Alteration of the MEK1/2–ERK1/2 signaling pathway in the retina with age and with the development of amd-like retinopathy

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Age-related macular degeneration (AMD) is a complex neurodegenerative disease that is a major cause of irreversible visual impairment in developed countries. Although age is the greatest risk factor for AMD, molecular explanations of this clinical observation are not known. Growing evidence shows that dysregulation of MAPK pathways contributes to aging and neurodegenerative diseases; however, information about the upregulation of MAPKs in this context is still controversial. Among these kinases, ERK1 and ERK2 participate in the maintenance of proteostasis through the regulation of protein aggregation induced by endoplasmic-reticulum stress and other stress-mediated responses in the cell. Here, to assess the contribution of alterations of MEK1/2-ERK1/2 signaling-pathway activity to the development of AMD, we compared its changes with age in the retina of control (Wistar) rats and OXYS rats, which develop AMD-like retinopathy spontaneously. We showed that ERK1/2 signaling-pathway activity increases during physiological aging in the Wistar retina. The manifestation and dramatic progression of AMD-like pathology in OXYS rats co-occurred with hyperphosphorylation of ERK1/2 and MEK1/2 as key ERK1/2 signaling-pathway kinases in the retina. Besides, progression of the retinopathy was accompanied by ERK1/2-dependent tau protein hyperphosphorylation and enhancement of ERK1/2-dependent phosphorylation of CryaB at Ser45 in the retina.

About the authors

N. A Muraleva

Institute of Cytology and Genetics (ICG), Siberian Branch of Russian Academy of Sciences

Email: myraleva@bionet.nsc.ru
630090 Novosibirsk, Russia

N. G Kolosova

Institute of Cytology and Genetics (ICG), Siberian Branch of Russian Academy of Sciences

Email: myraleva@bionet.nsc.ru
630090 Novosibirsk, Russia

References

  1. Blasiak, J., Sobczuk, P., Pawlowska, E., and Kaarniranta, K. (2022) Interplay between aging and other factors of the pathogenesis of age-related macular degeneration, Ageing Res. Rev., 81, 101735, doi: 10.1016/j.arr.2022.101735.
  2. Kyriakis, J. M., and Avruch, J. (2012) Mammalian MAPK signal transduction pathways activated by stress and inflammation: a 10-year update, Physiol. Rev., 92, 689-737, doi: 10.1152/physrev.00028.2011.
  3. Kirouac, L., Rajic, A. J., Cribbs, D. H., and Padmanabhan, J. (2017) Activation of Ras-ERK signaling and GSK-3 by amyloid precursor protein and amyloid beta facilitates neurodegeneration in Alzheimer's disease, eNeuro, 4, ENEURO.0149-16.2017, doi: 10.1523/ENEURO.0149-16.2017.
  4. Ahmed, T., Zulfiqar, A., Arguelles, S., Rasekhian, M., Nabavi, S. F., et al. (2020) Map kinase signaling as therapeutic target for neurodegeneration, Pharmacol. Res., 160, 105090, doi: 10.1016/j.phrs.2020.105090.
  5. Dridi, S., Hirano, Y., Tarallo, V., Kim, Y., Fowler, B. J., et al. (2012) ERK1/2 activation is a therapeutic target in age-related macular degeneration, Proc. Natl. Acad. Sci. USA, 109, 13781-13786, doi: 10.1073/pnas.1206494109.
  6. SanGiovanni, J. P., and Lee, P. H. (2013) AMD-associated genes encoding stress-activated MAPK pathway constituents are identified by interval-based enrichment analysis, PLoS One, 8, e71239, doi: 10.1371/journal.pone.0071239.
  7. Jung, S., Nah, J., Han, J., Choi, S. G., Kim, H., et al. (2016) Dual-specificity phosphatase 26 (DUSP26) stimulates Aβ42 generation by promoting amyloid precursor protein axonal transport during hypoxia, J. Neurochem., 137, 770-781, doi: 10.1111/jnc.13597.
  8. Calderwood, S. K., Xie, Y., Wang, X., Khaleque, M. A., Chou, S. D., et al. (2010) Signal transduction pathways leading to heat shock transcription, Signal Transd. Ins., 2, 13-24, doi: 10.4137/STI.S3994.
  9. Darling, N. J., and Cook, S. J. (2014) The role of MAPK signalling pathways in the response to endoplasmic reticulum stress, Biochim. Biophys. Acta, 1843, 2150-2163, doi: 10.1016/j.bbamcr.2014.01.009.
  10. Hutt, D. M., and Balch, W. E. (2013) Expanding proteostasis by membrane trafficking networks, Cold Spring Harb. Perspect Biol., 5, a013383, doi: 10.1101/cshperspect.a013383.
  11. Du, X., Koronyo, Y., Mirzaei, N., Yang, C., Fuchs, D. T., et al. (2022) Label-free hyperspectral imaging and deep-learning prediction of retinal amyloid β-protein and phosphorylated tau, PNAS Nexus, 1, pgac164, doi: 10.1093/pnasnexus/pgac164.
  12. Den Haan, J., Morrema, T., Verbraak, F. D., de Boer, J. F., Scheltens, P., et al. (2018) Amyloid-beta and phosphorylated tau in post-mortem Alzheimer's disease retinas, Acta Neuropath. Com., 6, 147, doi: 10.1186/s40478-018-0650-x.
  13. Löffler, K. U., Edward, D. P., and Tso, M. O. (1995) Immunoreactivity against tau, amyloid precursor protein, and beta-amyloid in the human retina, Invest. Ophthalmol. Vis Sci., 36, 24-31.
  14. Tenreiro, S., Eckermann, K., and Outeiro, T. F. (2014) Protein phosphorylation in neurodegeneration: friend or foe? Front. Mol. Neurosci., 7, 42, doi: 10.3389/fnmol.2014.00042.
  15. Crabb, J. W., Miyagi, M., Gu, X., Shadrach, K., West, K. A., et al. (2002) Drusen proteome analysis: an approach to the etiology of age-related macular degeneration, Proc. Natl. Acad. Sci. USA, 99, 14682-14687, doi: 10.1073/pnas.222551899.
  16. Kyosseva, S. V. (2016) Targeting MAPK signaling in age-related macular degeneration, Ophthalmol Eye Dis., 8, 23-30, doi: 10.4137/OED.S32200.
  17. Stefanova, N. A., Kozhevnikova, O. S., Vitovtov, A. O., Maksimova, K. Y., Logvinov, S. V., et al. (2014) Senescence-accelerated OXYS rats: a model of age-related cognitive decline with relevance to abnormalities in Alzheimer's disease, Cell Cycle, 13, 898-909, doi: 10.4161/cc.28255.
  18. Stefanova, N. A., Ershov, N. I., Maksimova, K. Y., Muraleva, N. A., Tyumentsev, M. A., and Kolosova, N. G. (2019) The rat prefrontal-cortex transcriptome: effects of aging and sporadic Alzheimer's disease-like pathology, J. Gerontol. A Biol. Sci Med. Sci., 74, 33-43, doi: 10.1093/gerona/gly198.
  19. Kozhevnikova, O. S., Korbolina, E. E., Ershov, N. I., and Kolosova, N. G. (2013) Rat retinal transcriptome: effects of aging and AMD-like retinopathy, Cell Cycle, 12, 1745-1761, doi: 10.4161/cc.24825.
  20. Zhdankina, A. A., Fursova, A. Zh, Logvinov, S. V., and Kolosova, N. G. (2008) Clinical and morphological characteristics of chorioretinal degeneration in early aging OXYS rats, Bull. Exp. Biol. Med., 146, 455-458, doi: 10.1007/s10517-009-0298-4.
  21. Колосова Н. Г., Кожевникова О. С., Муралёва Н. А., Рудницкая Е. А., Румянцева Ю. В., Стефанова Н. А., Телегина Д. В., Тюменцев М. А., Фурсова А. Ж. (2022) SkQ1 как инструмент воздействия на программу преждевременного старения: опыт исследований на крысах OXYS, Биохимия, 87, 1916-1927, doi: 10.31857/S0320972522120119.
  22. Muraleva, N. A., Kolosova, N. G., and Stefanova, N. A. (2019) p38 MAPK-dependent alphaB-crystallin phosphorylation in Alzheimer's disease-like pathology in OXYS rats, Exp. Gerontol., 119, 45-52, doi: 10.1016/j.exger.2019.01.017.
  23. Muraleva, N. A., Stefanova, N. A., and Kolosova, N. G. (2020) SkQ1 suppresses the p38 MAPK signaling pathway involved in Alzheimer's disease-like pathology in OXYS rats, Antioxidants, 9, 676, doi: 10.3390/antiox9080676.
  24. Muraleva, N. A., Kolosova, N. G., and Stefanova, N. A. (2021) MEK1/2-ERK pathway alterations as a therapeutic target in sporadic Alzheimer's disease: a study in senescence-accelerated OXYS rats, Antioxidants (Basel), 10, 1058, doi: 10.3390/antiox10071058.
  25. Saprunova, V. B., Lelekova, M. A., Kolosova, N. G., and Bakeeva, L. E. (2012). SkQ1 slows development of age-dependent destructive processes in retina and vascular layer of eyes of Wistar and OXYS rats, Biochemistry (Moscow), 77, 648-658, doi: 10.1134/S0006297912060120.
  26. Markovets, A. M., Saprunova, V. B., Zhdankina, A. A., Fursova, A. Zh., Bakeeva, L. E., and Kolosova, N. G. (2011) Alterations of retinal pigment epithelium cause AMD-like retinopathy in senescence-accelerated OXYS rats, Aging, 3, 44-54, doi: 10.18632/aging.100243.
  27. Telegina, D. V., Kozhevnikova, O. S., Bayborodin, S. I., and Kolosova, N. G. (2017) Contributions of age-related alterations of the retinal pigment epithelium and of glia to the AMD-like pathology in OXYS rats, Sci. Rep., 7, 41533, doi: 10.1038/srep41533.
  28. Cano, M., Guerrero-Castilla, A., Nabavi, S. M., Ayala, A., and Argüelles, S. (2019) Targeting pro-senescence mitogen activated protein kinase (Mapk) enzymes with bioactive natural compounds, Food Chem. Toxicol., 2, 110544, doi: 10.1016/j.fct.2019.05.052.
  29. Kolosova, N. G., Muraleva, N. A., Zhdankina, A. A., Stefanova, N. A., Fursova, A. Z., and Blagosklonny, M. V. (2012) Prevention of age-related macular degeneration-like retinopathy by rapamycin in rats, Am. J. Pathol., 181, 472-477, doi: 10.1016/j.ajpath.2012.04.018.
  30. Rentsendorj, A., Sheyn, J., Fuchs, D. T., Daley, D., Salumbides, B. C., et al. (2018) A novel role for osteopontin in macrophage-mediated amyloid-β clearance in Alzheimer's models, Brain Behav. Immun., 67, 163-180, doi: 10.1016/j.bbi.2017.08.019.
  31. Xu, J., Pfarr, N., Endris, V., Mai, E. K., Hanafiah, N. H., et al. (2017) Molecular signaling in multiple myeloma: association of RAS/RAF mutations and MEK/ERK pathway activation, Oncogenesis, 6, e337, doi: 10.1038/oncsis.2017.36.
  32. Devyatkin, V. A., Redina, O. E., Kolosova, N. G., and Muralevam, N. A. (2020) Single-nucleotide polymorphisms associated with the senescence-accelerated phenotype of OXYS rats: a focus on Alzheimer's disease-like and age-related-macular-degeneration-like pathologies, J. Alzheimer's Dis., 73, 1167-1183, doi: 10.3233/JAD-190956.
  33. Maksimiuk, M., Sobiborowicz, A., Tuzimek, A., Deptała, A., Czerw, A., et al. (2020) αB-crystallin as a promising target in pathological conditions - A review, Ann. Agric. Environ. Med., 27, 326-334, doi: 10.26444/aaem/111759.
  34. Kannan, R., Sreekumar, P. G., and Hinton, D. R. (2016) Alpha crystallins in the retinal pigment epithelium and implications for the pathogenesis and treatment of age-related macular degeneration, Biochim. Biophys. Acta, 1860, 258-268, doi: 10.1016/j.bbagen.2015.05.016.
  35. Muraleva, N. A., Kozhevnikova, O. S., Zhdankina, A. A., Stefanova, N. A., Karamysheva, T. V., et al. (2014) The mitochondria-targeted antioxidant SkQ1 restores αB-crystallin expression and protects against AMD-like retinopathy in OXYS rats, Cell Cycle, 13, 3499-3505, doi: 10.4161/15384101.2014.958393.
  36. Dou, G., Sreekumar, P. G., Spee, C., He, S., Ryan, S. J., et al. (2012) Deficiency of αB crystallin augments ER stress-induced apoptosis by enhancing mitochondrial dysfunction, Free Radic. Biol. Med., 53, 1111-1122, doi: 10.1016/j.freeradbiomed.2012.06.042.
  37. Yaung, J., Jin, M., Barron, E., Spee, C., Wawrousek, E. F., et al. (2007) alpha-Crystallin distribution in retinal pigment epithelium and effect of gene knockouts on sensitivity to oxidative stress, Mol. Vis., 13, 566-577.
  38. Zhou, P., Kannan, R., Spee, C., Sreekumar, P. G., Dou, G., and Hinton, D. R. (2014) Protection of retina by αB crystallin in sodium iodate induced retinal degeneration, PLoS One, 9, e98275, doi: 10.1371/journal.pone.0098275.
  39. Sreekumar, P. G., Li, Z., Wang, W., Spee, C., Hinton, D. R., Kannan, R., MacKay, J. A. (2018) Intra-vitreal αB crystallin fused to elastin-like polypeptide provides neuroprotection in a mouse model of age-related macular degeneration, J. Control. Rel., 283, 94-104, doi: 10.1016/j.jconrel.2018.05.014.
  40. Sreekumar, P. G., Reddy, S. T., Hinton, D. R., and Kannan, R. (2022) Mechanisms of RPE senescence and potential role of αB crystallin peptide as a senolytic agent in experimental AMD, Exp. Eye Res., 215, 108918, doi: 10.1016/j.exer.2021.108918.
  41. Kato, K., Inaguma, Y., Ito, H., Iida, K., Iwamoto, I., et al. (2001) Ser-59 is the major phosphorylation site in alphaB-crystallin accumulated in the brains of patients with Alexander's disease, J. Neurochem., 76, 730-736, doi: 10.1046/j.1471-4159.2001.00038.x.
  42. Ashok, A., Singh, N., Chaudhary, S., Bellamkonda, V., Kritikos, A. E., et al. (2020) Retinal degeneration and Alzheimer's disease: an evolving link, Int. J. Mol. Sci., 21, 7290, doi: 10.3390/ijms21197290.
  43. Zhu, X., Castellani, R. J., Takeda, A., Nunomura, A., Atwood, C. S., et al. (2001) Differential activation of neuronal ERK, JNK/SAPK and p38 in Alzheimer's disease: the ‘two hit' hypothesis, Mech. Ageing Dev., 123, 39-46, doi: 10.1016/s0047-6374(01)00342-6.
  44. Faucher, P., Mons, N., Micheau, J., Louis, C., and Beracochea, D. J. (2016) Hippocampal injections of oligomeric amyloid β-peptide (1-42) induce selective working memory deficits and long-lasting alterations of ERK signaling pathway, Front. Aging Neurosci., 7, 245, doi: 10.3389/fnagi.2015.00245.

Copyright (c) 2023 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies