Кумулятивное влияние параоксона и лептина на процесс окислительного повреждения в тканях крыс: профилактическая и терапевтическая роль N-ацетилцистеина

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Воздействие на живой организм параоксона (POX) и лептина (LP) может привести к возникновению дисбаланса между оксидантами и антиоксидантами. Это можно предотвратить за счет введения экзогенных антиоксидантов, таких как N-ацетилцистеин (NAC). Целью настоящего исследования являлась оценка синергического или аддитивного влияния на антиоксидантный статус введения экзогенного LP и POX, а также профилактической и терапевтической роли NAC в различных тканях крыс. Пятьдесят четыре крысы-самца линии Wistar были разделены на девять групп, подлежащих обработке различными химическими соединениями: 1) контроль (без обработки); 2) РОХ (0,7 мг/кг); 3) NAC (160 мг/кг); 4) LP (1 мг/кг); 5) РОХ + LP; 6) NAC-POX; 7) POX-NAC; 8) NAC-POX + LP; 9) POX + LP-NAC. В последних пяти группах различался только порядок введения соединений. Через 24 ч после воздействия у крыс брали и исследовали плазму крови и ткани. Результаты показали, что введение РОХ + LP достоверно повышало биохимические показатели плазмы и активность антиоксидантных ферментов, снижало содержание восстановленного глутатиона (GSH) в печени, эритроцитах, головном мозге, почках и сердце. Кроме того, в этой группе в печени, эритроцитах и головном мозге была снижена активность холинэстеразы и параоксоназы 1, в то время как уровень малонового диальдегида - повышен. Однако введение NAC исправляло индуцированные изменения, хотя и не полностью. Полученные нами результаты позволяют предположить, что введение POX или LP использует систему окислительного стресса как таковую; однако их комбинация не приводила к значительно большему эффекту. Более того, как профилактическое, так и терапевтическое воздействие NAC на крыс поддерживало антиоксидантную защиту от окислительного повреждения в тканях, скорее всего, благодаря способности удалять свободные радикалы и сохранять внутриклеточный уровень GSH. Таким образом, можно предположить, что NAC оказывает именно защитное действие против токсичности POX и/или LP.

Об авторах

S. Khazaie

Baqiyatallah University of Medical Sciences

Email: m.jafari145@gmail.com
Tehran, Iran

M. Jafari

Baqiyatallah University of Medical Sciences

Email: m.jafari145@gmail.com
Tehran, Iran

M. Golamloo

Baqiyatallah University of Medical Sciences

Email: m.jafari145@gmail.com
Tehran, Iran

A. Asgari

Baqiyatallah University of Medical Sciences

Email: m.jafari145@gmail.com
Tehran, Iran

J. Heydari

Baqiyatallah University of Medical Sciences

Email: m.jafari145@gmail.com
Tehran, Iran

M. Salehi

Baqiyatallah University of Medical Sciences

Email: m.jafari145@gmail.com
Tehran, Iran

F. Salem

Baqiyatallah University of Medical Sciences

Email: m.jafari145@gmail.com
Tehran, Iran

Список литературы

  1. Jalili, C., Farzaei, M. H., Roshankhah, S., and Salahshoor, M. R. (2019) Resveratrol attenuates malathion-induced liver damage by reducing oxidative stress, J. Lab. Physicians, 11, 212-219, doi: 10.4103/JLP.JLP_43_19.
  2. Imam, A., Sulaiman, N. A., Oyewole, A. L., Chengetanai, S., Williams, V., Ajibola, M. I., Folarin, R. O., Muhammad, A. U. S., Shittu, S.-T. T., and Ajao, M. S. (2018) Chlorpyrifos-and dichlorvos-induced oxidative and neurogenic damage elicits neuro-cognitive deficits and increases anxiety-like behavior in wild-type rats, Toxics, 6, 71, doi: 10.3390/toxics6040071.
  3. Zare, Z., Tehrani, M., Zarbakhsh, S., Farzadmanesh, H., Shafia, S., Abedinzade, M., Ghanaat, A., and Mohammadi, M. (2020) Effects of paraoxon exposure on expression of apoptosis-related genes, neuronal survival, and astrocyte activation in rat prefrontal cortex, Neurotox. Res., 37, 356-365, doi: 10.1007/s12640-019-00106-x.
  4. Faro, L., Costas-Ferreira, C., Pantoja, A., and Durán, R. (2022) Protective effects of antioxidants on striatal dopamine release induced by organophosphorus pesticides, Pest. Biochem. Physiol., 182, 105035, doi: 10.1016/j.pestbp.2022.105035.
  5. Alimohammadi, M., Soodi, M., and Gholami Fesharaki, M. (2019) Organophosphate pesticide exposure reduced serum paraoxonase 1 (PON1) activity which correlated with oxidative stress in pesticide factory workers, Arch. Hyg. Sci., 8, 88-97, doi: 10.29252/ArchHygSci.8.2.88.
  6. Jafari, M., Salehi, M., Asgari, A., Ahmadi, S., Abbasnezhad, M., Hajihoosani, R., and Hajigholamali, M. (2012) Effects of paraoxon on serum biochemical parameters and oxidative stress induction in various tissues of Wistar and Norway rats, Environ. Toxicol. Pharmacol., 34, 876-887, doi: 10.1016/j.etap.2012.08.011.
  7. Charron, M. J., Williams, L., Seki, Y., Du, X. Q., Chaurasia, B., Saghatelian, A., Summers, S. A., Katz, E. B., Vuguin, P. M., and Reznik, S. E. (2020) Antioxidant effects of N-acetylcysteine prevent programmed metabolic disease in mice, Diabetes, 69, 1650-1661, doi: 10.2337/db19-1129.
  8. Lasram, M. M., Bini Douib, I., Bouzid, K., Annabi, A., Naziha, E. E., Dhouib, H., El Fazaa, S., Abdelmoula, J., and Gharbi, N. (2014) Effects of N-acetyl-L-cysteine, in vivo, against pathological changes induced by malathion, Toxicol. Mech. Methods, 24, 294-306, doi: 10.3109/15376516.2014.886003.
  9. Yurumez, Y., Cemek, M., Yavuz, Y., Birdane, Y. O., and Buyukokuroglu, M. E. (2007) Beneficial effect of N-acetylcysteine against organophosphate toxicity in mice, Biol. Pharm. Bull., 30, 490-494, doi: 10.1248/bpb.30.490.
  10. Tahmasebi, K., Jafari, M., Izadi, F., Asgari, A., Bahadoran, H., Heydari, J., and Khazaie, S. (2020) Evaluation of prophylactic and therapeutic roles of N-acetylcysteine on biochemical and oxidative changes induced by acute poisoning of diazinon in various rat tissues, Curr. Chem. Biol., 14, 100-116, doi: 10.2174/2212796814999200818094328.
  11. Shunmoogam, N., Naidoo, P., and Chilton, R. (2018) Paraoxonase (PON)-1: a brief overview on genetics, structure, polymorphisms and clinical relevance, Vasc. Health Risk Manag., 14, 137-143, doi: 10.2147/VHRM.S165173.
  12. Blanca, A. J., Ruiz-Armenta, M. V., Zambrano, S., Salsoso, R., Miguel-Carrasco, J. L., Fortuño, A., Revilla, E., Mate, A., and Vázquez, C. M. (2016) Leptin induces oxidative stress through activation of nadph oxidase in renal tubular cells: antioxidant effect of L-Carnitine, J. Cell Biochem., 117, 2281-2288, doi: 10.1002/jcb.25526.
  13. Berry, A., Bellisario, V., Panetta, P., Raggi, C., Magnifico, M. C., Arese, M., and Cirulli, F. (2018) Administration of the antioxidant N-acetyl-cysteine in pregnant mice has long-term positive effects on metabolic and behavioral endpoints of male and female offspring prenatally exposed to a high-fat diet, Front. Behav. Neurosci., 12, 48, doi: 10.3389/fnbeh.2018.00048.
  14. Obradovic, M., Sudar-Milovanovic, E., Soskic, S., Essack, M., Arya, S., Stewart, A. J., Gojobori, T., and Isenovic, E. R. (2021) Leptin and obesity: role and clinical implication, Front. Endocrinol., 12, 585887, doi: 10.3389/fendo.2021.585887.
  15. Bełtowski, J., Wojcicka, G., and Jamroz, A. (2003) Leptin decreases plasma paraoxonase 1 (PON1) activity and induces oxidative stress: the possible novel mechanism for proatherogenic effect of chronic hyperleptinemia, Atherosclerosis, 170, 21-29, doi: 10.1016/S0021-9150(03)00236-3.
  16. Khazaie, S., Jafari, M., Heydari, J., Asgari, A., Tahmasebi, K., Salehi, M., and Abedini, M. S. (2019) Modulatory effects of vitamin C on biochemical and oxidative changes induced by acute exposure to diazinon in rat various tissues: prophylactic and therapeutic roles, J. Anim. Physiol. Anim. Nutr., 103, 1619-1628, doi: 10.1111/jpn.13144.
  17. Fruhbeck, G., and Gómez-Ambrosi, J. (2001) Modulation of the leptin-induced white adipose tissue lipolysis by nitric oxide, Cell Signal., 13, 827-833, doi: 10.1016/S0898-6568(01)00211-X.
  18. Bełtowski, J., Jamroz-Wisniewska, A., Borkowska, E., and Wojcicka, G. (2005) Differential effect of antioxidant treatment on plasma and tissue paraoxonase activity in hyperleptinemic rats, Pharmacol. Res., 51, 523-532, doi: 10.1016/j.phrs.2005.01.007.
  19. Bradford, M. M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding, Anal. Biochem., 72, 248-254, doi: 10.1016/0003-2697(76)90527-3.
  20. Van Kampen, E., and Zijlstra, W. G. (1966) Determination of Hemoglobin and Its Derivatives, In Adv. Clin. Chem., pp. 141-187, Elsevier, doi: 10.1016/S0065-2423(08)60414-X.
  21. Friedewald, W. T., Levy, R. I., and Fredrickson, D. S. (1972) Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge, Clin. Chem., 18, 499-502, doi: 10.1093/clinchem/18.6.499.
  22. Gudarzi, S., Jafari, M., Pirzad Jahromi, G., Eshrati, R., Asadollahi, M., and Nikdokht, P. (2020) Evaluation of modulatory effects of saffron (Crocus sativus L.) aqueous extract on oxidative stress in ischemic stroke patients: a randomized clinical trial, Nutr. Neurosci., 25, 1137-1146, doi: 10.1080/1028415X.2020.1840118.
  23. Yamagishi, S.-I., Edelstein, D., Du, X.-L., Kaneda, Y., Guzmán, M., and Brownlee, M. (2001) Leptin induces mitochondrial superoxide production and monocyte chemoattractant protein-1 expression in aortic endothelial cells by increasing fatty acid oxidation via protein kinase A, J. Biol. Chem., 276, 25096-25100, doi: 10.1074/jbc.M007383200.
  24. Balasubramaniyan, V., Sailaja, J. K., and Nalini, N. (2003) Role of leptin on alcohol-induced oxidative stress in Swiss mice, Pharmacol. Res., 47, 211-216, doi: 10.1016/S1043-6618(02)00317-1.
  25. Mousavi, S. R., Jafari, M., Rezaei, S., Agha-Alinejad, H., and Sobhani, V. (2020) Evaluation of the effects of different intensities of forced running wheel exercise on oxidative stress biomarkers in muscle, liver and serum of untrained rats, Lab. Animal., 49, 119-125, doi: 10.1038/s41684-020-0503-7.
  26. Eshrati, R., Jafari, M., Gudarzi, S., Nazari, A., Samizadeh, E., and Ghafourian Hesami, M. (2021) Comparison of ameliorative effects of Taraxacum syriacum and N-acetylcysteine against acetaminophen-induced oxidative stress in rat liver and kidney, J. Biochem., 169, 337-350, doi: 10.1093/jb/mvaa107.
  27. Isik, I., and Celik, I. (2008) Acute effects of methyl parathion and diazinon as inducers for oxidative stress on certain biomarkers in various tissues of rainbowtrout (Oncorhynchus mykiss), Pestic. Biochem. Physiol., 92, 38-42, doi: 10.1016/j.pestbp.2008.06.001.
  28. Abdou, H., and El Mazoudy, R. (2010) Oxidative damage, hyperlipidemia and histological alterations of cardiac and skeletal muscles induced by different doses of diazinon in female rats, J. Hazard Mater., 182, 273-278, doi: 10.1016/j.jhazmat.2010.06.026.
  29. Astiz, M., de Alaniz, M. J., and Marra, C. A. (2009) Antioxidant defense system in rats simultaneously intoxicated with agrochemicals, Environ. Toxicol. Pharmacol., 28, 465-473, doi: 10.1016/j.etap.2009.07.009.
  30. Varo, I., Navarro, J., Nunes, B., and Guilhermino, L. (2007) Effects of dichlorvos aquaculture treatments on selected biomarkers of gilthead sea bream (Sparus aurata L.) fingerlings, Aquaculture, 266, 87-96, doi: 10.1016/j.aquaculture.2007.02.045.
  31. Jafari, M., Salehi, M., Ahmadi, S., Asgari, A., Abasnezhad, M., and Hajigholamali, M. (2012) The role of oxidative stress in diazinon-induced tissues toxicity in Wistar and Norway rats, Toxicol. Mech. Methods, 22, 638-647, doi: 10.3109/15376516.2012.716090.
  32. Nurulain, S. M., Ojha, S., Tekes, K., Shafiullah, M., Kalasz, H., and Adem, A. (2015) Efficacy of N-acetylcysteine, glutathione, and ascorbic acid in acute toxicity of paraoxon to Wistar rats: survival study, Oxid. Med. Cell Longev., 2015, 329306, doi: 10.1155/2015/329306.
  33. Gholamloo, M., and Jafari, M. (2017) Study of effect of N-acetyl cysteine on reduction of paraoxon-induced oxidative stress in brain and heart tissues [in Persian], Health Res., 2, 77-85.
  34. Salehi, M., Jafari, M., Asgari, A., and Rasouli, J. (2016) The impact of N-acetyl cysteine on paraoxon-induced oxidative stress in rat liver and kidney [in Persian], J. Fasa Univ. Med. Sci., 6, 35-43.
  35. Kim, J.-R., Ryu, H.-H., Chung, H. J., Lee, J. H., Kim, S. W., Kwun, W. H., Baek, S.-H., and Kim, J. H. (2006) Association of anti-obesity activity of N-acetylcysteine with metallothionein-II down-regulation, Exp. Mol. Med., 38, 162-172, doi: 10.1038/emm.2006.20.
  36. Aviram, M., Rosenblat, M., Billecke, S., Erogul, J., Sorenson, R., Bisgaier, C. L., Newton, R. S., and La Du, B. (1999) Human serum paraoxonase (PON 1) is inactivated by oxidized low density lipoprotein and preserved by antioxidants, Free Radic Biol. Med., 26, 892-904, doi: 10.1016/S0891-5849(98)00272-X.
  37. Jarvik, G. P., Tsai, N. T., McKinstry, L. A., Wani, R., Brophy, V. H., Richter, R. J., Schellenberg, G. D., Heagerty, P. J., Hatsukami, T. S., and Furlong, C. E. (2002) Vitamin C and E intake is associated with increased paraoxonase activity, Arterioscler. Thromb. Vasc. Biol., 22, 1329-1333, doi: 10.1161/01.ATV.0000027101.40323.3A.
  38. Sarandol, E., Serdar, Z., Dirican, M., and Safak, O. (2003) Effects of red wine consumption on serum paraoxonase/arylesterase activities and on lipoprotein oxidizability in healthy-men, J. Nutr. Biochem., 14, 507-512, doi: 10.1016/S0955-2863(03)00099-8.
  39. Kleemola, P., Freese, R., Jauhiainen, M., Pahlman, R., Alfthan, G., and Mutanen, M. (2002) Dietary determinants of serum paraoxonase activity in healthy humans, Atherosclerosis, 160, 425-432, doi: 10.1016/S0021-9150(01)00594-9.

© Российская академия наук, 2023

Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах