Curative potential of high-value phytochemicals on COVID-19 infection

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Medicinal plants and their therapeutically promising chemical compounds belonging to the valued category of ‘traditional medicine’ are potential remedies for various health problems. Due to their complex structure and enormous health benefits, the high-value plant-derived metabolites collectively termed as ‘phytochemicals’ have emerged as a crucial source for novel drug discovery and development. Indeed, several medicinal plants from diverse habitats are still in the ‘underexplored’ category in terms of their bioactive principles and therapeutic potential. COVID-19, infection caused by the SARS-CoV-2, first reported in November 2019, resulted in the alarming number of deaths (6.61 million), was further declared ‘pandemic’, and spread of the disease has continued till today. Even though the well-established scientific world has successfully implemented vaccines against COVID-19 within the short period of time, the focus on alternative remedies for long-term symptom management and immunity boosting have been increased. At this point, interventions based on traditional medicine, which include medicinal plants, their bioactive metabolites, extracts and formulations, attracted a lot of attention as alternative solutions for COVID-19 management. Here, we reviewed the recent research findings related to the effectiveness of phytochemicals in treatment or prevention of COVID-19. Furthermore, the literature regarding the mechanisms behind the preventive or therapeutic effects of these natural phytochemicals were also discussed. In conclusion, we suggest that the active plant-derived components could be used alone or in combination as an alternative solution for the management of SARS-CoV-2 infection. Moreover, the structure of these natural productomes may lead to the emergence of new prophylactic strategies for SARS-CoV-2-caused infection.

About the authors

D. Sruthi

Indian Institute of Science

Email: sruthi.skylarks@gmail.com
560012 Bengaluru, Karnataka, India

M. Dhanalakshmi

Bharathiar University

Email: sruthi.skylarks@gmail.com
Coimbatore, Tamil Nadu, India

H. Ch.Y Rao

Indian Institute of Science

Email: sruthi.skylarks@gmail.com
560012 Bengaluru, Karnataka, India

Sh. P Deepanraj

Tata Institute for Genetics and Society

Email: sruthi.skylarks@gmail.com
560065 Bengaluru, Karnataka, India

C. Jayabaskaran

Indian Institute of Science

Email: sruthi.skylarks@gmail.com
560012 Bengaluru, Karnataka, India

References

  1. Jeon, S. R., Kang, J. W., Ang, L., Lee, H. W., Lee, M. S., Kim, T. H. (2022) Complementary and alternative medicine (CAM) interventions for COVID-19: An overview of systematic reviews, Integr. Med. Res., 11, 1-9, doi: 10.1016/j.imr.2022.100842.
  2. Oladele, J. O., Ajayi, E. I., Oyeleke, O. M., Oladele, O. T., Olowookere, B. D., Adeniyi, B. M., Oyewole, O. I., and Oladiji, A. T. (2020) A systematic review on COVID-19 pandemic with special emphasis on curative potentials of Nigeria based medicinal plants, Heliyon, 6, e04897, doi: 10.1016/j.heliyon.2020.e04897.
  3. Ahmad, S., Zahiruddin, S., Parveen, B., Basist, P., Parveen, A., Gaurav, Parveen, R., and Ahmad, M. (2021) Indian medicinal plants and formulations and their potential against COVID-19 - preclinical and clinical research, Front. Pharmacol., 11, 1-34, doi: 10.3389/fphar.2020.578970.
  4. Hong-Zhi, D. U., Hou, X. Y., Miao, Y. H., Huang, B. S., and Liu, D. H. (2020) Traditional Chinese Medicine: an effective treatment for 2019 novel coronavirus pneumonia (NCP), Chin. J. Nat. Med., 18, 226-230, doi: 10.1016/S1875-5364(20)30022-4.
  5. Xu, K., Cai, H., Shen, Y., Ni, Q., Chen, Y., Hu, S., Li, J., Wang, H., Yu, L., Huang, H., Qiu, Y., Wei, G., Fang, Q., Zhou, J., Sheng, J., Liang, T., and Li, L. (2020) Management of coronavirus disease-19 (COVID-19): The Zhejiang Experience, J. Zhejiang. Univ. Med. Sci., 49, 147-157, doi: 10.3785/j.issn.1008-9292.2020.02.02.
  6. Lu, H. (2020) Drug treatment options for the 2019-new coronavirus (2019-nCoV), Biosci. Trends, 14, 69-71, doi: 10.5582/bst.2020.01020.
  7. Jin, Y. H., Cai, L., Cheng, Z. S., Cheng, H., Deng, T., Fan, Y. P., et al. (2020) A rapid advice guideline for the diagnosis and treatment of 2019 novel coronavirus (19-nCoV) infected pneumonia (standard version), Mil. Med. Res., 7, 1-23, doi: 10.1186/s40779-020-0233-6.
  8. Sruthi, D., and Jayabaskaran, C. (2021) in Biotechnological Approaches to Enhance Plant Secondary Metabolites: Recent Trends and Future Prospects (Shahnawaz, M., ed.) CRC Press, Taylor & Francis, FL., pp. 1-17.
  9. Ryu, Y. B., Jeong, H. J., Kim, J. H., Kim, Y. M., Park, J. Y., Kim, D., et al. (2010) Biflavonoids from Torreya nucifera displaying SARS-CoV 3CLpro inhibition, Bioorg. Med. Chem., 18, 7940-7947, doi: 10.1016/j.bmc.2010.09.035.
  10. Gyebi, G. A., Ogunro, O. B., Adegunloye, A. P., Ogunyemi, O. M., and Afolabi, S. O. (2021) Potential inhibitors of coronavirus 3-chymotrypsin-like protease (3CLpro): an in silico screening of alkaloids and terpenoids from African medicinal plants, J. Biomol. Struct. Dyn., 39, 3396-3408, doi: 10.1080/07391102.2020.1764868.
  11. Huang, J., Tao, G., Liu, J., Cai, J., Huang, Z., and Chen, J. X. (2020) Current prevention of COVID-19: Natural products and herbal medicine, Front. Pharmacol., 11, 1-18, doi: 10.3389/fphar.2020.588508.
  12. Benarba, B., and Pandiella, A. (2020) Medicinal plants as sources of active molecules against COVID-19, Front. Pharmacol., 11, 1-16, doi: 10.3389/fphar.2020.01189.
  13. Park, J. Y., Kim, J. H., Kim, Y. M., Jeong, H. J., Kim, D. W., Park, K. H., et al. (2012) Tanshinones as selective and slow-binding inhibitors for SARS-CoV cysteine proteases, Bioorg. Med. Chem., 20, 5928-5935, doi: 10.1016/j.bmc.2012.07.038.
  14. Wu, C. Y., Jan, J. T., Ma, S. H., Kuo, C. J., Juan, H. F., Cheng, Y. S. E., et al. (2004) Small molecules targeting severe acute respiratory syndrome human coronavirus, Proc. Natl. Acad. Sci. USA, 101, 10012-10017, doi: 10.1073/pnas.0403596101.
  15. Kim, J. W., Ha, T. K. Q., Cho, H., Kim, E., Shim, S. H., and Yang, J. L. (2017) Antiviral escin derivatives from the seeds of Aesculus turbinata Blume (Japanese horse chestnut), Bioorg. Med. Chem. Lett., 27, 3019-3025, doi: 10.1016/j.bmcl.2017.05.022.
  16. Kumar, V., Dhanjal, J. K., Bhargava, P., Kaul, A., Wang, J., Zhang, H., et al. (2022) Withanone and Withaferin-A are predicted to interact with transmembrane protease serine 2 (TMPRSS2) and block entry of SARS-CoV-2 into cells, J. Biomol. Struct. Dyn., 40, 1-13, doi: 10.1080/07391102.2020.1775704.
  17. Weber, C., and Opatz, T. (2019) Bisbenzylisoquinoline Alkaloids, in The Alkaloids: Chemistry and Biology (Knölker, H. J., ed.) Academic Press Inc., pp. 1-249.
  18. Ruan, Z., Liu, C., Guo, Y., He, Z., Huang, X., Jia, X., et al. (2020) SARS-CoV-2 and SARS-CoV: virtual screening of potential inhibitors targeting RNA-dependent RNA polymerase activity (NSP12), J. Med. Virol., 93, 389-400, doi: 10.1002/jmv.26222.
  19. Gao, Y., Yan, L., Huang, Y., Liu, F., Zhao, Y., Cao, L., et al. (2020) Structure of the RNA-dependent RNA polymerase from COVID-19 virus, Science, 368, 779-782, doi: 10.1126/science.abb7498.
  20. El-Aziz, N. M. A., Shehata, M. G., Awad, O. M. E., and El-Sohaimy, S. A. (2020) Inhibition of COVID-19 RNA-dependent RNA polymerase by natural bioactive compounds: molecular docking analysis, Research Square, doi: 10.21203/RS.3.RS-25850/V1.
  21. Chen, C. N., Lin, C. P. C., Huang, K. K., Chen, W. C., Hsieh, H. P., Liang, P. H., et al. (2005) Inhibition of SARS-CoV 3C-like protease activity by theaflavin-3,3′-digallate (TF3), Evid. Based. Complement. Altern. Med., 2, 209-215, doi: 10.1093/ecam/neh081.
  22. Kim, D. W., Seo, K. H., Curtis-Long, M. J., Oh, K. Y., Oh, J. W., Cho, J. K., et al. (2014) Phenolic phytochemical displaying SARS-CoV papain-like protease inhibition from the seeds of Psoralea corylifolia, J. Enzyme. Inhib. Med. Chem., 29, 59-63, doi: 10.3109/14756366.2012.753591.
  23. Cho, J. K., Curtis-Long, M. J., Lee, K. H., Kim, D. W., Ryu, H. W., Yuk, H. J., et al. (2013) Geranylated flavonoids displaying SARS-CoV papain-like protease inhibition from the fruits of Paulownia tomentosa, Bioorg. Med. Chem., 21, 3051-3057, doi: 10.1016/j.bmc.2013.03.027.
  24. Nguyen, T. T. H., Woo, H. J., Kang, H. K., Nguyen, V. D., Kim, Y. M., Kim, D. W., et al. (2012) Flavonoid-mediated inhibition of SARS coronavirus 3C-like protease expressed in Pichia pastoris, Biotechnol. Lett., 34, 831-838, doi: 10.1007/s10529-011-0845-8.
  25. Jo, S., Kim, S., Shin, D. H., and Kim, M. S. (2020) Inhibition of SARS-CoV 3CL protease by flavonoids, J. Enzyme. Inhib. Med. Chem., 35, 145-151, doi: 10.1080/14756366.2019.1690480.
  26. Yu, M. S., Lee, J., Lee, J. M., Kim, Y., Chin, Y. W., Jee, J. G., et al. (2012) Identification of myricetin and scutellarein as novel chemical inhibitors of the SARS coronavirus helicase, nsP13, Bioorg. Med. Chem. Lett., 22, 4049-4054, doi: 10.1016/j.bmcl.2012.04.081.
  27. Park, J. Y., Ko, J. A., Kim, D. W., Kim, Y. M., Kwon, H. J., Jeong, H. J., et al. (2016) Chalcones isolated from Angelica keiskei inhibit cysteine proteases of SARS-CoV, J. Enzyme. Inhib. Med. Chem., 31, 23-30, doi: 10.3109/14756366.2014.1003215.
  28. Park, J. Y., Jeong, H. J., Kim, J. H., Kim, Y. M., Park, S. J., Kim, D., et al. (2012) Diarylheptanoids from Alnus japonica inhibit papain-like protease of severe acute respiratory syndrome coronavirus, Biol. Pharm. Bull., 35, 2036-2042, doi: 10.1248/bpb.b12-00623.
  29. Park, J. Y., Kim, J. H., Kwon, J. M., Kwon, H. J., Jeong, H. J., Kim, Y. M., et al. (2013) Dieckol, a SARS-CoV 3CL(pro) inhibitor, isolated from the edible brown algae Ecklonia cava, Bioorg. Med. Chem., 21, 3730-3737.
  30. Elfiky, A. A. (2021) Natural products may interfere with SARS-CoV-2 attachment to the host cell, J. Biomol. Struct. Dyn., 39, 3194-3203, doi: 10.1080/07391102.2020.1761881.
  31. Song, Y. H., Kim, D. W., Curtis-Long, M. J., Yuk, H. J., Wang, Y., Zhuang, N., et al. (2014) Papain-like protease (PLpro) inhibitory effects of cinnamic amides from Tribulus terrestris fruits, Biol. Pharm. Bull., 37, 1021-1028, doi: 10.1248/bpb.b14-00026.

Copyright (c) 2023 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies