“If i were in nature’s place, i would do it like this...”. Life and hypotheses of Alexey Olovnikov

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

In this article, we commemorate the life and scientific journey of the brilliant gerontologist-theorist Alexey Olovnikov (1936-2022). In 1971, he published his famous “marginotomy” hypothesis, in which he predicted the replicative shortening of telomeres and its role as a counter of cell divisions and biological age of an organism. This work put forth several remarkable assumptions, including the existence of telomerase, which were confirmed two decades later. Despite this, Alexey Olovnikov moved further in his theoretical studies of aging and proposed a series of new hypotheses that seem no less exotic than the marginotomy hypothesis once appeared. Alexey Olovnikov had an extraordinary way of looking at biological problems and, in addition to aging, authored striking concepts about development, biorhythms, and evolution.

Sobre autores

N. Olovnikova

National Medical Research Renter for Hematology, Ministry of Health of the Russian Federation

125167 Moscow, Russia

I. Olovnikov

Biovision Ventures

Email: ivan.olovnikov@gmail.com
Luxembourg

A. Kalmykova

Koltzov Institute of Developmental Biology, Russian Academy of Sciences

119334 Moscow, Russia

Bibliografia

  1. Kisselev, L. L., Abelev, G. I., and Kisseljov, F. (1992) Lev Zilber, the personality and the scientist, Adv. Cancer Res., 59, 1-40, doi: 10.1016/S0065-230X(08)60301-2.
  2. Olovnikov, A. M., and Gurvich, A. E. (1966) Immunization with protein-cellulose co-polymer (immunosorbent), Nature, 209, 417-419, doi: 10.1038/209417A0.
  3. Gorina, L. G., Fluer, F. S., Olovnikov, A. M., and Ezepcuk, Yu. V. (1975) Use of the aggregate-hemagglutination technique for determining exo-enterotoxin of Bacillus cereus, Appl. Microbiol., 29, 201-204, doi: 10.1128/AM.29.2.201-204.1975.
  4. Abelev, G., Tsvetkov, V., Biriulina, T., El'gort, D., and Olovnikov, A. (1971) Evaluation of the use of highly sensitive methods of determining alpha-fetoprotein for the diagnosis of hepatocellular cancer and teratoblastoma, Bull. Eksp. Biol. Med., 71, 75-81.
  5. Olovnikov, A. M. (1966) Antigen content determined from the agglutination of erythrocytes coated with antiserum proteins polycondensed by tetranitrogen diamonodiphenylamine, Dokl. Akad. Nauk SSSR, 169, 1180-1183.
  6. Olovnikov, A. M. (1967) Sensitization of erythrocytes by polycondensed proteins of immune serum and their use for determining antigen content, Immunochemistry, 4, 77-80, doi: 10.1016/0019-2791(67)90157-7.
  7. Olovnikov, A. M., and Tsvetkov, V. S. (1969) Detection of embryonic alpha-globulin in the serum of patients with various forms of cancer by the aggregate-hemagglutination method, Bull. Eksp. Biol. Med., 68, 102-104.
  8. Купер Э. (1980) Сравнительная иммунология (под ред. Н. Г. Хрущова), Мир, Москва.
  9. Бернет Ф. (1964) Целостность организма и иммунитет (под ред. В. Л. Рыжкова), Мир, Москва.
  10. Оловников А. М. (1974) Об изотранспозиции трансгенов как возможном механизме возникновения многообразия антител, Вопр. иммун., 6, 71-75.
  11. Оловников А. М. (1971) Принцип маргинотомии в матричном синтезе полинуклеотидов, ДАН СССР, 201, 1496-1499.
  12. Olovnikov, A. M. (1973) A theory of marginotomy. The incomplete copying of template margin in enzymic synthesis of polynucleotides and biological significance of the phenomenon, J. Theor. Biol., 41, 181-190, doi: 10.1016/0022-5193(73)90198-7.
  13. Hayflick, L. (1965) The limited in vitro lifetime of human diploid cell strains, Exp. Cell. Res., 37, 614-636, doi: 10.1016/0014-4827(65)90211-9.
  14. Olovnikov, A. M. (1996) Telomeres, telomerase, and aging: origin of the theory, Exp. Gerontol., 31, 443-448, doi: 10.1016/0531-5565(96)00005-8.
  15. Blackburn, E. H., and Gall, J. G. (1978) A tandemly repeated sequence at the termini of the extrachromosomal ribosomal RNA genes in Tetrahymena, J. Mol. Biol., 120, 33-53, doi: 10.1016/0022-2836(78)90294-2.
  16. Moyzis, R. K., Buckingham, J. M., Cram, L. S., Dani, M., Deaven, L. L., Jones, M. D., Meyne, J., Ratliff, R. L., and Wu, J. R. (1988) A highly conserved repetitive DNA sequence, (TTAGGG)n, present at the telomeres of human chromosomes, Proc. Natl. Acad. Sci. USA, 85, 6622-6626, doi: 10.1073/pnas.85.18.6622.
  17. Greider, C. W. (1998) Telomeres and senescence: the history, the experiment, the future, Curr. Biol., 8, R178-R181, doi: 10.1016/S0960-9822(98)70105-8.
  18. Martínez, P., and Blasco, M. A. (2011) Telomeric and extra-telomeric roles for telomerase and the telomere-binding proteins, Nat. Rev. Cancer, 11, 161-176, doi: 10.1038/NRC3025.
  19. Greider, C. W., and Blackburn, E. H. (1985) Identification of a specific telomere terminal transferase activity in Tetrahymena extracts, Cell, 43, 405-413, doi: 10.1016/0092-8674(85)90170-9.
  20. Greider, C. W., and Blackburn, E. H. (1996) Telomeres, telomerase and cancer, Sci. Am., 274, 80-85, doi: 10.1038/scientificamerican0296-92.
  21. Hall, S. S. (2003) Merchants of Immortality: Chasing the Dream of Human Life Extension, Mariner Books, New York.
  22. Harley, C. B., Futcher, A. B., and Greider, C. W. (1990) Telomeres shorten during ageing of human fibroblasts, Nature, 345, 458-460, doi: 10.1038/345458A0.
  23. Jafri, M. A., Ansari, S. A., Alqahtani, M. H., and Shay, J. W. (2016) Roles of telomeres and telomerase in cancer, and advances in telomerase-targeted therapies, Genome Med., 8, 69, doi: 10.1186/S13073-016-0324-X.
  24. Pardue, M. L., Danilevskaya, O. N., Traverse, K. L., and Lowenhaupt, K. (1997) Evolutionary links between telomeres and transposable elements, Genetica, 100, 73-84, doi: 10.1023/a:1018352706024.
  25. Hemann, M. T., and Greider, C. W. (2000) Wild-derived inbred mouse strains have short telomeres, Nucleic Acids Res., 28, 4474-4478, doi: 10.1093/NAR/28.22.4474.
  26. Blasco, M. A., Lee, H. W., Hande, M. P., Samper, E., Lansdorp, P. M., DePinho, R. A., and Greider, C. W. (1997) Telomere shortening and tumor formation by mouse cells lacking telomerase RNA, Cell, 91, 25-34, doi: 10.1016/S0092-8674(01)80006-4.
  27. Olovnikov, A. (2015) Chronographic theory of development, aging, and origin of cancer: role of chronomeres and printomeres, Curr. Aging Sci., 8, 76-88, doi: 10.2174/1874609808666150422114916.
  28. Galli, M., Frigerio, C., Longhese, M. P., and Clerici, M. (2021) The regulation of the DNA damage response at telomeres: focus on kinases, Biochem. Soc. Trans., 49, 933-943, doi: 10.1042/BST20200856.
  29. Hewitt, G., Jurk, D., Marques, F. D. M., Correia-Melo, C., Hardy, T., Gackowska, A., Anderson, R., Taschuk, M., Mann, J., and Passos, J. F. (2012) Telomeres are favoured targets of a persistent DNA damage response in ageing and stress-induced senescence, Nat. Commun., 708, 1-9, doi: 10.1038/NCOMMS1708.
  30. Burbano, M. S. J., and Gilson, E. (2021) The power of stress: the telo-hormesis hypothesis, Cells, 1156, 1-21, doi: 10.3390/CELLS10051156.
  31. Chakravarti, D., LaBella, K. A., and DePinho, R. A. (2021) Telomeres: history, health and hallmarks of aging, Cell, 184, 306-322, doi: 10.1016/j.cell.2020.12.028.
  32. Olovnikov, A. M. (1999) Notes on a "printomere" mechanism of cellular memory and ion regulation of chromatin configurations, Biochemistry (Moscow), 64, 1427-1435.
  33. Olovnikov, A. M. (2003) The redusome hypothesis of aging and the control of biological time during individual development, Biochemistry (Moscow), 68, 2-33, doi: 10.1023/A:1022185100035.
  34. Olovnikov, A. M. (2007) Role of paragenome in development, Russ. J. Dev. Biol., 38, 104-123, doi: 10.1134/S1062360407020075.
  35. Dilman, V. M., Revskoy, S. Y., and Golubev, A. G. (1986) Neuroendocrine-ontogenetic mechanism of aging: toward an integrated theory of aging, Int. Rev. Neurobiol., 28, 89-156, doi: 10.1016/S0074-7742(08)60107-5.
  36. Olovnikov, A. M. (1997) Towards the quantitative traits regulation: fountain theory implications in comparative and developmental biology, Int. J. Dev. Biol., 41, 923-931.
  37. Olovnikov, A. (2005) Lunasensor, infradian rhythms, telomeres, and the chronomere program of aging, Ann. N. Y. Acad. Sci., 1057, 112-132, doi: 10.1196/annals.1356.006.
  38. Olovnikov, A. M. (2007) Hypothesis: lifespan is regulated by chronomere DNA of the hypothalamus, J. Alzheimers Dis., 11, 241-252, doi: 10.3233/jad-2007-11211.
  39. Pierpaoli, W., Dall'ara, A., Pedrinis, E., and Regelson, W. (1991) The pineal control of aging. The effects of melatonin and pineal grafting on the survival of older mice, Ann. N. Y. Acad. Sci., 621, 291-313, doi: 10.1111/J.1749-6632.1991.TB16987.X.
  40. Pierpaoli, W. (1994) The pineal gland as ontogenetic scanner of reproduction, immunity, and aging. The aging clock, Ann. N. Y. Acad. Sci., 741, 46-49, doi: 10.1111/J.1749-6632.1994.TB23084.X.
  41. Olovnikov, A. M. (2022) Planetary metronome as a regulator of lifespan and aging rate: the metronomic hypothesis, Biochemistry (Moscow), 87, 1640-1650, doi: 10.1134/S0006297922120197.
  42. Анисимов В. Н. (2003) "Игра в бисер" для биологов или наука послезавтра? (Рецензия на статью А.М. Оловникова "Редусомная гипотеза старения и контроля биологического времени в индивидуальном развитии"), Биохимия, 68, 292-298.
  43. Turner, K. M., Deshpande, V., Beyter, D., Koga, T., Rusert, J., Lee, C., Li, B., Arden, K., Ren, B., Nathanson, D. A., et al. (2017) Extrachromosomal oncogene amplification drives tumour evolution and genetic heterogeneity, Nature, 543, 122-125, doi: 10.1038/NATURE21356.
  44. Møller, H. D., Mohiyuddin, M., Prada-Luengo, I., Sailani, M. R., Halling, J. F., Plomgaard, P., Maretty, L., Hansen, A. J., Snyder, M. P., Pilegaard, H., and Lam, H. Y. K., Regenberg, B. (2018) Circular DNA elements of chromosomal origin are common in healthy human somatic tissue, Nat. Commun., 1069, 1-12, doi: 10.1038/S41467-018-03369-8.
  45. Chamorro González, R., Conrad, T., Stöber, M. C., Xu, R., Giurgiu, M., Rodriguez-Fos, E., Kasack, K., Brückner, L., van Leen, E., Helmsauer, K., et al. (2023) Parallel sequencing of extrachromosomal circular DNAs and transcriptomes in single cancer cells, Nat. Genet., 55, 880-890, doi: 10.1038/S41588-023-01386-Y.
  46. Olovnikov, A. M. (2022) Eco-crossover, or environmentally regulated crossing-over, and natural selection are two irreplaceable drivers of adaptive evolution: Eco-crossover hypothesis, BioSystems, 218, 104706, doi: 10.1016/j.biosystems.2022.104706.
  47. Olovnikov, A. M. (2009) Biological evolution based on nonrandom variability regulated by the organism, Biochemistry (Moscow), 74, 1404-1409, doi: 10.1134/S0006297909120177.
  48. Olovnikov, A. M. (2013) Why do primordial germ cells migrate through an embryo and what does it mean for biological evolution? Biochemistry (Moscow), 78, 1190-1199, doi: 10.1134/S0006297913100143.
  49. Godden, A. M., and Immler, S. (2023) The potential role of the mobile and non-coding genomes in adaptive response, Trends Genet., 39, 5-8, doi: 10.1016/j.tig.2022.08.006.
  50. Olovnikov, A. (1996) Molecular mechanism of morphogenesis: a theory of locational DNA, Biochemistry (Moscow), 61, 1948-1970.
  51. Vassetzky, S. G. (2008) Gelfand's seminar, Russ. J. Dev. Biol., 39, 364, doi: 10.1134/S1062360408060076.

Declaração de direitos autorais © Russian Academy of Sciences, 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies