Femtosecond exciton relaxation in chlorosomes of the photosynthetic green bacterium Chloroflexus aurantiacus

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

In the green bacteria Chloroflexus (Cfx.) aurantiacus, the process of photosynthesis begins with the absorption of light by chlorosomes, peripheral antennas consisting of thousands of bacteriochlorophyll c (BChl c) molecules combined into oligomeric structures. In this case, excited states are formed in BChl c, the energy of which migrates along the chlorosome towards the baseplate and further to the reaction center, where the primary charge separation occurs. Energy migration is accompanied by nonradiative electronic transitions between numerous exciton states, that is exciton relaxation. In this work, we studied the dynamics of exciton relaxation in Cfx. aurantiacus chlorosomes using difference femtosecond spectroscopy at cryogenic temperature (80 K). Chlorosomes were excited by 20 fs light pulses at wavelengths from 660 to 750 nm, and the difference (light-dark) kinetics were measured at a wavelength of 755 nm. Mathematical analysis of the data obtained revealed the kinetic components with characteristic time constants of 140, 220, and 320 fs responsible for the exciton relaxation. As the excitation wavelength decreased, the number of components and their relative contribution increased. Theoretical modeling of the results obtained was carried out on the base of the cylindrical model of BChl c aggregates. Nonradiative transitions between groups of exciton bands were ascribed by the system of kinetic equations. The model in which the energetic and structural disorder was taken into account turned out to be the most adequate.

About the authors

A. G Yakovlev

Lomonosov Moscow State University, Belozersky Institute of Physico-Chemical Biology

Email: yakov@belozersky.msu.ru
119992 Moscow, Russia

A. S Taisova

Lomonosov Moscow State University, Belozersky Institute of Physico-Chemical Biology

Email: yakov@belozersky.msu.ru
119992 Moscow, Russia

Z. G Fetisova

Lomonosov Moscow State University, Belozersky Institute of Physico-Chemical Biology

Email: yakov@belozersky.msu.ru
119992 Moscow, Russia

References

  1. Яковлев А. Г., Таисова А. С., Фетисова З. Г. (2020) Перенос энергии в светособирающих аппаратах природного фотосинтеза, Усп. совр. биол., 140, 166-182, doi: 10.31857/S0042132420020088.
  2. Frigaard, N.-U., and Bryant, D. (2006) Chlorosomes: antenna organelles in green photosynthetic bacteria, in: Complex Intracellular Structures in Prokaryotes. Microbiology Monographs (Shively, J. M., ed), Springer, Berlin, pp. 79-114, doi: 10.1007/7171_021.
  3. Blankenship, R. E., Olson, J. M., and Miller, M. (1995) Antenna complexes from green photosynthetic bacteria, in Anoxygenic Photosynthetic Bacteria (Blankenship, R. E., Madigan, M. T., Bauer, C. E., eds), Kluwer Academic Publishers, Dordrecht, pp. 399-435, doi: 10.1007/0-306-47954-0_20.
  4. Fetisova, Z., and Mauring, K. (1992) Experimental evidence of oligomeric organization of antenna bacteriochlorophyll c in green bacterium Chloroflexus aurantiacus by spectral hole burning, FEBS Lett., 307, 371-374, doi: 10.1016/0014-5793(92)80715-s.
  5. Fetisova, Z., Freiberg, A., and Timpmann, K. (1988) Long-range molecular order as an efficient strategy for light harvesting in photosynthesis, Nature (London), 334, 633-634, doi: 10.1038/334633a0.
  6. Van Dorssen, R. J., Vasmel, H., and Amesz, J. (1986) Pigment organization and energy transfer in the green photosynthetic bacterium Chloroflexus aurantiacus. II. The chlorosome, Photosynth. Res., 9, 33-45, doi: 10.1007/BF00029729.
  7. Krasnovsky, A., and Bystrova, M. (1980) Self-assembly of chlorophyll aggregated structures, BioSystems, 12, 181-194, doi: 10.1016/0303-2647(80)90016-7.
  8. Smith, K., Kehres, L., and Fajer, J. (1983) Aggregation of bacteriochlorophylls c, d and e. Models for the antenna chlorophylls of green and brown photosynthetic bacteria, J. Am. Chem. Soc., 105, 1387-1389, doi: 10.1021/ja00343a062.
  9. Olson, J. M. (1998) Chlorophyll organization and function in green photosynthetic bacteria, Photochem. Photobiol., 67, 61-75, doi: 10.1111/j.1751-1097.1998.tb05166.x.
  10. Pierson, B., and Castenholz, R. (1974) Pigments and growth in Chloroflexus aurantiacus, a phototrophic filamentous bacterium, Arch. Microbiol., 100, 283-305, doi: 10.1007/BF00446324.
  11. Oelze, J. (1992) Light and oxygen regulation of the synthesis of bacteriochlorophyll a and bacteriochlorophyll c in Chloroflexus aurantiacus, J. Bacteriol., 174, 5021-5026, doi: 10.1128/jb.174.15.5021-5026.1992.
  12. Fetisova, Z. G., Freiberg, A. M., Mauring, K., Novoderezhkin, V. I., Taisova, A. S., and Timpmann, K. E. (1996) Excitation energy transfer in chlorosomes of green bacteria: Theoretical and experimental studies, Biophys. J., 71, 995-1010, doi: 10.1016/S0006-3495(96)79301-3.
  13. Sprague, S., Staehelin, L., DiBartolomeis, M., and Fuller, R. (1981) Isolation and development of chlorosomes in the green bacterium Chloroflexus aurantiacus, J. Bacteriol., 147, 1021-1031, doi: 10.1128/jb.147.3.1021-1031.1981.
  14. Staehelin, L., Golecki, J., Fuller, R., and Drews, G. (1978) Visualization of the supramolecular architecture of chlorosomes (Chlorobium type vesicles) in freeze-fractured cells of Chloroflexus aurantiacus, Arch. Microbiol., 119, 269-277, doi: 10.1007/BF00405406.
  15. Olson, J. M. (1980) Chlorophyll organization in green photosynthetic bacteria, Biochim. Biophys. Acta, 594, 33-51, doi: 10.1016/0304-4173(80)90012-9.
  16. Psencik, J., Ikonen, T. P., Laurinmaki, P., Merckel, M. C., Butcher, S. J., Serimaa, R. E., and Tuma, R. (2004) Lamellar organization of pigments in chlorosomes, the light harvesting complexes of green photosynthetic bacteria, Biophys. J., 87, 1165-1172, doi: 10.1529/biophysj.104.040956.
  17. Günther, L., Jendrny, M., Bloemsma, E., Tank, M., Oostergetel, G., Bryant, D., Knoester, J., and Köhler, J. (2016) Structure of light-harvesting aggregates in individual chlorosomes, J. Phys. Chem. B, 120, 5367-5376, doi: 10.1021/acs.jpcb.6b03718.
  18. Sawaya, N., Huh, J., Fujita, T., Saikin, S., and Aspuru-Guzik, A. (2015) Fast delocalization leads to robust long-range excitonic transfer in a large quantum chlorosome model, Nano Lett., 15, 1722-1729, doi: 10.1021/nl504399d.
  19. Fujita, T., Huh, J., Saikin, S., Brookes, J., and Aspuru-Guzik, A. (2014) Theoretical characterization of excitation energy transfer in chlorosome light-harvesting antennae from green sulfur bacteria, Photosynth. Res., 120, 273-289, doi: 10.1007/s11120-014-9978-7.
  20. Prokhorenko, V. I., Steensgaard, D. B., and Holzwarth, A. R. (2000) Exciton dynamics in the chlorosomal antennae of the green bacteria Chloroflexus aurantiacus and Chlorobium tepidum, Biophys. J., 79, 2105-2120, doi: 10.1016/S0006-3495(00)76458-7.
  21. Savikhin, S., Zhu, Y., Lin, S., Blankenship, R. E., and Struve, W. S. (1994) Femtosecond spectroscopy of chlorosome antennas from the green photosynthetic bacterium Chloroflexus aurantiacus, J. Phys. Chem., 98, 10322-10334, doi: 10.1021/j100091a056.
  22. Savikhin, S., Zhu, Y., Blankenship, R. E., and Struve, W. S. (1996) Intraband energy transfers in the BChl c antenna of chlorosomes from the green photosynthetic bacterium Chloroflexus aurantiacus, J. Phys. Chem., 100, 17978-17980, doi: 10.1021/jp961752b.
  23. Savikhin, S., Buck, D. R., Struve, W. S., Blankenship, R. E., Taisova, A. S., Novoderezhkin, V. I., and Fetisova, Z. G. (1998) Excitation delocalization in the bacteriochlorophyll c antenna of the green bacterium Chloroflexus aurantiacus as revealed by ultrafast pump-probe spectroscopy, FEBS Lett., 430, 323-326, doi: 10.1016/S0014-5793(98)00691-7.
  24. Yakovlev, A., Taisova, A., and Fetisova, Z. (2002) Light control over the size of an antenna unit building block as an effecient strategy for light harvesting in photosynthesis, FEBS Lett., 512, 129-132, doi: 10.1016/s0014-5793(02)02238-x.
  25. Yakovlev, A., Novoderezhkin, V., Taisova, A., and Fetisova, Z. (2002) Exciton dynamics in the chlorosomal antenna of the green bacterium Chloroflexus aurantiacus: experimental and theoretical studies of femtosecond pump-probe spectra, Photosynth. Res., 71, 19-32, doi: 10.1023/A:1014995328869.
  26. Psencik, J., Ma, Y. Z., Arellano, J. B., Garcia-Gil, J., Holzwarth, A. R., and Gillbro, T. (2002) Excitation energy transfer in chlorosomes of Chlorobium phaeobacteroides strain CL1401: the role of carotenoids, Photosynth. Res., 71, 5-18, doi: 10.1023/A:1014943312031.
  27. Psencik, J., Ma, Y. Z., Arellano, J. B., Hala, J., and Gillbro, T. (2003) Excitation energy transfer dynamics and excited-state structure in chlorosomes of Chlorobium phaeobacteroides, Biophys. J., 84, 1161-1179, doi: 10.1016/S0006-3495(03)74931-5.
  28. Martiskainen, J., Linnanto, J., Kananavičius, R., Lehtovuori, V., and Korppi-Tommola, J. (2009) Excitation energy transfer in isolated chlorosomes from Chloroflexus aurantiacus, Chem. Phys. Lett., 477, 216-220, doi: 10.1016/j.cplett.2009.06.080.
  29. Martiskainen, J., Linnanto, J., Aumanen, V., Myllyperkiö, P., and Korppi-Tommola, J. (2012) Excitation energy transfer in isolated chlorosomes from Chlorobaculum tepidum and Prosthecochloris aestuarii, Photochem. Photobiol., 88, 675-683, doi: 10.1111/j.1751-1097.2012.01098.x.
  30. Linnanto, J. V., and Korppi-Tommola, J. E. I. (2013) Exciton description of excitation energy transfer in the photosynthetic units of green sulfur bacteria and filamentous anoxygenic phototrophs, J. Phys. Chem. B, 117, 11144-11161, doi: 10.1021/jp4011394.
  31. Yakovlev, A. G., Taisova, A. S., Shuvalov, V. A., and Fetisova, Z. G. (2019) Ultrafast excited-state dynamics in chlorosomes isolated from the photosynthetic filamentous green bacterium Chloroflexus aurantiacus, Physiologia Plantarum, 166, 12-21, doi: 10.1111/ppl.12887.
  32. Yakovlev, A. G., Taisova, A. S., and Fetisova, Z. G. (2021) Utilization of blue-green light by chlorosomes from the photosynthetic bacterium Chloroflexus aurantiacus: Ultrafast excitation energy conversion and transfer, Biochim. Biophys. Acta Bioenergetics, 1862, 148396, doi: 10.1016/j.bbabio.2021.148396.
  33. Causgrove, T. P., Brune, D. C., Wang, J., Wittmershaus, B. P., and Blankenship, R. E. (1990) Energy transfer kinetics in whole cells and isolated chlorosomes of green photosynthetic bacteria, Photosynth. Res., 26, 39-48, doi: 10.1007/BF00048975.
  34. Taisova, A. S., Keppen, O. I., Lukashev, E. P., Arutyunyan, A. M., and Fetisova, Z. G. (2002) Study of the chlorosomal antenna of the green mesophilic filamentous bacterium Oscillochloris trichoides, Photosynth. Res., 74, 73-85, doi: 10.1023/A:1020805525800.
  35. Mukamel, S. (1995) Principles of Nonlinear Optical Spectroscopy, Oxford University Press, New York/Oxford.
  36. Mauring, K., Novoderezhkin, V., Taisova, A., and Fetisova, Z. (1999) Exciton levels structure of antenna bacteriochlorophyll c aggregates in the green bacterium Chloroflexus aurantiacus as probed by 1.8-293 K fluorescence spectroscopy, FEBS Lett., 456, 239-242, doi: 10.1016/s0014-5793(99)00953-9.
  37. May, V. (2014) Kinetic theory of exciton-exciton annihilation, J. Chem. Phys., 140, 054103, doi: 10.1063/1.4863259.
  38. Yakovlev, A., Taisova, A., Arutyunyan, A., Shuvalov, V., and Fetisova, Z. (2017) Variability of aggregation extent of light-harvesting pigments in peripheral antenna of Chloroflexus aurantiacus, Photosynth. Res., 133, 343-356, doi: 10.1007/s11120-017-0374-y.
  39. Jendrny, M., Aartsma, T. J., and Köhler, J. (2014) Insights into the excitonic states of individual chlorosomes from Chlorobaculum tepidum, Biophys. J., 106, 1921-1927, doi: 10.1016/j.bpj.2014.03.020.
  40. Петров Э. Г. (1984) Физика переноса зарядов в биосистемах, Наукова думка, Киев.
  41. Struve, W. S. (1995) Vibrational equilibration in absorption difference spectra of chlorophyll a, Biophys. J., 69, 2739-2744, doi: 10.1016/S0006-3495(95)80145-1.
  42. Márquez, A. S., Chen, L., Sun, K., and Zhao, Y. (2016) Probing ultrafast excitation energy transfer of the chlorosome with exciton-phonon variational dynamics, Phys. Chem. Chem. Phys., 18, 20298, doi: 10.1039/c5cp06491k.
  43. Dostál, J., Mančal, T., Augulis, R., Vácha, F., Pšenčík, J., and Zigmantas, D. (2012) Two-dimensional electronic spectroscopy reveals ultrafast energy diffusion in chlorosomes, J. Am. Chem. Soc., 34, 11611-11617, doi: 10.1021/ja3025627.
  44. Dong, L.-Q., Niu, K., and Cong, S.-L. (2007) Theoretical analysis of internal conversion pathways and vibrational relaxation process of chlorophyll-a in ethyl ether solvent, Chem. Phys. Lett., 440, 150-154, doi: 10.1016/j.cplett.2007.04.021.
  45. Cherepy, N. J., Du, M., Holzwarth, A. R., and Mathies, R. A. (1996) Near-infrared resonance Raman spectra of chlorosomes: probing nuclear coupling in electronic energy transfer, J. Phys. Chem., 100, 4662-4671, doi: 10.1021/jp952992e.
  46. Gülen, D. (2006) Significance of the excitonic intensity borrowing in the J-/H-aggregates of bacteriochlorophylls/chlorophylls, Photosynth. Res., 87, 205-214, doi: 10.1007/s11120-005-8408-2.
  47. Yakovlev, A. G., Taisova, A. S., Shuvalov, V. A., and Fetisova, Z. G. (2018) Estimation of the bacteriochlorophyll c oligomerisation extent in Chloroflexus aurantiacus chlorosomes by very low-frequency vibrations of the pigment molecules: A new approach, Biophys. Chem., 240, 1-8, doi: 10.1016/j.bpc.2018.05.004.
  48. Соколов А. А., Тернов И. М. (1970) Квантовая механика и атомная физика, Просвещение, Москва.

Copyright (c) 2023 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies