Adsorption of acylhydroperoxy-derived phospholipids from biomembranes by blood plasma lipoproteins

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

It has been established that acylhydroperoxy derivatives of phospholipids of oxidized rat liver mitochondria during co-incubation with blood plasma lipoproteins are captured predominantly by LDL particles but not by HDL, which refutes the previously stated hypothesis about the involvement of HDL in the reverse transport of oxidized phospholipids and confirms the possibility of different mechanisms of lipohydroperoxide accumulation in LDL during oxidative stress.

About the authors

V. Z Lankin

National Medical Research Center of Cardiology named after Academician E. I. Chazov, Ministry of Health of the Russian Federation

Email: lankin0309@mail.ru
121552 Moscow, Russia

A. K Tikhaze

National Medical Research Center of Cardiology named after Academician E. I. Chazov, Ministry of Health of the Russian Federation

Email: lankin0309@mail.ru
121552 Moscow, Russia

V. Y Kosach

National Medical Research Center of Cardiology named after Academician E. I. Chazov, Ministry of Health of the Russian Federation

Email: lankin0309@mail.ru
121552 Moscow, Russia

G. G Konovalova

National Medical Research Center of Cardiology named after Academician E. I. Chazov, Ministry of Health of the Russian Federation

Email: lankin0309@mail.ru
121552 Moscow, Russia

References

  1. Tomkin, G. H. (2010) Atherosclerosis, diabetes and lipoproteins, Expert Rev. Cardiovasc. Ther., 8, 1015-1029, doi: 10.1586/erc.10.45.
  2. Arnao, V., Tuttolomondo, A., Daidone, M., and Pinto, A. (2019) Lipoproteins in atherosclerosis process, Curr. Med. Chem., 26, 1525-1543, doi: 10.2174/0929867326666190516103953.
  3. Getz, G. S., and Reardon, C. A. (2020) Atherosclerosis: cell biology and lipoproteins, Curr. Opin. Lipidol., 31, 286-290, doi: 10.1097/MOL.0000000000000704.
  4. Wang, H. H., Garruti, G., Liu, M., Portincasa, P., Wang, D. H. (2017) Cholesterol and lipoprotein metabolism and atherosclerosis: recent advances in reverse cholesterol transport, Ann. Hepatol., 16 (Suppl. 1), s27-s42, doi: 10.5604/01.3001.0010.5495.
  5. Lee, J. M. S., and Choudhury, R. P. (2010) Atherosclerosis regression and high-density lipoproteins, Expert Rev. Cardiovasc. Ther., 8, 1325-1334, doi: 10.1586/erc.10.108.
  6. Brewer, H. B. Jr. (2011) Clinical review: the evolving role of HDL in the treatment of high-risk patients with cardiovascular disease, J. Clin. Endocrinol. Metab., 96, 1246-1257, doi: 10.1210/jc.2010-0163.
  7. Hern�ez, �., Soria-Florido, M. T., Schr�der, H., Ros, E., Pint�, X., Estruch, R., Salas-Salvad�, J., Corella, D., Ar�s, F., Serra-Majem, L., Mart�nez-Gonz�lez, �. M., Fiol, M., Lapetra, J., Elosua, R., Lamuela-Ravent�s, R. M., and Fit�, M. (2019) Role of HDL function and LDL atherogenicity on cardiovascular risk: a comprehensive examination, PLoS One, 14, e0218533, doi: 10.1371/journal.pone.0218533.
  8. Carr, S. S., Hooper, A. J., and Sullivan, D. R. (2019) Non-HDL-cholesterol and apolipoprotein B compared with LDL-cholesterol in atherosclerotic cardiovascular disease risk assessment, Pathology, 51, 148-154, doi: 10.1016/j.pathol.2018.11.006.
  9. Steinberg, D., and Witztum, J. L. (2002) Is the oxidative modifications hypothesis relevant to human atherosclerosis? Do the antioxidant trials conducted to date reflect the hypothesis? Circulation, 105, 2107-2111, doi: 10.1161/01.CIR.0000014762.06201.06.
  10. Parthasarathy, S., Santanam, N., and Auge, N. (1998) Oxidised low-density lipoprotein: a two-faced Janus in coronary artery disease? Biochem. Pharmacol., 56, 279-284, doi: 10.1016/S0006-2952(98)00074-4.
  11. Khatana, C., Saini, N. K., Chakrabarti, S., Saini, V., Sharma, A., Saini, R.V., and Saini, A. K. (2020) Mechanistic insights into the oxidized low-density lipoprotein induced atherosclerosis, Oxid. Med. Cell. Longev., 2020, 1-14, doi: 10.1155/2020/5245308.
  12. Barter, P. J., and Rye, K. A. (1996) High-density lipoproteins and coronary heart disease, Atherosclerosis, 121, 1-12, doi: 10.1016/0021-9150(95)05675-0.
  13. Rubins, H. B., Robins, S. J., Collins, D., Fye, C. L., and Anderson, J. W. (1999) Gemfibrozil for the secondary prevention of coronary heart disease in men with low levels of high-density lipoprotein cholesterol. Veterans affairs high-density lipoprotein cholesterol intervention trial study group, N. Engl. J. Med., 341, 410-418, doi: 10.1056/NEJM199908053410604.
  14. Lankin, V. Z., and Tikhaze, A. K. (2017) Role of oxidative stress in the genesis of atherosclerosis and diabetes mellitus: a personal look back on 50 years of research, Curr. Aging Sci., 10, 18-25, doi: 10.2174/1874609809666160926142640.
  15. Lankin, V. Z., Tikhaze, A. K., and Melkumyants, A. M. (2022) Dicarbonyl-dependent modification of ldl as a key factor of endothelial dysfunction and atherosclerotic vascular wall damage, Antioxidants, 11, 1565, doi: 10.3390/antiox11081565.
  16. Lankin, V. Z., Tikhaze, A. K., and Melkumyants, A. M. (2023) Malondialdehyde as a important key factor of molecular mechanisms of vascular wall damage under heart diseases development, J. Int. Mol. Sci., 24, 128, doi: 10.3390/ijms24010128.
  17. Lankin, V. Z., Tikhaze, A. K., and Kumskova, E. M. (2012) Macrophages actively accumulate malonyldialdehyde-modified but not enzymatically oxidized low density lipoprotein, Mol. Cell Biochem., 365, 93-98, doi: 10.1007/s11010-012-1247-5.
  18. Sun, Y., and Chen, X. (2011) Ox-LDL-induced LOX-1 expression in vascular smooth muscle cells: role of reactive oxygen species, Fundam. Clin. Pharmacol., 25, 572-579, doi: 10.1111/j.1472-8206.2010.00885.x.
  19. Lankin, V. Z., Konovalova, G. G., Tikhaze, A. K., Shumaev, K. B., Kumskova, E. M., and Viigimaa, M. (2014) The initiation of the free radical peroxidation of low-density lipoproteins by glucose and its metabolite methylglyoxal: a common molecular mechanism of vascular wall injure in atherosclerosis and diabetes, Mol. Cell. Biochem., 395, 241-252, doi: 10.1007/s11010-014-2131-2.
  20. Lankin, V. Z., Tikhaze, A. K., and Kosach, V. Ya. (2022) Comparative susceptibility to oxidation of different classes of blood plasma lipoproteins, Biochemistry (Moscow), 87, 1335-1341, doi: 10.1134/S0006297922110128.
  21. Raveh, O., Pinchuk, I., Fainaru, M., and Lichtenberg, D. (2001) Kinetics of lipid peroxidation in mixtures of HDL and LDL, mutual effects, Free Radic. Biol. Med., 31, 1486-1497, doi: 10.1016/s0891-5849(01)00730-4.
  22. Fumiaki, I., and Tomoyuki, I. (2020) High-density lipoprotein (HDL) triglyceride and oxidized HDL: new lipid biomarkers of lipoprotein-related atherosclerotic cardiovascular disease, Antioxidants (Basel), 9, 362, doi: 10.3390/antiox9050362.
  23. Bowry, V. W., Stanley, K. K., and Stocker, R. (1992) High density lipoprotein is the major carrier of lipid hydroperoxides in human blood plasma from fasting donors, Proc. Natl. Acad. Sci. USA, 89, 10316-10320, doi: 10.1073/pnas.89.21.10316.
  24. Klimov, A. N., Nikiforova, A. A., Kuzmin, A. A., Kuznetsov, A. S., and Mackness, M. I. (1998) Is high density lipoprotein a scavenger for oxidized phospholipids of low density lipoprotein? In Advances in Lipoprotein and Atherosclerosis Research, Diagnostics and Treatment, Jena, Gustav Fisher Verlag, pp. 78-82.
  25. Klimov, A. N., Kozhemyakin, L. A., Pleskov, V. M., and Andreeva, L. I. (1987) Antioxidative effect of high density lipoproteins in the oxidation of low density lipoproteins, Bull. Expt. Biol. Med., 103, 550-556, doi: 10.1007/BF00841817.
  26. Klimov, A. N., Gurevich, V. S., Nikiforova, A. A., Shatilina, L. V., Kuzmin, A. A., Plavinsky, S. L., and Teryukova, N. P. (1993) Antioxidative activity of high density lipoproteins in vivo, Atherosclerosis, 100, 13-18, doi: 10.1016/0021-9150(93)90063-z.
  27. Lindgren, F. T. (1975) Preparative ultracentrifugal laboratory procedures and suggestions for lipoprotein analysis, in Analysis of Lipids and Lipoproteins (Perkins, E. G., ed) Champaign: Amer. Oil. Chemists Soc., pp. 204-224.
  28. Vila, A., Korytowski, W., and Girotti, A. W. (2002) Spontaneous transfer of phospholipid and cholesterol hydroperoxides between cell membranes and low-density lipoprotein: assessment of reaction kinetics and prooxidant effects, Biochemistry, 41, 13705-13716, doi: 10.1021/bi026467z.
  29. Mastorikou, M., Mackness, B., Liu, Y., and Mackness, M. (2008) Glycation of paraoxonase-1 inhibits its activity and impairs the ability of high-density lipoprotein to metabolize membrane lipid hydroperoxides, Diabetic Med., 25, 1049-1055, doi: 10.1111/j.1464-5491.2008.02546.x.
  30. Lankin, V. (2003) The enzymatic systems in the regulation of free radical lipid peroxidation, in "Free Radicals, Nitric Oxide, and Inflammation: Molecular, Biochemical, and Clinical Aspects, Amsterdam etc.: IOS Press, 2003, NATO Science Series, 344, pp. 8-23.
  31. Rasmiena, A. A., Barlow, C. K., Ng, T. W., Tull, D., and Meikle, P. J. (2016) High density lipoprotein efficiently accepts surface but not internal oxidised lipids from oxidised low density lipoprotein, Biochim. Biophys. Acta, 1861, 69-77, doi: 10.1016/j.bbalip.2015.11.002.
  32. Lankin, V. Z., Tikhaze, A. K., and Osis, Yu. G. (2002) Modeling the cascade of enzymatic reactions in liposomes including successive free radical peroxidation, reduction, and hydrolysis of phospholipid polyenoic acyls for studying the effect of these processes on the structural-dynamic parameters of the membranes, Biochemistry (Moscow), 67, 566-574, doi: 10.1023/a:1015502429453.
  33. Superko, H. R., Pendyala, L., Williams, P. T., Momary, K. M., King, S. B., and Garrett, B. C. (2012) High-density lipoprotein subclasses and their relationship to cardiovascular disease, J. Clin. Lipidol., 6, 496-523, doi: 10.1016/j.jacl.2012.03.001.
  34. Williams, P. T., and Feldma, D. E. (2011) Prospective study of coronary heart disease vs. HDL2, HDL3, and other lipoproteins in Gofman's Livermore Cohort, Atherosclerosis, 214, 196-202, doi: 10.1016/j.atherosclerosis.2010.10.024.
  35. Honda, H., Hirano, T., Ueda, M., Kojima, S., Mashiba, S., Hayase, Y., Michihata, T., and Shibata, T. (2016) High-density lipoprotein subfractions and their oxidized subfraction particles in patients with chronic kidney disease, J. Atheroscler. Thromb., 23, 81-94, doi: 10.5551/jat.30015.
  36. Mackness, B., and Mackness, M. (2012) The antioxidant properties of high-density lipoproteins in atherosclerosis, Panminerva Med., 54, 83-90.
  37. Mackness, M., and Mackness, B. (2013) Targeting paraoxonase-1 in atherosclerosis, Expert Opin. Ther. Targets., 17, 829-837, doi: 10.1517/14728222.2013.790367.

Copyright (c) 2023 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies