Display of oligo-α-1,6-glycosidase from Exiguobacterium sibiricum at the surface of Escherichia coli cells

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Cell-surface display based on the use of anchor motifs of outer membrane proteins allows the exposure of target peptides and proteins on the surface of microbial cells. Previously, we obtained and characterized recombinant oligo-α-1,6-glycosidase of the psychrotrophic bacterium Exiguobacterium sibiricum (EsOgl) which demonstrated high catalytic activity. It has also been shown that the autotransporter AT877 from Psychrobacter cryohalolentis and its deletion variants effectively exhibit the 10th domain of type III fibronectin (10Fn3) on the surface of Escherichia coli cells. The aim of the work was to obtain an EsOgl display system on the surface of bacterial cells based on AT877. The genes of the hybrid autotransporter EsOgl877 and its deletion mutants EsOgl877Δ239 and EsOgl877Δ310 were constructed. The enzymatic activity of EsOgl877 was investigated and it was found that the cells expressing this protein retained about 90% of the maximum activity in the range of 15-35°C. It was shown that activity of the cells containing EsOgl877Δ239 and EsOgl877Δ310 was 2.7 and 2.4 times higher, respectively, than of the cells expressing full-sized AT. Analysis of cells expressing shortened variants of EsOgl877 after treatment with proteinase K showed that the passenger domain is also localized on the cell surface. The obtained results can be used for optimization of the display systems of oligo-α-1,6-glycosidase and other heterologous proteins on the surface of E. coli cells.

About the authors

L. N Shingarova

Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences

Email: lshingarova@gmail.com
117997 Moscow, Russia

L. E Petrovskaya

Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences

Email: lshingarova@gmail.com
117997 Moscow, Russia

E. A Kryukova

Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences

Email: lshingarova@gmail.com
117997 Moscow, Russia

S. S Gapizov

Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences;Faculty of Biology, Lomonosov Moscow State University

Email: lshingarova@gmail.com
117997 Moscow, Russia;119991 Moscow, Russia

D. A Dolgikh

Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences;Faculty of Biology, Lomonosov Moscow State University

Email: lshingarova@gmail.com
117997 Moscow, Russia;119991 Moscow, Russia

M. P Kirpichnikov

Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences;Faculty of Biology, Lomonosov Moscow State University

Email: lshingarova@gmail.com
117997 Moscow, Russia;119991 Moscow, Russia

References

  1. Van der Maarel, M. J. E. C., van der Veen, B., Uitdehaag, J. C. M., Leemhuis, H., and Dijkhuizen, L. (2002) Properties and applications of starch-converting enzymes of the α-amylase family, J. Biotechnol., 94, 137-155, doi: 10.1016/s0168-1656(01)00407-2.
  2. Hua, X., and Yang, R. (2016) Enzymes in starch processing, in Enzymes in Food and Beverage Processing (Chandrasekaran, M. ed.) CRC Press, Boca Raton, FL, USA, pp. 139-170.
  3. Dong, Z., Tang, C., Lu, Y., Yao, L., and Kan, Y. (2020) Microbial oligo-α-1,6-glucosidase: current developments and future perspectives, Starch Stärke, 72, 1900172, doi: 10.1002/star.201900172.
  4. Watanabe, K., Hata, Y., Kizaki, H., Katsube, Y., and Suzuki, Y. (1997) The refined crystal structure of Bacillus cereus oligo-1,6-glucosidase at 2.0 Å resolution: structural characterization of proline-substitution sites for protein thermostabilization, J. Mol. Biol., 269, 142-153, doi: 10.1006/jmbi.1997.1018.
  5. Watanabe, K., Kitamura, K., and Suzuki, Y. (1996) Analysis of the critical sites for protein thermostabilization by proline substitution in oligo-1,6-glucosidase from Bacillus coagulans ATCC 7050 and the evolutionary consideration of proline residues, Appl. Environ. Microbiol., 62, 2066-2073, doi: 10.1128/aem.62.6.2066-2073.1996.
  6. Watanabe, K., Chishiro, K., Kitamura, K., and Suzuki, Y. (1991) Proline residues responsible for thermostability occur with high frequency in the loop regions of an extremely thermostable oligo-1,6-glucosidase from Bacillus thermoglucosidasius KP1006, J. Biol. Chem., 266, 24287-24294, doi: 10.1016/S0021-9258(18)54226-5.
  7. Feller, G. (2013) Psychrophilic enzymes: from folding to function and biotechnology, Scientifica, 2013, 512840, doi: 10.1155/2013/512840.
  8. Barroca, M., Santos, G., Gerday, C., and Collins, T. (2017) Biotechnological Aspects of Cold-Active Enzymes, in Psychrophiles: From Biodiversity to Biotechnology (Margesin, R. ed.) Springer International Publishing, Cham, pp. 461-475, doi: 10.1007/978-3-319-57057-0_19.
  9. Berlina, Y. Y., Petrovskaya, L. E., Kryukova, E. A., Shingarova, L. N., Gapizov, S. S., Kryukova, M. V., Rivkina, E. M., Kirpichnikov, M. P., and Dolgikh, D. A. (2021) Engineering of Thermal stability in a cold-active oligo-1,6-glucosidase from Exiguobacterium sibiricum with unusual amino acid content, Biomolecules, 11, 1229, doi: 10.3390/biom11081229.
  10. Van Ulsen, P., ur Rahman, S., Jong, W. S., Daleke-Schermerhorn, M. H., and Luirink, J. (2014) Type V secretion: from biogenesis to biotechnology, Biochim. Biophys. Acta Mol. Cell Res., 1843, 1592-1611, doi: 10.1016/j.bbamcr.2013.11.006.
  11. Nicolay, T., Vanderleyden, J., and Spaepen, S. (2015) Autotransporter-based cell surface display in Gram-negative bacteria, Crit. Rev. Microbiol., 41, 109-123, doi: 10.3109/1040841X.2013.804032.
  12. De Carvalho, C. C. (2017) Whole cell biocatalysts: essential workers from nature to the industry, Micr. Biotechnol., 10, 250-263, doi: 10.1111/1751-7915.12363.
  13. Schüürmann, J., Quehl, P., Festel, G., and Jose, J. (2014) Bacterial whole-cell biocatalysts by surface display of enzymes: toward industrial application, Appl. Microbiol. Biotechnol., 98, 8031-8046, doi: 10.1007/s00253-014-5897-y.
  14. He, M.-X., Feng, H., and Zhang, Y.-Z. (2008) Construction of a novel cell-surface display system for heterologous gene expression in Escherichia coli by using an outer membrane protein of Zymomonas mobilis as anchor motif, Biotechnol. Lett., 30, 2111-2117, doi: 10.1007/s10529-008-9813-3.
  15. Ryu, S., and Karim, M. N. (2011) A whole cell biocatalyst for cellulosic ethanol production from dilute acid-pretreated corn stover hydrolyzates, Appl. Microbiol. Biotechnol., 91, 529-542, doi: 10.1007/s00253-011-3261-z.
  16. Muñoz-Gutiérrez, I., Oropeza, R., Gosset, G., and Martinez, A. (2012) Cell surface display of a β-glucosidase employing the type V secretion system on ethanologenic Escherichia coli for the fermentation of cellobiose to ethanol, J. Indust. Microbiol. Biotechnol., 39, 1141-1152, doi: 10.1007/s10295-012-1122-0.
  17. Soma, Y., Inokuma, K., Tanaka, T., Ogino, C., Kondo, A., Okamoto, M., and Hanai, T. (2012) Direct isopropanol production from cellobiose by engineered Escherichia coli using a synthetic pathway and a cell surface display system, J. Biosci. Bioeng., 114, 80-85, doi: 10.1016/j.jbiosc.2012.02.019.
  18. Van Ulsen, P., Zinner, K. M., Jong, W. S. P., and Luirink, J. (2018) On display: autotransporter secretion and application, FEMS Microbiol. Lett., 365, fny165, doi: 10.1093/femsle/fny165.
  19. Petrovskaya, L., Novototskaya-Vlasova, K., Kryukova, E., Rivkina, E., Dolgikh, D., and Kirpichnikov, M. (2015) Cell surface display of cold-active esterase EstPc with the use of a new autotransporter from Psychrobacter cryohalolentis K5T, Extremophiles, 19, 161-170, doi: 10.1007/s00792-014-0695-0.
  20. Petrovskaya, L., Zlobinov, A., Shingarova, L., Boldyreva, E., Gapizov, S. S., Novototskaya-Vlasova, K., Rivkina, E., Dolgikh, D., and Kirpichnikov, M. (2018) Fusion with the cold-active esterase facilitates autotransporter-based surface display of the 10th human fibronectin domain in Escherichia coli, Extremophiles, 22, 141-150, doi: 10.1007/s00792-017-0990-7.
  21. Shingarova, L., Petrovskaya, L., Zlobinov, A., Gapizov, S. S., Kryukova, E., Birikh, K., Boldyreva, E., Yakimov, S., Dolgikh, D., and Kirpichnikov, M. (2018) Construction of artificial TNF-binding proteins based on the 10th human fibronectin type III domain using bacterial display, Biochemistry (Moscow), 83, 708-716, doi: 10.1134/S0006297918060081.
  22. Shingarova, L. N., Petrovskaya, L. E., Kryukova, E. A., Gapizov, S. S., Boldyreva, E. F., Dolgikh, D. A., and Kirpichnikov, M. P. (2022) Deletion variants of autotransporter from Psychrobacter cryohalolentis increase efficiency of 10FN3 exposure on the surface of Escherichia coli cells, Biochemistry (Moscow), 87, 932-939, doi: 10.1134/S0006297922090061.
  23. Dalbey, R. E., and Kuhn, A. (2012) Protein traffic in Gram-negative bacteria - how exported and secreted proteins find their way, FEMS Microbiol. Rev., 36, 1023-1045, doi: 10.1111/j.1574-6976.2012.00327.x.
  24. Kim, K. H., Aulakh, S., and Paetzel, M. (2012) The bacterial outer membrane beta-barrel assembly machinery, Prot. Sci., 21, 751-768, doi: 10.1002/pro.2069.
  25. Peterson, J. H., Tian, P., Ieva, R., Dautin, N., and Bernstein, H. D. (2010) Secretion of a bacterial virulence factor is driven by the folding of a C-terminal segment, Proc. Nat. Acad. Sci. USA, 107, 17739-17744, doi: 10.1073/pnas.1009491107.
  26. Junker, M., Besingi, R. N., and Clark, P. L. (2009) Vectorial transport and folding of an autotransporter virulence protein during outer membrane secretion, Mol. Microbiol., 71, 1323-1332, doi: 10.1111/j.1365-2958.2009.06607.x.
  27. Renn, J. P., Junker, M., Besingi, R. N., Braselmann, E., and Clark, P. L. (2012) ATP-independent control of autotransporter virulence protein transport via the folding properties of the secreted protein, Chem. Biol., 19, 287-296, doi: 10.1016/j.chembiol.2011.11.009.
  28. Braselmann, E., and Clark, P. L. (2012) Autotransporters: the Cellular environment reshapes a folding mechanism to promote protein transport, J. Phys. Chem. Lett., 3, 1063-1071, doi: 10.1021/jz201654k.
  29. Siddiqui, K. S., and Cavicchioli, R. (2006) Cold-adapted enzymes, Annu. Rev. Biochem., 75, 403-433, doi: 10.1146/annurev.biochem.75.103004.142723.
  30. Struvay, C., and Feller, G. (2012) Optimization to low temperature activity in psychrophilic enzymes, Int. J. Mol. Sci., 13, 11643-11665, doi: 10.3390/ijms130911643.
  31. Santiago, M., Ramírez-Sarmiento, C. A., Zamora, R. A., and Parra, L. P. (2016) Discovery, molecular mechanisms, and industrial applications of cold-active enzymes, Front. Microbiol., 7, 1408, doi: 10.3389/fmicb.2016.01408.
  32. Novototskaya-Vlasova, K., Petrovskaya, L., Yakimov, S., and Gilichinsky, D. (2012) Cloning, purification, and characterization of a cold adapted esterase produced by Psychrobacter cryohalolentis K5T from Siberian cryopeg, FEMS Microbiol. Ecol., 82, 367-375, doi: 10.1111/j.1574-6941.2012.01385.x.

Copyright (c) 2023 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies