Glucocorticoids orchestrate adult hippocampal plasticity: growing points and translational aspects

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The review analyzes modern concepts regarding the control of various mechanisms of the hippocampal neuroplasticity in adult mammals and humans by glucocorticoids. Glucocorticoid hormones ensure the coordinated functioning of key components and mechanisms of hippocampal plasticity: neurogenesis, glutamatergic neurotransmission, microglia and astrocytes, systems of neurotrophic factors, neuroinflammation, protease activities, metabolic hormones, neurosteroids. Regulatory mechanisms are diverse; along with the direct action of glucocorticoids through their receptors, there are indirect glucocorticoid-dependent effects, as well as numerous interactions between various systems and components. Despite the fact that many connections in this complex regulatory scheme have not yet been established, the study of the factors and mechanisms considered in the review forms growth points in the field of glucocorticoid-regulated processes in the brain and primarily in the hippocampus. These studies are fundamentally important for the translation into the clinic and the potential treatment/prevention of common diseases of the emotional and cognitive spheres and respective comorbid conditions.

About the authors

N. V Gulyaeva

Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences;Research and Clinical Center for Neuropsychiatry of Moscow Healthcare Department

Email: nata_gul@ihna.ru
117485 Moscow, Russia;115419 Moscow, Russia

References

  1. Gulyaeva, N. V. (2017) Molecular mechanisms of neuroplasticity: an expanding universe, Biochemistry (Moscow), 82, 237-242, doi: 10.1134/S0006297917030014.
  2. Xiong, H., and Krugers, H. J. (2015) Tuning hippocampal synapses by stress-hormones: relevance for emotional memory formation, Brain Res., 1621, 114-120, doi: 10.1016/j.brainres.2015.04.010.
  3. Goto, A. (2022) Synaptic plasticity during systems memory consolidation, Neurosci. Res., 183, 1-6, doi: 10.1016/j.neures.2022.05.008.
  4. Toda, T., and Gage, F. H. (2018) Review: adult neurogenesis contributes to hippocampal plasticity, Cell. Tissue Res., 373, 693-709, doi: 10.1007/s00441-017-2735-4.
  5. Deppermann, S., Storchak, H., Fallgatter, A. J., and Ehlis, A. C. (2014) Stress-induced neuroplasticity: (mal)adaptation to adverse life events in patients with PTSD - a critical overview, Neuroscience, 283, 166-177, doi: 10.1016/j.neuroscience.2014.08.037.
  6. Den Boon, F. S., and Sarabdjitsingh, R. A. (2017) Circadian and ultradian patterns of HPA-axis activity in rodents: significance for brain functionality, Best Pract. Res. Clin. Endocrinol. Metab., 31, 445-457, doi: 10.1016/j.beem.2017.09.001.
  7. Gray, J. D., Kogan, J. F., Marrocco, J., and McEwen, B. S. (2017) Genomic and epigenomic mechanisms of glucocorticoids in the brain, Nat. Rev Endocrinol., 13, 661-673, doi: 10.1038/nrendo.2017.97.
  8. Meijer, O. C., Buurstede, J. C., and Schaaf, M. J. M. (2019) Corticosteroid receptors in the brain: transcriptional mechanisms for specificity and context-dependent effects, Cell. Mol. Neurobiol., 39, 539-549, doi: 10.1007/s10571-018-0625-2.
  9. Koning, A. C. A. M., Buurstede, J. C., van Weert, L. T. C. M., and Meijer, O. C. (2019) Glucocorticoid and mineralocorticoid receptors in the brain: a transcriptional perspective, J. Endocr. Soc., 3, 1917-1930, doi: 10.1210/js.2019-00158.
  10. Meijer, O. C., Buurstede, J. C., Viho, E. M. G., Amaya, J. M., Koning, A. C. A. M., van der Meulen, M., van Weert, L. T. C. M., Paul, S. N., Kroon, J., and Koorneef, L. L. (2023) Transcriptional glucocorticoid effects in the brain: Finding the relevant target genes, J. Neuroendocrinol., 35, e13213, doi: 10.1111/jne.13213.
  11. Gulyaeva, N. V. (2021) Glucocorticoid regulation of the glutamatergic synapse: mechanisms of stress-dependent neuroplasticity, J. Evol. Biochem. Phys., 57, 564-576, doi: 10.1134/S0022093021030091.
  12. Fuxe, K., Diaz, R., Cintra, A., Bhatnagar, M., Tinner, B., Gustafsson, J. A., Ogren, S. O., and Agnati, L. F. (1996) On the role of glucocorticoid receptors in brain plasticity, Cell. Mol. Neurobiol., 16, 239-258, doi: 10.1007/BF02088179.
  13. Suri, D., and Vaidya, V. A. (2015) The adaptive and maladaptive continuum of stress responses - a hippocampal perspective, Rev. Neurosci., 26, 415-442, doi: 10.1515/revneuro-2014-0083.
  14. Uchoa, E. T., Aguilera, G., Herman, J. P., Fiedler, J. L., Deak, T., and de Sousa, M. B. (2014) Novel aspects of glucocorticoid actions, J. Neuroendocrinol., 26, 557-572, doi: 10.1111/jne.12157.
  15. Bolshakov, A. P., Tret'yakova, L. V., Kvichansky, A. A., and Gulyaeva, N. V. (2021) Glucocorticoids: Dr. Jekyll and Mr. Hyde of hippocampal neuroinflammation, Biochemistry (Moscow), 86, 156-167, doi: 10.1134/S0006297921020048.
  16. McEwen, B. S. (2002) Sex, stress and the hippocampus: allostasis, allostatic load and the aging process, Neurobiol. Aging, 23, 921-939, doi: 10.1016/s0197-4580(02)00027-1.
  17. Gulyaeva, N. V. (2021) Stress-associated molecular and cellular hippocampal mechanisms common for epilepsy and comorbid depressive disorders, Biochemistry (Moscow), 86, 641-656, doi: 10.1134/S0006297921060031.
  18. Madalena, K. M., and Lerch, J. K. (2017) The effect of glucocorticoid and glucocorticoid receptor interactions on brain, spinal cord, and glial cell plasticity, Neural Plast., 2017, 8640970, doi: 10.1155/2017/8640970.
  19. Weerasinghe-Mudiyanselage, P. D. E., Ang, M. J., Kang, S., Kim, J. S., and Moon, C. (2022) Structural plasticity of the hippocampus in neurodegenerative diseases, Int. J. Mol. Sci., 23, 3349, doi: 10.3390/ijms23063349.
  20. De Kloet, E. R., Sutanto, W., Rots, N., van Haarst, A., van den Berg, D., Oitzl, M., van Eekelen, A., and Voorhuis, D. (1991) Plasticity and function of brain corticosteroid receptors during aging, Acta Endocrinol. (Copenh), 125 Suppl 1, 65-72.
  21. Fares, J., Bou Diab, Z., Nabha, S., and Fares, Y. (2019) Neurogenesis in the adult hippocampus: history, regulation, and prospective roles, Int. J. Neurosci., 129, 598-611, doi: 10.1080/00207454.2018.1545771.
  22. Ko, S. Y., and Frankland, P. W. (2021) Neurogenesis-dependent transformation of hippocampal engrams, Neurosci. Lett., 762, 136176, doi: 10.1016/j.neulet.2021.136176.
  23. Miller, S. M., and Sahay, A. (2019) Functions of adult-born neurons in hippocampal memory interference and indexing, Nat. Neurosci., 22, 1565-1575, doi: 10.1038/s41593-019-0484-2.
  24. Tuncdemir, S. N., Lacefield, C. O., and Hen, R. (2019) Contributions of adult neurogenesis to dentate gyrus network activity and computations, Behav. Brain Res., 374, 112112, doi: 10.1016/j.bbr.2019.112112.
  25. Moreno-Jiménez, E. P., Terreros-Roncal, J., Flor-García, M., Rábano, A., and Llorens-Martín, M. (2021) Evidences for adult hippocampal neurogenesis in humans, J. Neurosci., 41, 2541-2553, doi: 10.1523/JNEUROSCI.0675-20.2020.
  26. Huckleberry, K. A., and Shansky, R. M. (2021) The unique plasticity of hippocampal adult-bornneurons: contributing to a heterogeneous dentate, Hippocampus, 31, 543-556, doi: 10.1002/hipo.23318.
  27. Vilar, M., and Mira, H. (2016) Regulation of neurogenesis by neurotrophins during adulthood: expected and unexpected roles, Front. Neurosci., 10, 26, doi: 10.3389/fnins.2016.00026.
  28. Niklison-Chirou, M. V., Agostini, M., Amelio, I., and Melino, G. (2020) Regulation of adult neurogenesis in mammalian brain, Int. J. Mol. Sci., 21, 4869, doi: 10.3390/ijms21144869.
  29. Jorgensen, C., and Wang, Z. (2020) Hormonal regulation of mammalian adult neurogenesis: a multifaceted mechanism, Biomolecules, 10, 1151, doi: 10.3390/biom10081151.
  30. Surget, A., and Belzung, C. (2022) Adult hippocampal neurogenesis shapes adaptation and improves stress response: a mechanistic and integrative perspective, Mol. Psychiatry, 27, 403-421, doi: 10.1038/s41380-021-01136-8.
  31. Jones, K. L., Zhou, M., and Jhaveri, D. J. (2022) Dissecting the role of adult hippocampal neurogenesis towards resilience versus susceptibility to stress-related mood disorders, NPJ Sci. Learn., 7, 16, doi: 10.1038/s41539-022-00133-y.
  32. Lucassen, P. J., Oomen, C. A., Naninck, E. F., Fitzsimons, C. P., van Dam, A. M., Czeh, B., and Korosi, A. (2015) Regulation of adult neurogenesis and plasticity by (early) stress, glucocorticoids, and inflammation, Cold Spring Harb. Perspect. Biol., 7, a021303, doi: 10.1101/cshperspect.a021303.
  33. Podgorny, O. V., and Gulyaeva, N. V. (2021) Glucocorticoid-mediated mechanisms of hippocampal damage: contribution of subgranular neurogenesis, J. Neurochem., 157, 370-392, doi: 10.1111/jnc.15265.
  34. Vasic, V., and Schmidt, M. H. H. (2017) Resilience and vulnerability to pain and inflammation in the hippocampus, Int. J. Mol. Sci., 18, 739, doi: 10.3390/ijms18040739.
  35. Kirschen, G. W., and Ge, S. (2019) Young at heart: insights into hippocampal neurogenesis inthe aged brain, Behav. Brain. Res., 369, 111934, doi: 10.1016/j.bbr.2019.111934.
  36. Chen, P., Guo, Z., and Zhou, B. (2023) Insight into the role of adult hippocampal neurogenesis in aging and Alzheimer's disease, Ageing Res. Rev., 84, 101828, doi: 10.1016/j.arr.2022.101828.
  37. Teixeira, C. M., Pallas-Bazarra, N., Bolós, M., Terreros-Roncal, J., Ávila, J., and Llorens-Martín, M. (2018) Untold new beginnings: adult hippocampal neurogenesis and Alzheimer's disease, J. Alzheimers Dis., 64 (s1), S497-S505, doi: 10.3233/JAD-179918.
  38. Nicola, R., and Oku, E. (2021) Adult hippocampal neurogenesis: one lactate to rule them all, Neuromol. Med., 23, 445-448, doi: 10.1007/s12017-021-08658-y.
  39. McEwen, B. S. (1996) Gonadal and adrenal steroids regulate neurochemical and structural plasticity of the hippocampus via cellular mechanisms involving NMDA receptors, Cell. Mol. Neurobiol., 16, 103-116, doi: 10.1007/BF02088170.
  40. Mihály, A. (2019) The reactive plasticity of hippocampal ionotropic glutamate receptors in animal epilepsies, Int. J. Mol. Sci., 20, 1030, doi: 10.3390/ijms20051030.
  41. Shipton, O. A., and Paulsen, O. (2013) GluN2A and GluN2B subunit-containing NMDA receptors in hippocampal plasticity, Philos. Trans. R. Soc. Lond. B. Biol. Sci., 369, 20130163, doi: 10.1098/rstb.2013.0163.
  42. Pampaloni, N. P., and Plested, A. J. R. (2022) Slow excitatory synaptic currents generated by AMPA receptors, J. Physiol., 600, 217-232, doi: 10.1113/JP280877.
  43. Nair, J. D., Wilkinson, K. A., Henley, J. M., and Mellor, J. R. (2021) Kainate receptors and synapticplasticity, Neuropharmacology, 196, 108540, doi: 10.1016/j.neuropharm.2021.108540.
  44. Valbuena, S., and Lerma, J. (2021) Kainate receptors, homeostatic gatekeepers of synaptic plasticity, Neuroscience, 456, 17-26, doi: 10.1016/j.neuroscience.2019.11.050.
  45. Griego, E., and Galván, E. J. (2021) Metabotropic glutamate receptors at the aged mossy fiber - CA3 synapse of the hippocampus, Neuroscience, 456, 95-105, doi: 10.1016/j.neuroscience.2019.12.016.
  46. Mukherjee, S., and Manahan-Vaughan, D. (2013) Role of metabotropic glutamate receptors in persistent forms of hippocampal plasticity and learning, Neuropharmacology, 66, 65-81, doi: 10.1016/j.neuropharm.2012.06.005.
  47. Mikasova, L., Xiong, H., Kerkhofs, A., Bouchet, D., Krugers, H. J., and Groc, L. (2017) Stress hormone rapidly tunes synaptic NMDA receptor through membrane dynamics and mineralocorticoid signalling, Sci. Rep., 7, 8053, doi: 10.1038/s41598-017-08695-3.
  48. Gonçalves-Ribeiro, J., Pina, C. C., Sebastião, A. M., and Vaz, S. H. (2019) Glutamate transporters in hippocampal LTD/LTP: not just prevention of excitotoxicity, Front. Cell. Neurosci., 13, 357, doi: 10.3389/fncel.2019.00357.
  49. Taylor, C. J., He, R., and Bartlett, P. F. (2014) The role of the N-methyl-D-aspartate receptor in the proliferation of adult hippocampal neural stem and precursor cells, Sci. China Life Sci., 57, 403-411, doi: 10.1007/s11427-014-4637-y.
  50. Gulyaeva, N. V. (2022) Neuroendocrine control of hyperglutamatergic states in brain pathologies: the effects of glucocorticoids, J. Evol. Biochem. Phys., 58, 1425-1438, doi: 10.1134/S0022093022050131.
  51. Jacobsson, J., Persson, M., Hansson, E., and Rönnbäck, L. (2006) Corticosterone inhibits expression of the microglial glutamate transporter GLT-1 in vitro, Neuroscience, 139, 475-483, doi: 10.1016/j.neuroscience.2005.12.046.
  52. Zschocke, J., Bayatti, N., Clement, A. M., Witan, H., Figiel, M., Engele, J., and Behl, C. (2005) Differential promotion of glutamate transporter expression and function by glucocorticoids in astrocytes from various brain regions, J. Biol. Chem., 280, 34924-34932, doi: 10.1074/jbc.M502581200.
  53. Chu, S. F., Zhang, Z., Zhou, X., He, W. B., Yang, B., Cui, L. Y., He, H. Y., Wang, Z. Z., and Chen, N. H. (2021) Low corticosterone levels attenuate late life depression and enhance glutamatergic neurotransmission in female rats, Acta Pharmacol. Sin., 42, 848-860, doi: 10.1038/s41401-020-00536-w.
  54. Kang, M., Ryu, J., Kim, J. H., Na, H., Zuo, Z., and Do, S. H. (2010) Corticosterone decreases the activity of rat glutamate transporter type 3 expressed in Xenopus oocytes, Steroids, 75, 1113-1118, doi: 10.1016/j.steroids.2010.07.003.
  55. Cox, M. F., Hascup, E. R., Bartke, A., and Hascup, K. N. (2022) Friend or foe? Defining the role of glutamate in aging and Alzheimer's disease, Front. Aging, 3, 929474, doi: 10.3389/fragi.2022.929474.
  56. Gulyaeva, N. V. (2022) Multi-level plasticity-pathology continuum of the nervous system: functional aspects, Neurochem. J., 16, 424-428, doi: 10.1134/S1819712422040092.
  57. Bano, D., and Ankarcrona, M. (2018) Beyond the critical point: an overview of excitotoxicity, calcium overload and the downstream consequences, Neurosci. Lett., 663, 79-85, doi: 10.1016/j.neulet.2017.08.048.
  58. Foster, T. C., Kyritsopoulos, C., and Kumar, A. (2017) Central role for NMDA receptors in redox mediated impairment of synaptic function during aging and Alzheimer's disease, Behav. Brain Res., 322 (Pt B), 223-232, doi: 10.1016/j.bbr.2016.05.012.
  59. Temido-Ferreira, M., Coelho, J. E., Pousinha, P. A., and Lopes, L. V. (2019) Novel players in the aging synapse: impact on cognition, J. Caffeine Adenosine Res., 9, 104-127, doi: 10.1089/caff.2019.0013.
  60. Leal, G., Bramham, C. R., and Duarte, C. B. (2017) BDNF and hippocampal synaptic plasticity, Vitam. Horm., 104, 153-195, doi: 10.1016/bs.vh.2016.10.004.
  61. Gómez-Palacio-Schjetnan, A., and Escobar, M. L. (2013) Neurotrophins and synaptic plasticity, Curr. Top. Behav. Neurosci., 15, 117-136, doi: 10.1007/7854_2012_231.
  62. De Vincenti, A. P., Ríos, A. S., Paratcha, G., and Ledda, F. (2019) Mechanisms that modulate and diversify BDNF functions: implications for hippocampal synaptic plasticity, Front. Cell. Neurosci., 13, 135, doi: 10.3389/fncel.2019.00135.
  63. Zagrebelsky, M., and Korte, M. (2014) Form follows function: BDNF and its involvement in sculpting the function and structure of synapses, Neuropharmacology, 76 Pt C, 628-638, doi: 10.1016/j.neuropharm.2013.05.029.
  64. Von Bohlen Und Halbach, O., and von Bohlen Und Halbach, V. (2018) BDNF effects on dendritic spine morphology and hippocampal function, Cell. Tissue Res., 373, 729-741, doi: 10.1007/s00441-017-2782-x.
  65. Jeanneteau, F., Borie, A., Chao, M. V., and Garabedian, M. J. (2019) Bridging the Gap between brain-derived neurotrophic factor and glucocorticoid effects on brain networks, Neuroendocrinology, 109, 277-284, doi: 10.1159/000496392.
  66. Gray, J. D., Milner, T. A., and McEwen, B. S. (2013) Dynamic plasticity: the role of glucocorticoids, brain-derived neurotrophic factor and other trophic factors, Neuroscience, 239, 214-227, doi: 10.1016/j.neuroscience.2012.08.034.
  67. Numakawa, T., and Odaka, H. (2022) The role of neurotrophin signaling in age-related cognitive decline and cognitive diseases, Int. J. Mol. Sci., 23, 7726, doi: 10.3390/ijms23147726.
  68. Arango-Lievano, M., Lambert, W. M., and Jeanneteau, F. (2015) Molecular biology of glucocorticoid signaling, Adv. Exp. Med. Biol., 872, 33-57, doi: 10.1007/978-1-4939-2895-8_2.
  69. Jeanneteau, F., and Chao, M. V. (2013) Are BDNF and glucocorticoid activities calibrated? Neuroscience, 239, 173-195, doi: 10.1016/j.neuroscience.2012.09.017.
  70. Rothman, S. M., and Mattson, M. P. (2013) Activity-dependent, stress-responsive BDNF signaling and the quest for optimal brain health and resilience throughout the lifespan, Neuroscience, 239, 228-240, doi: 10.1016/j.neuroscience.2012.10.014.
  71. Gulyaeva, N. V. (2017) Interplay between brain BDNF and glutamatergic systems: a brief state of the evidence and association with the pathogenesis of depression, Biochemistry (Moscow), 82, 301-307, doi: 10.1134/S0006297917030087.
  72. Gibon, J., Barker, P. A. (2017) Neurotrophins and proneurotrophins: focus on synaptic activity and plasticity in the brain, Neuroscientist, 23, 587-604, doi: 10.1177/1073858417697037.
  73. Mizui, T., Ishikawa, Y., Kumanogoh, H., and Kojima, M. (2016) Neurobiological actions by three distinct subtypes of brain-derived neurotrophic factor: multi-ligand model of growth factor signaling, Pharmacol. Res., 105, 93-98, doi: 10.1016/j.phrs.2015.12.019.
  74. Kojima, M., and Mizui, T. (2017) BDNF propeptide: a novel modulator of synaptic plasticity, Vitam. Horm., 104, 19-28, doi: 10.1016/bs.vh.2016.11.006.
  75. Costa, R. O., Perestrelo, T., and Almeida, R. D. (2018) PROneurotrophins and CONSequences, Mol. Neurobiol., 55, 2934-2951, doi: 10.1007/s12035-017-0505-7.
  76. Leal, G., Afonso, P. M., Salazar, I. L., and Duarte, C. B. (2015) Regulation of hippocampal synaptic plasticity by BDNF, Brain Res., 1621, 82-101, doi: 10.1016/j.brainres.2014.10.019.
  77. Notaras, M., and van den Buuse, M. (2020) Neurobiology of BDNF in fear memory, sensitivity to stress, and stress-related disorders, Mol. Psychiatry, 25, 2251-2274, doi: 10.1038/s41380-019-0639-2.
  78. Lu, B., Nagappan, G., and Lu, Y. (2014) BDNF and synaptic plasticity, cognitive function, and dysfunction, Handb. Exp. Pharmacol., 220, 223-250, doi: 10.1007/978-3-642-45106-5_9.
  79. Ninan, I. (2014) Synaptic regulation of affective behaviors; role of BDNF, Neuropharmacology, 76 Pt C, 684-695, doi: 10.1016/j.neuropharm.2013.04.011.
  80. Duman, R. S., Deyama, S., and Fogaça, M. V. (2021) Role of BDNF in the pathophysiology and treatment of depression: activity-dependent effects distinguish rapid-acting antidepressants, Eur. J. Neurosci., 53, 126-139, doi: 10.1111/ejn.14630.
  81. Colucci-D'Amato, L., Speranza, L., and Volpicelli, F. (2020) Neurotrophic factor BDNF, physiological functions and therapeutic potential in depression, neurodegeneration and brain cancer, Int. J. Mol. Sci., 21, 7777, doi: 10.3390/ijms21207777.
  82. Numakawa, T., Adachi, N., Richards, M., Chiba, S., and Kunugi, H. (2013) Brain-derived neurotrophic factor and glucocorticoids: reciprocal influence on the central nervous system, Neuroscience, 239, 157-172, doi: 10.1016/j.neuroscience.2012.09.073.
  83. Jones, O. D. (2015) Astrocyte-mediated metaplasticity in the hippocampus: help or hindrance? Neuroscience, 309, 113-124, doi: 10.1016/j.neuroscience.2015.08.035.
  84. Fuchsberger, T., and Paulsen, O. (2022) Modulation of hippocampal plasticity in learning and memory, Curr. Opin. Neurobiol., 75, 102558, doi: 10.1016/j.conb.2022.102558.
  85. Wang, Y., Fu, A. K. Y., and Ip, N. Y. (2022) Instructive roles of astrocytes in hippocampal synaptic plasticity: neuronal activity-dependent regulatory mechanisms, FEBS J., 289, 2202-2218, doi: 10.1111/febs.15878.
  86. Çalışkan, G., Müller, A., and Albrecht, A. (2020) Long-term impact of early-life stress on hippocampal plasticity: spotlight on astrocytes, Int. J. Mol. Sci., 21, 4999, doi: 10.3390/ijms21144999.
  87. Cassé, F., Richetin, K., and Toni, N. (2018) Astrocytes' contribution to adult neurogenesis in physiology and Alzheimer's disease, Front. Cell. Neurosci., 12, 432, doi: 10.3389/fncel.2018.00432.
  88. Delpech, J. C., Madore, C., Nadjar, A., Joffre, C., Wohleb, E. S., and Layé, S. (2015) Microglia in neuronal plasticity: Influence of stress, Neuropharmacology, 96 (Pt A), 19-28, doi: 10.1016/j.neuropharm.2014.12.034.
  89. Guedes, J. R., Ferreira, P. A., Costa, J. M., Cardoso, A. L., and Peça, J. (2022) Microglia-dependent remodeling of neuronal circuits, J. Neurochem., 163, 74-93, doi: 10.1111/jnc.15689.
  90. Rodríguez-Iglesias, N., Sierra, A., and Valero, J. (2019) Rewiring of memory circuits: connecting adult newborn neurons with the help of microglia, Front. Cell. Dev. Biol., 7, 24, doi: 10.3389/fcell.2019.00024.
  91. Turkin, A., Tuchina, O., and Klempin, F. (2021) Microglia function on precursor cells in the adult hippocampus and their responsiveness to serotonin signaling, Front. Cell. Dev. Biol., 9, 665739, doi: 10.3389/fcell.2021.665739.
  92. Sanguino-Gómez, J., Buurstede, J. C., Abiega, O., Fitzsimons, C. P., Lucassen, P. J., Eggen, B. J. L., Lesuis, S. L., Meijer, O. C., and Krugers, H. J. (2022) An emerging role for microglia in stress-effects on memory, Eur. J. Neurosci., 55, 2491-2518, doi: 10.1111/ejn.15188.
  93. Gądek-Michalska, A., Tadeusz, J., Rachwalska, P., and Bugajski, J. (2013) Cytokines, prostaglandins and nitric oxide in the regulation of stress-response systems, Pharmacol. Rep., 65, 1655-1662, doi: 10.1016/s1734-1140(13)71527-5.
  94. Dheen, S. T., Kaur, C., and Ling, E. A. (2007) Microglial activation and its implications in the brain diseases, Curr. Med. Chem., 14, 1189-1197, doi: 10.2174/092986707780597961.
  95. Williamson, L. L., and Bilbo, S. D. (2013) Chemokines and the hippocampus: a new perspective on hippocampal plasticity and vulnerability, Brain. Behav. Immun., 30, 186-194, doi: 10.1016/j.bbi.2013.01.077.
  96. Singhal, G., and Baune, B. T. (2017) Microglia: an interface between the loss of neuroplasticity and depression, Front. Cell. Neurosci., 11, 270, doi: 10.3389/fncel.2017.00270.
  97. Bauer, M. E., and Teixeira, A. L. (2019) Inflammation in psychiatric disorders: what comes first? Ann. N. Y. Acad. Sci., 1437, 57-67, doi: 10.1111/nyas.13712.
  98. Bisht, K., Sharma, K., and Tremblay, M. È. (2018) Chronic stress as a risk factor for Alzheimer's disease: roles of microglia-mediated synaptic remodeling, inflammation, and oxidative stress, Neurobiol. Stress, 9, 9-21, doi: 10.1016/j.ynstr.2018.05.003.
  99. Patterson, S. L. (2015) Immune dysregulation and cognitive vulnerability in the aging brain: Interactions of microglia, IL-1β, BDNF and synaptic plasticity, Neuropharmacology, 96 (Pt A), 11-18, doi: 10.1016/j.neuropharm.2014.12.020.
  100. Salazar, I. L., Caldeira, M. V., Curcio, M., and Duarte, C. B. (2016) The role of proteases in hippocampal synaptic plasticity: putting together small pieces of a complex puzzle, Neurochem. Res., 41, 156-182, doi: 10.1007/s11064-015-1752-5.
  101. Wiera, G., and Mozrzymas, J. W. (2015) Extracellular proteolysis in structural and functional plasticity of mossy fiber synapses in hippocampus, Front. Cell. Neurosci., 9, 427, doi: 10.3389/fncel.2015.00427.
  102. Wójtowicz, T., Brzdąk, P., and Mozrzymas, J. W. (2015) Diverse impact of acute and long-term extracellular proteolytic activity on plasticity of neuronal excitability, Front. Cell. Neurosci., 9, 313, doi: 10.3389/fncel.2015.00313.
  103. Gulyaeva, N. V. (2003) Non-apoptotic functions of caspase-3 in nervous tissue, Biochemistry (Moscow), 68, 1171-1180, doi: 10.1023/b:biry.0000009130.62944.35.
  104. Yakovlev, A. A., and Gulyaeva, N. V. (2011) Pleiotropic functions of brain proteinases: methodological considerations and search for caspase substrates, Biochemistry (Moscow), 76, 1079-1086, doi: 10.1134/S0006297911100014.
  105. Wang, Y., Liu, Y., Bi, X., and Baudry, M. (2020) Calpain-1 and calpain-2 in the brain: new evidence for a critical role of calpain-2 in neuronal death, Cells, 9, 2698, doi: 10.3390/cells9122698.
  106. Orlowski, R. Z. (1999) The role of the ubiquitin-proteasome pathway in apoptosis, Cell Death Differ., 6, 303-313, doi: 10.1038/sj.cdd.4400505.
  107. Laham, B. J., and Gould, E. (2022) How stress influences the dynamic plasticity of the brain's extracellular matrix, Front. Cell. Neurosci., 15, 814287, doi: 10.3389/fncel.2021.814287.
  108. Breviario, S., Senserrich, J., Florensa-Zanuy, E., Garro-Martínez, E., Díaz, Á., Castro, E., Pazos, Á., and Pilar-Cuéllar, F. (2023) Brain matrix metalloproteinase-9 activity is altered in the corticosterone mouse model of depression, Prog. Neuropsychopharmacol. Biol. Psychiatry, 120, 110624, doi: 10.1016/j.pnpbp.2022.110624.
  109. Koyama, Y. (2021) Endothelin ETB receptor-mediated astrocytic activation: pathological roles in brain disorders, Int. J. Mol. Sci., 22, 4333, doi: 10.3390/ijms22094333.
  110. Harkness, K. A., Adamson, P., Sussman, J. D., Davies-Jones, G. A., Greenwood, J., and Woodroofe, M. N. (2000) Dexamethasone regulation of matrix metalloproteinase expression in CNS vascular endothelium, Brain, 123 (Pt 4), 698-709, doi: 10.1093/brain/123.4.698.
  111. Förster, C., Kahles, T., Kietz, S., and Drenckhahn, D. (2007) Dexamethasone induces the expression of metalloproteinase inhibitor TIMP-1 in the murine cerebral vascular endothelial cell line cEND, J. Physiol., 580 (Pt. 3), 937-949, doi: 10.1113/jphysiol.2007.129007.
  112. Hillegass, J. M., Villano, C. M., Cooper, K. R., and White, L. A. (2007) Matrix metalloproteinase-13 is required for zebra fish (Danio rerio) development and is a target for glucocorticoids, Toxicol. Sci., 100, 168-179, doi: 10.1093/toxsci/kfm192.
  113. Wang, Y., Li, M., Tang, J., Song, M., Xu, X., Xiong, J., Li, J., and Bai, Y. (2011) Glucocorticoids facilitate astrocytic amyloid-β peptide deposition by increasing the expression of APP and BACE1 and decreasing the expression of amyloid-β-degrading proteases, Endocrinology, 152, 2704-2715, doi: 10.1210/en.2011-0145.
  114. Hou, Y., Luo, S., Zhang, Y., Jia, Y., Li, H., Xiao, C., Bao, H., and Du, J. (2019) Contrasting effects of acute and long-term corticosterone treatment on amyloid-β, beta-secretase 1 expression, and nuclear factor kappa B nuclear translocation, J. Integr. Neurosci., 18, 393-400, doi: 10.31083/j.jin.2019.04.1172.
  115. Proulx, K., and Seeley, R. J. (2005) The regulation of energy balance by the central nervous system, Psychiatr. Clin. North Am., 28, 25-38, doi: 10.1016/j.psc.2004.09.005.
  116. Maniam, J., and Morris, M. J. (2012) The link between stress and feeding behaviour, Neuropharmacology, 63, 97-110, doi: 10.1016/j.neuropharm.2012.04.017.
  117. Ferrario, C. R., and Reagan, L. P. (2018) Insulin-mediated synaptic plasticity in the CNS: Anatomical, functional and temporal contexts, Neuropharmacology, 136 (Pt B), 182-191, doi: 10.1016/j.neuropharm.2017.12.001.
  118. Grillo, C. A., Woodruff, J. L., Macht, V. A., and Reagan, L. P. (2019) Insulin resistance and hippocampal dysfunction: disentangling peripheral and brain causes from consequences, Exp. Neurol., 318, 71-77, doi: 10.1016/j.expneurol.2019.04.012.
  119. Spinelli, M., Fusco, S., and Grassi, C. (2019) Brain insulin resistance and hippocampal plasticity: mechanisms and biomarkers of cognitive decline, Front. Neurosci., 13, 788, doi: 10.3389/fnins.2019.00788.
  120. Irving, A., and Harvey, J. (2021) Regulation of hippocampal synaptic function by the metabolic hormone leptin: implications for health and disease, Prog. Lipid Res., 82, 101098, doi: 10.1016/j.plipres.2021.101098.
  121. McGregor, G., Malekizadeh, Y., and Harvey, J. (2015) Minireview: food for thought: regulation of synaptic function by metabolic hormones, Mol. Endocrinol., 29, 3-13, doi: 10.1210/me.2014-1328.
  122. Lazarov, O., Minshall, R. D., and Bonini, M. G. (2020) Harnessing neurogenesis in the adult brain-A role in type 2 diabetes mellitus and Alzheimer's disease, Int. Rev. Neurobiol., 155, 235-269, doi: 10.1016/bs.irn.2020.03.020.
  123. Detka, J., Kurek, A., Basta-Kaim, A., Kubera, M., Lasoń, W., and Budziszewska, B. (2013) Neuroendocrine link between stress, depression and diabetes, Pharmacol. Rep., 65, 1591-1600, doi: 10.1016/s1734-1140(13)71520-2.
  124. Doyle, T., Halaris, A., and Rao, M. (2014) Shared neurobiological pathways between type 2 diabetes and depressive symptoms: a review of morphological and neurocognitive findings, Curr. Diab. Rep., 14, 560, doi: 10.1007/s11892-014-0560-7.
  125. Lyra E Silva, N. M., Gonçalves, R. A., Boehnke, S. E., Forny-Germano, L., Munoz, D. P., and De Felice, F. G. (2019) Understanding the link between insulin resistance and Alzheimer's disease: Insights from animal models, Exp. Neurol., 316, 1-11, doi: 10.1016/j.expneurol.2019.03.016.
  126. Yagi, S., and Galea, L. A. M. (2019) Sex differences in hippocampal cognition and neurogenesis, Neuropsychopharmacology, 44, 200-213, doi: 10.1038/s41386-018-0208-4.
  127. Koss, W. A., and Frick, K. M. (2017) Sex differences in hippocampal function, J. Neurosci. Res., 95, 539-562, doi: 10.1002/jnr.23864.
  128. Scharfman, H. E., and MacLusky, N. J. (2017) Sex differences in hippocampal area CA3 pyramidal cells, J. Neurosci. Res., 95, 563-575, doi: 10.1002/jnr.23927.
  129. Tozzi, A., Bellingacci, L., and Pettorossi, V. E. (2020) Rapid estrogenic and androgenic neurosteroids effects in the induction of long-term synaptic changes: implication for early memory formation, Front. Neurosci., 14, 572511, doi: 10.3389/fnins.2020.572511.
  130. Sheppard, P. A. S., Choleris, E., and Galea, L. A. M. (2019) Structural plasticity of the hippocampus in response to estrogens in female rodents, Mol. Brain, 12, 22, doi: 10.1186/s13041-019-0442-7.
  131. Nicholson, K., MacLusky, N. J., and Leranth, C. (2020) Synaptic effects of estrogen, Vitam. Horm., 114, 167-210, doi: 10.1016/bs.vh.2020.06.002.
  132. Murakami, G., Hojo, Y., Kato, A., Komatsuzaki, Y., Horie, S., Soma, M., Kim, J., and Kawato, S. (2018) Rapid nongenomic modulation by neurosteroids of dendritic spines in the hippocampus: androgen, oestrogen and corticosteroid, J. Neuroendocrinol., 30, e12561, doi: 10.1111/jne.12561.
  133. Gall, C. M., Le, A. A., and Lynch, G. (2021) Sex differences in synaptic plasticity underlying learning, J. Neurosci. Res., 101, 764-782, doi: 10.1002/jnr.24844.
  134. Kramár, E. A., Babayan, A. H., Gall, C. M., and Lynch, G. (2013) Estrogen promotes learning-related plasticity by modifying the synaptic cytoskeleton, Neuroscience, 239, 3-16, doi: 10.1016/j.neuroscience.2012.10.038.
  135. Harte-Hargrove, L. C., Maclusky, N. J., and Scharfman, H. E. (2013) Brain-derived neurotrophic factor-estrogen interactions in the hippocampal mossy fiber pathway: implications for normal brain function and disease, Neuroscience, 239, 46-66, doi: 10.1016/j.neuroscience.2012.12.029.
  136. Deakk, T., Quinnk, M., Cidlowskik, J. A., Victoriak, N. C., Murphyk, A. Z., and Sheridank, J. F. (2015) Neuroimmune mechanisms of stress: sex differences, developmental plasticity, and implications for pharmacotherapy of stress-related disease, Stress, 18, 367-380, doi: 10.3109/10253890.2015.1053451.
  137. Kandasamyk, M., Radhakrishnank, R. K., Poornimaik Abirami, G. P., Roshank, S. A., Yesudhask, A., Balamuthuk, K., Prahalathank, C., Shanmugaapriyak, S., Moorthyk, A., Essakk, M. M., and Anusuyadevik, M. (2019) Possible existence of the hypothalamic-pituitary-hippocampal (HPH) axis: a reciprocal relationship between hippocampal specific neuroestradiol synthesis and neuroblastosis in ageing brains with special reference to menopause and neurocognitive disorders, Neurochem. Res., 44, 1781-1795, doi: 10.1007/s11064-019-02833-1.
  138. Resmini, E., Santos, A., and Webb, S. M. (2016) Cortisol excess and the brain, Front. Horm. Res., 46, 74-86, doi: 10.1159/000443868.
  139. Hill, A. R., and Spencer-Segal, J. L. (2021) Glucocorticoids and the brain after critical illness, Endocrinology, 162, bqaa242, doi: 10.1210/endocr/bqaa242.
  140. Druzhkova, T. A., Yakovlev, A. A., Rider, F. K., Zinchuk, M. S., Guekht, A. B., and Gulyaeva, N. V. (2022) Elevated serum cortisol levels in patients with focal epilepsy, depression, and comorbid epilepsy and depression, Int. J. Mol. Sci., 23, 10414, doi: 10.3390/ijms231810414.
  141. Zhanina, M. Y., Druzhkova, T. A., Yakovlev, A. A., Vladimirova, E. E., Freiman, S. V., Eremina, N. N., Guekht, A. B., and Gulyaeva, N. V. (2022) Development of post-stroke cognitive and depressive disturbances: associations with neurohumoral indices, Curr. Issues Mol. Biol., 44, 6290-6305, doi: 10.3390/cimb44120429.
  142. Gulyaeva, N. V., Onufriev, M. V., and Moiseeva, Y. V. (2021) Ischemic stroke, glucocorticoids, and remote hippocampal damage: a translational outlook and implications for modeling, Front. Neurosci., 15, 781964, doi: 10.3389/fnins.2021.781964.
  143. Komoltsev, I. G., and Gulyaeva, N. V. (2022) Brain trauma, glucocorticoids and neuroinflammation: dangerous liaisons for the hippocampus, Biomedicines, 10, 1139, doi: 10.3390/biomedicines10051139.
  144. Komoltsev, I. G., Frankevich, S. O., Shirobokova, N. I., Volkova, A. A., Onufriev, M. V., Moiseeva, J. V., Novikova, M. R., and Gulyaeva, N. V. (2021) Neuroinflammation and neuronal loss in the hippocampus are associated with immediate posttraumatic seizures and corticosterone elevation in rats, Int. J. Mol. Sci., 22, 5883, doi: 10.3390/ijms22115883.
  145. Herbert, J., and Lucassen, P. J. (2016) Depression as a risk factor for Alzheimer's disease: genes, steroids, cytokines and neurogenesis - what do we need to know? Front. Neuroendocrinol., 41, 153-171, doi: 10.1016/j.yfrne.2015.12.001.
  146. Linnemann, C., and Lang, U. E. (2020) Pathways connecting late-life depression and dementia, Front. Pharmacol., 11, 279, doi: 10.3389/fphar.2020.00279.
  147. Gulyaeva, N. V. (2019) Biochemical mechanisms and translational relevance of hippocampal vulnerability to distant focal brain injury: the price of stress response, Biochemistry (Moscow), 84, 1306-1328, doi: 10.1134/S0006297919110087.
  148. McEwen, B. S., and Akil, H. (2020) Revisiting the stress concept: implications for affective disorders, J. Neurosci., 40, 12-21, doi: 10.1523/JNEUROSCI.0733-19.2019.
  149. Xu, W., Yao, X., Zhao, F., Zhao, H., Cheng, Z., Yang, W., Cui, R., Xu, S., and Li, B. (2020) Changes in hippocampal plasticity in depression and therapeutic approaches influencing these changes, Neural Plast., 2020, 8861903, doi: 10.1155/2020/8861903.
  150. Sotiropoulos, I., Silva, J. M., Gomes, P., Sousa, N., and Almeida, O. F. X. (2019) Stress and the etiopathogenesis of Alzheimer's disease and depression, Adv. Exp. Med. Biol., 1184, 241-257, doi: 10.1007/978-981-32-9358-8_20.
  151. Meyer, M., Lara, A., Hunt, H., Belanoff, J., de Kloet, E. R., Gonzalez Deniselle, M. C., and De Nicola, A. F. (2018) The selective glucocorticoid receptor modulator cort 113176 reduces neurodegeneration and neuroinflammation in wobbler mice spinal cord, Neuroscience, 384, 384-396, doi: 10.1016/j.neuroscience.2018.05.042.
  152. Dalm, S., Karssen, A. M., Meijer, O. C., Belanoff, J. K., and de Kloet, E. R. (2019) Resetting the stress system with a mifepristone challenge, Cell. Mol. Neurobiol., 39, 503-522, doi: 10.1007/s10571-018-0614-5.
  153. De Kloet, E. R., de Kloet, S. F., de Kloet, C. S., and de Kloet, A. D. (2019) Top-down and bottom-up control of stress-coping, J. Neuroendocrinol., 31, e12675, doi: 10.1111/jne.12675.
  154. De Nicola, A. F., Meyer, M., Guennoun, R., Schumacher, M., Hunt, H., Belanoff, J., de Kloet, E. R., and Gonzalez Deniselle, M. C. (2020) Insights into the therapeutic potential of glucocorticoid receptor modulators for neurodegenerative diseases, Int. J. Mol. Sci., 21, 2137, doi: 10.3390/ijms21062137.
  155. Meyer, M., Kruse, M. S., Garay, L., Lima, A., Roig, P., Hunt, H., Belanoff, J., de Kloet, E. R., Deniselle, M. C. G., and De Nicola, A. F. (2020) Long-term effects of the glucocorticoid receptor modulator CORT113176 in murine motoneuron degeneration, Brain Res., 1727, 146551, doi: 10.1016/j.brainres.2019.146551.31726042.
  156. De Kloet, E. R., and Joëls, M. (2023) The cortisol switch between vulnerability and resilience, Mol. Psychiatry, doi: 10.1038/s41380-022-01934-8.
  157. Daskalakis, N. P., Meijer, O. C., and de Kloet, E. R. (2022) Mineralocorticoid receptor and glucocorticoid receptor work alone and together in cell-type-specific manner: implications for resilience prediction and targeted therapy, Neurobiol. Stress, 18, 100455, doi: 10.1016/j.ynstr.2022.100455.

Copyright (c) 2023 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies