Lel A. Drachev and the direct electrometric method

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

In the bioenergetics studies, the direct electrometric method played an important role. This method is based on measuring the electrical potential difference (Δψ) between two compartments of the experimental cell generated by some membrane proteins. These proteins are incorporated into closed lipid-protein membrane vesicles associated with an artificial lipid membrane that separates the compartments. The very existence of such proteins able to generate Δψ was one of the consequences of Peter Mitchell’ s chemiosmotic concept. The discovery and investigation of their functioning contributed to the recognition of this concept and, eventually the well-deserved awarding of the Nobel Prize to P. Mitchell. Lel A. Drachev (1926-2022) was one of the main authors of the direct electrometrical method. With his participation, key studies were carried out on the electrogenesis of photosynthetic and respiratory membrane proteins, including bacteriorhodopsin, visual rhodopsin, photosynthetic bacterial reaction centers, cytochrome oxidase and others.

About the authors

V. V Ptushenko

Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University

119992 Moscow, Russia

A. Y Semenov

Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University

Email: semenov@belozersky.msu.ru
119992 Moscow, Russia

References

  1. Тихонов А. Н. (2012) Энергетическая и регуляторная роль протонного потенциала в хлоропластах, Биохимия, 77, 1155-1176, doi: 10.1134/S0006297912090027.
  2. Johnson, M. P., and Ruban, A. V. (2014) Rethinking the existence of a steady-state Δψ component of the proton motive force across plant thylakoid membranes, Photosynth. Res., 119, 233-242, doi: 10.1007/s11120-013-9817-2.
  3. Skulachev, V. P. (1984) Sodium bioenergetics, Trends Biochem. Sci., 9, 483-485, doi: 10.1016/0968-0004(84)90317-7.
  4. Weber, B. H., and Prebble, J. N. (2006) An issue of originality and priority: the correspondence and theories of oxidative phosphorylation of Peter Mitchell and Robert JP Williams, 1961-1980, J. History Biol., 39, 125-163, doi: 10.1007/s10739-005-3052-4.
  5. Junge, W., and Witt, H. T. (1968) On the ion transport system of photosynthesis - Investigations on a molecular level, Zeitschrift Für Naturforschung B, 23, 244-254, doi: 10.1515/znb-1968-0222.
  6. Булычев А., Андрианов В., Курелла Г., Литвин Ф. (1971) Трансмембранный потенциал клетки и хлоропласта высшего наземного растения, Физиол. Раст., 18, 248-256.
  7. Булычев А., Андрианов В., Курелла Г., Литвин Ф. (1971) Трансмембранный потенциал хлоропласта и его фотоиндуцированные изменения, Доклады АН СССР, 197, 473-477.
  8. Bulychev, A. A., Andrianov, V. K., Kurella, G. A., and Litvin, F. F. (1972) Micro-electrode measurements of the transmembrane potential of chloroplasts and its photoinduced changes, Nature, 236, 175-177, doi: 10.1038/236175a0.
  9. Witt, H. T., and Zickler, A. (1974) Vectorial electron flow across the thylakoid membrane. Further evidence by kinetic measurements with an electrochromic and electrical method, FEBS Lett., 39, 205-208, doi: 10.1016/0014-5793(74)80051-7.
  10. Fowler, C. F., and Kok, B. (1974) Direct observation of a light-induced electric field in chloroplasts, Biochim. Biophys. Acta Bioenergetics, 357, 308-318, doi: 10.1016/0005-2728(74)90069-3.
  11. Joliot, P., and Joliot, A. (1984) Electron transfer between the two photosystems. I. Flash excitation under oxidizing conditions, Biochim. Biophys. Acta Bioenergetics, 765, 210-218, doi: 10.1016/0005-2728(84)90015-X.
  12. Deprez, J., Trissl, H. W., and Breton, J. (1986) Excitation trapping and primary charge stabilization in Rhodopseudomonas viridis cells, measured electrically with picosecond resolution, Proc. Natl. Acad. Sci. USA, 83, 1699-1703, doi: 10.1073/pnas.83.6.1699.
  13. Trissl, H.-W., Leibl, W., Deprez, J., Dobek, A., and Breton, J. (1987) Trapping and annihilation in the antenna system of photosystem I, Biochim. Biophys. Acta Bioenergetics, 893, 320-332, doi: 10.1016/0005-2728(87)90053-3.
  14. Либерман Е., Мохова Е., Скулачев В., Топалы В. (1968) Действие разобщителей окислительного фосфорилирования на бимолекулярные фосфолипидные мембраны. Биофизика, 13, 188-193.
  15. Liberman, E. A., Topaly, V. P., Tsofina, L. M., Jasaitis, A. A., and Skulachev, V. P. (1969) Mechanism of coupling of oxidative phosphorylation and the membrane potential of mitochondria, Nature, 222, 1076-1078, doi: 10.1038/2221076a0.
  16. Oesterhelt, D., and Stoeckenius, W. (1971) Rhodopsin-like protein from the purple membrane of Halobacterium halobium, Nat. New Biol., 233, 149-152, doi: 10.1038/newbio233149a0.
  17. Drachev, L. A., Kaulen, A. D., Ostroumov, S. A., and Skulachev, V. P. (1974) Electrogenesis by bacteriorhodopsin incorporated in a planar phospholipid membrane, FEBS Lett., 39, 43-45, doi: 10.1016/0014-5793(74)80012-8.
  18. Kagawa, Y., and Racker, E. (1971) Partial resolution of the enzymes catalyzing oxidative phosphorylation: XXV. Reconstitution of vesicles catalyzing 32Pi-adenosine triphosphate exchange, J. Biol. Chem., 246, 5477-5487, doi: 10.1016/S0021-9258(18)61930-1.
  19. Kayushin, L. P., and Skulachev, V. P. (1974) Bacteriorhodopsin as an electrogenic proton pump: Reconstitution of bacteriorhodopsin proteoliposomes generating Δψ and ΔpH, FEBS Lett., 39, 39-42, doi: 10.1016/0014-5793(74)80011-6.
  20. Drachev, L. A., Frolov, V. N., Kaulen, A. D., Liberman, E. A., Ostroumov, S. A., Plakunova, V. G., Semenov, A. Y., and Skulachev, V. P. (1976) Reconstitution of biological molecular generators of electric current. Bacteriorhodopsin, J. Biol. Chem., 251, 7059-7065, doi: 10.1016/S0021-9258(17)32940-X.
  21. Драчев Л. А., Каулен А. Д., Самуилов В. Д., Северина И. И., Семенов А. Ю., Скулачев В. П., Чекулаева Л. Н.(1979) Встраивание протеолипосом и хроматофоров в мембраны на основе фильтров, Биофизика, 24, 1035-1042.
  22. Drachev, L. A., Kaulen, A. D., Semenov, A. Y., Severina, I. I., and Skulachev, V. P. (1979) Lipid-impregnated filters as a tool for studying the electric current-generating proteins, Anal. Biochem., 96, 250-262, doi: 10.1016/0003-2697(79)90580-3.
  23. Большаков В. И., Драчев А. Л., Каламкаров Г. Р., Каулен А. Д., Островский М. А., Скулачев В. П. (1979) Общность свойств бактериального и зрительного родопсинов: превращение энергии света в разность электрических потенциалов, Доклады Академии Наук СССР, 249, 1462-1466.
  24. Drachev, L. A., Kalamkarov, G. R., Kaulen, A. D., Ostrovsky, M. A., and Skulachev, V. P. (1981) Fast stages of photoelectric processes in biological membranes: II. Visual rhodopsin, Eur. J. Biochem., 117, 471-481, doi: 10.1111/j.1432-1033.1981.tb06362.x.
  25. Drachev, L. A., Jasaitis, A. A., Kaulen, A. D., Kondrashin, A. A., Liberman, E. A., Nemecek, I. B., Ostroumov, S. A., Semenov, A. Yu., and Skulachev, V. P. (1974) Direct measurement of electric current generation by cytochrome oxidase, H+-ATPase and bacteriorhodopsin, Nature, 249, 321-324, doi: 10.1038/249321a0.
  26. Drachev, L. A., Kondrashin, A. A., Semenov, A. Y., and Skulachev, V. P. (1980) Reconstitution of biological molecular generators of electric current: transhydrogenase, Eur. J. Biochem., 113, 213-217, doi: 10.1111/j.1432-1033.1980.tb06158.x.
  27. Drachev, L. A., Frolov, V. N., Kaulen, A. D., Kondrashin, A. A., Samuilov, V. D., Semenov, A. Y., and Skulachev, V. P. (1976) Generation of electric current by chromatophores of Rhodospirillum rubrum and reconstitution of electrogenic function in subchromatophore pigment-protein complexes, Biochim. Biophys. Acta Bioenergetics, 440, 637-660, doi: 10.1016/0005-2728(76)90048-7.
  28. Drachev, L. A., Kaulen, A. D., Khitrina, L., and Skulachev, V. P. (1981) Fast stages of photoelectric processes in biological membranes: I. Bacteriorhodopsin, Eur. J. Biochem., 117, 461-470, doi: 10.1111/j.1432-1033.1981.tb06361.x.
  29. Drachev, L. A., Semenov, A. Y., Skulachev, V. P., Smirnova, I. A., Chamorovsky, S. K., Kononenko, A. A., Rubin, A. B., and Uspenskaya, N. Ya. (1981) Fast stages of photoelectric processes in biological membranes: III. Bacterial photosynthetic redox system, Eur. J. Biochem., 117, 483-489, doi: 10.1111/j.1432-1033.1981.tb06363.x.
  30. Chamorovsky, S. K., Drachev, A. L., Drachev, L. A., Karagul'yan, A. K., Kononenko, A. A., Rubin, A. B., Semenov, A. Yu., and Skulachev, V. P. (1985) Fast phases of the generation of the transmembrane electric potential in chromatophores of the photosynthetic bacterium Ectothiorhodospira shaposhnikovii, Biochim. Biophys. Acta Bioenergetics, 808, 201-208, doi: 10.1016/0005-2728(85)90044-1.
  31. Drachey, L. A., Kaminskaya, O. P., Konstantinov, A. A., Kotova, E. A., Mamedov, M. D., Samuilov, V. D., Semenov, A. Y., and Skulachev, V. P. (1986) The effect of cytochrome c, hexammineruthenium and ubiquinone-10 on the kinetics of photoelectric responses of Rhodospirillum rubrum reaction centres, Biochim. Biophys. Acta Bioenergetics, 848, 137-146, doi: 10.1016/0005-2728(86)90169-6.
  32. Kaminskaya, O. P., Drachev, L. A., Konstantinov, A. A., Semenov, A. Y., and Skulachev, V. P. (1986) Electrogenic reduction of the secondary quinone acceptor in chromatophores of Rhodospirillum rubrum: rapid kinetics measurements, FEBS Lett., 202, 224-228, doi: 10.1016/0014-5793(86)80691-3.
  33. Drachev, L. A., Kaurov, B. S., Mamedov, M. D., Mulkidjanian, A. Y., Semenov, A. Y., Shinkarev, V. P., Skulachev, V. P., and Verkhovsky, M. I. (1989) Flash-induced electrogenic events in the photosynthetic reaction center and bc1 complexes of Rhodobacter sphaeroides chromatophores, Biochim. Biophys. Acta Bioenergetics, 973, 189-197, doi: 10.1016/S0005-2728(89)80421-9.
  34. Mamedov, M. D., Mamedova, A. A., Chamorovsky, S. K., and Semenov, A. Y. (2001) Electrogenic reduction of the primary electron donor P700 by plastocyanin in photosystem I complexes, FEBS Lett., 500, 172-176, doi: 10.1016/S0014-5793(01)02615-1.
  35. Mamedov, M. D., Gourovskaya, K. N., Vassiliev, I. R., Golbeck, J. H., and Sememov, A. Y. (1998) Electrogenicity accompanies photoreduction of the iron-sulfur clusters FA and FB in photosystem I, FEBS Lett., 431, 219-223, doi: 10.1016/S0014-5793(98)00759-5.
  36. Чаморовский К., Чаморовский С., Семенов А. (2005) Диэлектрические и фотоэлектрические свойства фотосинтетических реакционных центров, Биохимия, 70, 315-322.
  37. Semenov, A. Y., Mamedov, M. D., and Chamorovsky, S. K. (2006) Electrogenic reactions associated with electron transfer in photosystem I, Photosystem I: The Light-driven Plastocyanin: Ferredoxin Oxidoreductase, Springer, p. 319-338, doi: 10.1007/978-1-4020-4256-0_21.
  38. Ptushenko, V. V, Cherepanov, D. A., Krishtalik, L. I., and Semenov, A. Y. (2008) Semi-continuum electrostatic calculations of redox potentials in photosystem I, Photosynth. Res., 97, 55-74, doi: 10.1007/s11120-008-9309-y.
  39. Krishtalik, L. I. (1989) Dielectric constant in calculations of the electrostatics of biopolymers, J. Theor. Biol., 139, 143-154, doi: 10.1016/S0022-5193(89)80097-9.
  40. Krishtalik, L. I., Kuznetsov, A. M., and Mertz, E. L. (1997) Electrostatics of proteins: description in terms of two dielectric constants simultaneously, Proteins Struct. Funct. Bioinformatics, 28, 174-182, doi: 10.1002/(SICI)1097-0134(199706)28:2<174::AID-PROT6>3.0.CO;2-F.
  41. Brzezinski, P., Okamura, M. Y., and Feher, G. (1992) Structural changes following the formation of D+ QA- in bacterial reaction centers: measurement of light-induced electrogenic events in RCs incorporated in a phospholipid monolayer, The Photosynthetic Bacterial Reaction Center II: Structure, Spectroscopy and Dynamics, pp. 321-330, doi: 10.1007/978-1-4615-3050-3_36.
  42. Sigfridsson, K., Hansson, O., and Brzezinski, P. (1995) Electrogenic light reactions in photosystem I: resolution of electron-transfer rates between the iron-sulfur centers, Proc. Natl. Acad. Sci. USA, 92, 3458-3462, doi: 10.1073/pnas.92.8.3458.
  43. Haumann, M., Mulkidjanian, A., and Junge, W. (1997) Electrogenicity of electron and proton transfer at the oxidizing side of photosystem II, Biochemistry, 36, 9304-9315, doi: 10.1021/bi963114p.
  44. Wikström, M., and Verkhovsky, M. I. (2007) Mechanism and energetics of proton translocation by the respiratory heme-copper oxidases, Biochim. Biophys. Acta Bioenergetics, 1767, 1200-1214, doi: 10.1016/j.bbabio.2007.06.008.
  45. Beinert, H. (1992) Trails of inquiry and thought leading toward today's bioenergetics, Biochim. Biophys. Acta Bioenergetics, 1101, 125-133, doi: 10.1016/S0005-2728(05)80002-7.

Copyright (c) 2023 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies