., Marin de Evsikova, C., Xing, S., Marion, M. A., Bogue, M. A., Mills, K. D., Peters, L. L., Bult, C. J., Rosen, C. J., Sundberg, J. P., Harrison, D. E., Churchill, G. A., and Paigen, B. (2009) Aging in inbred strains of mice: study design and interim report on median lifespans and circulating IGF1 levels, Aging Cell, 8, 277-287, doi: 10.1111/j.1474-9726.2009.00478.x.
  73. Yuan, R., Meng, Q., Nautiyal, J., Flurkey, K., Tsaih, S. W., Krier, R., Parker, M. G., Harrison, D. E., and Paigen, B. (2012) Genetic coregulation of age of female sexual maturation and lifespan through circulating IGF1 among inbred mouse strains, Proc. Natl. Acad. Sci. USA, 109, 8224-8229, doi: 10.1073/pnas.1121113109.
  74. Yuan, R., Musters, C. J. M., Zhu, Y., Evans, T. R., Sun, Y., Chesler, E. J., Peters, L. L., Harrison, D. E., and Bartke, A. (2020) Genetic differences and longevity-related phenotypes influence lifespan and lifespan variation in a sex-specific manner in mice, Aging Cell, 19, e13263, doi: 10.1111/acel.13263.
  75. Ideraabdullah, F. Y., de la Casa-Esperon, E., Bell, T. A., Detwiler, D. A., Magnuson, T., Sapienza, C., and de Villena, F. P. (2004) Genetic and haplotype diversity among wild-derived mouse inbred strains, Genome Res., 14, 1880-1887, doi: 10.1101/gr.2519704.
  76. Mao, K., Quipildor, G. F., Tabrizian, T., Novaj, A., Guan, F., Walters, R. O., Delahaye, F., Hubbard, G. B., Ikeno, Y., Ejima, K., Li, P., Allison, D. B., Salimi-Moosavi, H., Beltran, P. J., Cohen, P., Barzilai, N., and Huffman, D. M. (2018) Late-life targeting of the IGF-1 receptor improves healthspan and lifespan in female mice, Nat. Commun., 9, 2394, doi: 10.1038/s41467-018-04805-5.
  77. Bargas-Galarraga, I., Vila, C., and Gonzalez-Voyer, A. (2023) High investment in reproduction is associated with reduced life span in dogs, Am. Nat., 201, 163-174, doi: 10.1086/722531.
  78. Oosthuizen, W. C., Peron, G., Pradel, R., Bester, M. N., and de Bruyn, P. J. N. (2021) Positive early-late life-history trait correlations in elephant seals, Ecology, 102, e03288, doi: 10.1002/ecy.3288.
  79. Shanley, D. P., and Kirkwood, T. B. (2000) Calorie restriction and aging: a life-history analysis, Evolution, 54, 740-750, doi: 10.1111/j.0014-3820.2000.tb00076.x.
  80. Solon-Biet, S. M., Walters, K. A., Simanainen, U. K., McMahon, A. C., Ruohonen, K., Ballard, J. W. O., Raubenheimer, D., Handelsman, D. J., Le Couteur, D. G., and Simpson, S. J. (2015) Macronutrient balance, reproductive function, and lifespan in aging mice, Proc. Natl. Acad. Sci. USA, 112, 3481-3486, doi: 10.1073/pnas.1422041112.
  81. Senior, A. M., Solon-Biet, S. M., Cogger, V. C., Le Couteur, D. G., Nakagawa, S., Raubenheimer, D., and Simpson, S. J. (2019) Dietary macronutrient content, age-specific mortality and lifespan, Proc. Biol. Sci., 286, 20190393, doi: 10.1098/rspb.2019.0393.
  82. Simpson, S. J., Clissold, F. J., Lihoreau, M., Ponton, F., Wilder, S. M., and Raubenheimer, D. (2015) Recent advances in the integrative nutrition of arthropods, Annu. Rev. Entomol., 60, 293-311, doi: 10.1146/annurev-ento-010814-020917.
  83. Simpson, S. J., Le Couteur, D. G., Raubenheimer, D., Solon-Biet, S. M., Cooney, G. J., Cogger, V. C., and Fontana, L. (2017) Dietary protein, aging and nutritional geometry, Ageing Res. Rev., 39, 78-86, doi: 10.1016/j.arr.2017.03.001.
  84. Weindruch, R., and Walford, R. L. (1988) The Retardation of Aging and Disease by Dietary Restriction, Charles C. Thomas, Springfield, IL.
  85. Merry, B. J., and Holehan, A. M. (1979) Onset of puberty and duration of fertility in rats fed a restricted diet, J. Reprod. Fertil., 57, 253-259, doi: 10.1530/jrf.0.0570253.
  86. Bartke, A., Brown-Borg, H., Mattison, J., Kinney, B., Hauck, S., and Wright, C. (2001) Prolonged longevity of hypopituitary dwarf mice, Exp. Gerontol., 36, 21-28, doi: 10.1016/S0531-5565(00)00205-9.
  87. Zhu, Y., Fang, Y., Medina, D., Bartke, A., and Yuan, R. (2022) Metformin treatment of juvenile mice alters aging-related developmental and metabolic phenotypes, Mech. Ageing Dev., 201, 111597, doi: 10.1016/j.mad.2021.111597.
  88. Kulkarni, A. S., Gubbi, S., and Barzilai, N. (2020) Benefits of metformin in attenuating the hallmarks of aging, Cell Metab., 32, 15-30, doi: 10.1016/j.cmet.2020.04.001.
  89. Dupont, J., Reverchon, M., Bertoldo, M. J., and Froment, P. (2014) Nutritional signals and reproduction, Mol. Cell. Endocrinol., 382, 527-537, doi: 10.1016/j.mce.2013.09.028.
  90. Hardie, D. G. (2007) AMP-activated/SNF1 protein kinases: conserved guardians of cellular energy, Nat. Rev. Mol. Cell Biol., 8, 774-785, doi: 10.1038/nrm2249.
  91. Shaw, R. J. (2009) LKB1 and AMP-activated protein kinase control of mTOR signalling and growth, Acta Physiol. (Oxf), 196, 65-80, doi: 10.1111/j.1748-1716.2009.01972.x.
  92. Guo, Z., and Yu, Q. (2019) Role of mTOR signaling in female reproduction, Front. Endocrinol. (Lausanne), 10, 692, doi: 10.3389/fendo.2019.00692.
  93. Kozlowski, J., Konarzewski, M., and Czarnoleski, M. (2020) Coevolution of body size and metabolic rate in vertebrates: a life-history perspective, Biol. Rev. Cambridge Philos. Soc., 95, 1393-1417, doi: 10.1111/brv.12615.
  94. Tatar, M. (2023) Stalking the link between reproduction and aging, EMBO Rep., 24, e57374, doi: 10.15252/embr.202357374.
  95. White, C. R., Alton, L. A., Bywater, C. L., Lombardi, E. J., and Marshall, D. J. (2022) Metabolic scaling is the product of life-history optimization, Science, 377, 834-839, doi: 10.1126/science.abm7649.
  96. Waddington, C. H. (1959) Canalization of development and genetic assimilation of acquired characters, Nature, 183, 1654-1655, doi: 10.1038/1831654a0.
  97. Silveira, P. P., Portella, A. K., Goldani, M. Z., and Barbieri, M. A. (2007) Developmental origins of health and disease (DOHaD), J. Pediatr. (Rio J), 83, 494-504, doi: 10.2223/JPED.1728.
  98. Vaiserman, A. M. (2015) Epigenetic programming by early-life stress: evidence from human populations, Dev. Dynamics, 244, 254-265, doi: 10.1002/dvdy.24211.
  99. Hargreaves, D., Mates, E., Menon, P., Alderman, H., Devakumar, D., Fawzi, W., Greenfield, G., Hammoudeh, W., He, S., Lahiri, A., Liu, Z., Nguyen, P. H., Sethi, V., Wang, H., Neufeld, L. M., and Patton, G. C. (2022) Strategies and interventions for healthy adolescent growth, nutrition, and development, Lancet, 399, 198-210, doi: 10.1016/S0140-6736(21)01593-2.
  100. Waddington, C. H. (2014) The Strategy of the Genes, Routledge, doi: 10.4324/9781315765471.
  101. Austad, S. N., and Hoffman, J. M. (2018) Is antagonistic pleiotropy ubiquitous in aging biology? Evol. Med. Public Health, 2018, 287-294, doi: 10.1093/emph/eoy033.
  102. Kirkwood, T. B., and Rose, M. R. (1991) Evolution of senescence: late survival sacrificed for reproduction, Philos. Trans. R. Soc. Lond. B Biol. Sci., 332, 15-24, doi: 10.1098/rstb.1991.0028.
  103. Feltes, B. C., de Faria Poloni, J., and Bonatto, D. (2015) Development and aging: two opposite but complementary phenomena, Interdiscip. Top. Gerontol., 40, 74-84, doi: 10.1159/000364932.
  104. Blagosklonny, M. V. (2022) Rapamycin treatment early in life reprograms aging: hyperfunction theory and clinical practice, Aging (Albany NY), 14, 8140-8149, doi: 10.18632/aging.204354.
  105. Parra-Vargas, M., Ramon-Krauel, M., Lerin, C., and Jimenez-Chillaron, J. C. (2020) Size does matter: litter size strongly determines adult metabolism in rodents, Cell Metab., 32, 334-340, doi: 10.1016/j.cmet.2020.07.014.
  106. Wang, T., Ma, J., Hogan, A. N., Fong, S., Licon, K., Tsui, B., Kreisberg, J. F., Adams, P. D., Carvunis, A. R., Bannasch, D. L., Ostrander, E. A., and Ideker, T. (2020) Quantitative translation of dog-to-human aging by conserved remodeling of the DNA methylome, Cell Syst., 11, 176-185.e176, doi: 10.1016/j.cels.2020.06.006.
  107. Dietz, W. H. (1998) Childhood weight affects adult morbidity and mortality, J. Nutr., 128, 411s-414s, doi: 10.1093/jn/128.2.411S.
  108. Maffeis, C., and Tatò, L. (2001) Long-term effects of childhood obesity on morbidity and mortality, Hormone Res., 55 Suppl 1, 42-45, doi: 10.1159/000063462.
  109. Aguiar-Oliveira, M. H., and Salvatori, R. (2012) Lifetime Growth Hormone (GH) Deficiency: Impact on Growth, Metabolism, Body Composition, and Survival Capacity, in Handbook of Growth and Growth Monitoring in Health and Disease (Preedy, V. R., ed.) Springer New York, New York, NY, pp. 2699-2710, doi: 10.1007/978-1-4419-1795-9_160.
  110. Migliano, A. B., Vinicius, L., and Lahr, M. M. (2007) Life history trade-offs explain the evolution of human pygmies, Proc. Natl. Acad. Sci. USA, 104, 20216-20219, doi: 10.1073/pnas.0708024105.
  111. Terzibasi, E., Lefrancois, C., Domenici, P., Hartmann, N., Graf, M., and Cellerino, A. (2009) Effects of dietary restriction on mortality and age-related phenotypes in the short-lived fish Nothobranchius furzeri, Aging Cell, 8, 88-99, doi: 10.1111/j.1474-9726.2009.00455.x.
  112. Reichard, M., and Polačik, M. (2019) Nothobranchius furzeri, an ‘instant' fish from an ephemeral habitat, eLife, 8, e41548, doi: 10.7554/eLife.41548.
  113. Holmes, D. J., and Austad, S. N. (1995) Birds as animal models for the comparative biology of aging: a prospectus, J. Gerontol. A Biol. Sci. Med. Sci., 50, B59-B66, doi: 10.1093/gerona/50a.2.b59.
  114. Harper, J. M., and Holmes, D. J. (2021) New perspectives on avian models for studies of basic aging processes, Biomedicines, 9, 649, doi: 10.3390/biomedicines9060649.
  115. Darcy, J., and Bartke, A. (2017) Functionally enhanced brown adipose tissue in Ames dwarf mice, Adipocyte, 6, 62-67, doi: 10.1080/21623945.2016.1274470.
  116. Westbrook, R., Bonkowski, M. S., Strader, A. D., and Bartke, A. (2009) Alterations in oxygen consumption, respiratory quotient, and heat production in long-lived GHRKO and Ames dwarf mice, and short-lived bGH transgenic mice, J. Gerontol. A Biol. Sci. Med. Sci., 64, 443-451, doi: 10.1093/gerona/gln075.
  117. Darcy, J., Fang, Y., Hill, C. M., McFadden, S., Sun, L. Y., and Bartke, A. (2016) Original Research: Metabolic alterations from early life thyroxine replacement therapy in male Ames dwarf mice are transient, Exp. Biol. Med. (Maywood), 241, 1764-1771, doi: 10.1177/1535370216650292.
  118. Bartke, A., Brannan, S., Hascup, E., Hascup, K., and Darcy, J. (2021) Energy metabolism and aging, World J. Mens Health, 39, 222-232, doi: 10.5534/wjmh.200112.

Declaração de direitos autorais © Russian Academy of Sciences, 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies