A novel donepezil-caffeic acid hybrid: synthesis, biological evaluation, and molecular docking studies

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

A novel donepezil-caffeic acid (DP-CA) hybrid molecule was designed, synthesis, and investigated by molecular modeling. Its biological activity and protective effect were investigated by the IR spectroscopy, 1H and 13C NMR spectroscopy, and mass spectrometry. DP-CA was highly active against acetylcholine esterase and inhibited it at the micromolar concentrations. Fluorescence and UV-Vis spectroscopy studies showed strong binding of DP-CA to DNA. Moreover, DP-CA exhibited protective effects against H2O2-induced toxicity in U-118 MG glioblastoma cells. Finally, molecular docking showed a high affinity of DP-CA in all concentrations, and the active 4EY7 site exhibited essential residues with polar and apolar contacts. Taken together, these findings indicate that DP-CA could be a prospective multifunctional agent for the treatment of neurodegenerative diseases.

About the authors

D. Kılıçaslan

Kahramanmaras Sutcu Imam University

Email: deryatrnc@ksu.edu.tr
Kahramanmaras, Turkey

A. H Kurt

Bolu Abant Izzet Baysal University

Email: deryatrnc@ksu.edu.tr
Bolu, Turkey

M. Köse

Kahramanmaras Sutcu Imam University

Email: deryatrnc@ksu.edu.tr
Kahramanmaras, Turkey

M. Çeşme

Kahramanmaras Sutcu Imam University

Email: deryatrnc@ksu.edu.tr
Kahramanmaras, Turkey

Ö. Güngör

Kahramanmaras Sutcu Imam University

Author for correspondence.
Email: deryatrnc@ksu.edu.tr
Kahramanmaras, Turkey

C. K Oztabag

Bolu Abant Izzet Baysal University

Email: deryatrnc@ksu.edu.tr
Bolu, Turkey

A. Doganer

Kahramanmaras Sutcu Imam University

Email: deryatrnc@ksu.edu.tr
Kahramanmaras, Turkey

References

  1. Abeysinghe, A. A. D. T., Deshapriya, R. D. U. S., and Udawatte, C. (2020) Alzheimer's disease; a review of the pathophysiological basis and therapeutic interventions, Life Sci., 256, 117996, doi: 10.1016/j.lfs.2020.117996.
  2. Davies, P., and Maloney, A. J. F. (1976) Selective loss of central cholinergic neurons in Alzheimer's disease, Lancet, 308, 1403, doi: 10.1016/S0140-6736(76)91936-X.
  3. Corkin, S. (1981) Acetylcholine, aging and Alzheimer's disease. Implications for treatment, Trends Neurosci., 4, 287-290, doi: 10.1016/0166-2236(81)90090-4.
  4. Seltzer, B. (2007) Is long-term treatment of Alzheimer's disease with cholinesterase inhibitor therapy justified? Drugs Aging, 24, 881-890, doi: 10.2165/00002512-200724110-00001.
  5. Schmitt, B., Bernhardt,T., Moeller, H. J., Heuser, I., and Frolich, L. (2004) Combination therapy in Alzheimer's disease: a review of current evidence, CNS Drugs, 18, 827-844, doi: 10.2165/00023210-200418130-00001.
  6. Minarini, A., Milelli, A., Tumiatti, V., Rosini, M., Simoni, E. Bolognesi, M. L., Andrisano, V., Bartolini, M., Motori, E., Angeloni, C., and Hrelia, S. (2012) Cystamine-tacrine dimer: a new multi-target-directed ligand as potential therapeutic agent for Alzheimer's disease treatment, Neuropharmacology, 62 997-1003, doi: 10.1016/j.neuropharm.2011.10.007.
  7. Galdeano, C., Viayna, E., Sola, I., Formosa, X., Camps, P., Badia, A., Clos, M. V., Relat, J., Ratia, M., Bartolini, M., Mancini, F., Andrisano, V., Salmona, M., Minguillon, C., Gonzalez-Munoz, G. C., Rodriguez Franco, M. I., Bidon-Chanal, A., Luque, F. J., and Munoz-Torrero, D. J. (2012) Huprine-tacrine heterodimers as anti-amyloidogenic compounds of potential interest against Alzheimer's and prion diseases, Med. Chem., 55, 661-669, doi: 10.1021/jm200840c.
  8. Fernandez-Bachiller, M. I., Perez, C., Gonzalez-Munoz, G. C., Conde, S., Lopez, M. G., Villarroya, M., Garcia, A. G., and Rodriguez-Franco, M. I. (2010) Novel tacrine-8-hydroxyquinoline hybrids as multifunctional agents for the treatment of Alzheimer's disease, with neuroprotective, cholinergic, antioxidant, and copper-complexing properties, Med. Chem., 53, 4927-4937, doi: 10.1021/jm100329q.
  9. Chen,Y., Sun, J., Fang, L., Liu, M., Peng, S., Liao, H., Lehmann, J., and Zhang, Y. J. (2012) Tacrine-ferulic acid-nitric oxide (NO) donor trihybrids as potent, multifunctional acetyl-and butyrylcholinesterase inhibitors, Med. Chem., 55, 4309-4321, doi: 10.1021/jm300106z.
  10. Bolognesi, M. L., Banzi, R., Bartolini, M., Cavalli, A., Tarozzi, A., Andrisano, V., Minarini, A., Rosini, M., Tumiatti, V., Bergamini, C., Fato, R., Lenaz, G., Hrelia, P. Cattaneo, A., Recanatini, M., and Melchiorre, C. (2007) Novel class of quinone-bearing polyamines as multi-target-directed ligands to combat Alzheimer's disease, Eur. J. Med. Chem., 50, 4882-4897, doi: 10.1021/jm070559a.
  11. Bajda, M., Guzior, N., Ignasik, M., and Malawska, B. (2011) Multi-target-directed ligands in Alzheimer's disease treatment, Curr. Med. Chem., 18, 4949-4975, doi: 10.2174/092986711797535245.
  12. Bolognesi, M. L., Simoni, E., Rosini, M., Minarini, A., Tumiatti, V., and and Melchiorre, C. (2011) Multitarget-directed ligands: innovative chemical probes and therapeutic tools against Alzheimer's disease, Curr. Top Med. Chem., 11, 2797-2806, doi: 10.2174/156802611798184373.
  13. Bolognesi, M. L., Minarini, A., Rosini, M., Tumiatti, V., and Melchiorre, C. (2008) From dual binding site acetylcholinesterase inhibitors to multi-target-directed ligands (MTDLs): a step forward in the treatment of Alzheimer's disease, Mini Rev. Med. Chem., 8, 960-967, doi: 10.2174/138955708785740652.
  14. Mohsi, N. A., and Ahmad, M. (2020) Donepezil: a review of the recent structural modifications and their impact on anti-Alzheimer activity, Braz. J. Pharm. Sci., 56, 1-16, doi: 10.1590/s2175-97902019000418325.
  15. Benchekroun, M., Ismaili, L., Pudlo, M., Luzet, V., Gharbi, T., Refouvelet, B., and Marcj-Contelles, J. (2015) Donepezil-ferulic acid hybrids as anti-Alzheimer drugs, Fut. Med. Chem., 7, 15-21 doi: 10.4155/fmc.14.148.
  16. Dias, K. S. T., de Paula, C. T., dos Santos, T., Souza, I. N., Boni, M. S., Guimarães, M. J., da Silva, F. M. R., Castro, N. G., Neves, G. A., Veloso, C. C., Coelho, M. M., de Melo, I. S. F., Giusti, F. C. V., Giusti-Paiva, A., da Silva, M. L., Dardenne, L. E., Guedes, I. A., Pruccoli, L., Morroni, F., Tarozzi, A., and Viegas, C. Jr. (2017) Design, synthesis and evaluation of novel feruloyl-donepezil hybrids as potential multitarget drugs for the treatment of Alzheimer's disease, Eur. J. Med. Chem., 130, 440-457, doi: 10.1016/j.ejmech.2017.02.043.
  17. Yan, J., Hu, J., Liu, A., He, L., Li, X., and Wei, H. (2017), Design, synthesis, and evaluation of multitarget-directed ligands against Alzheimer's disease based on the fusion of donepezil and curcumin, Bioorg. Med. Chem., 25, 2946-2955, doi: 10.1016/j.bmc.2017.02.048.
  18. Alonso, D., Dorronsoro, I., Rubio, L., Munoz, P., García-Palomero, E., Del Monte, M., Bidon-Chanal, A., Orozco, M., Luque, F. J., Castro, A., Medina, M., and Martínez, A. (2005) Donepezil-tacrine hybrid related derivatives as new dual binding site inhibitors of AChE, Bioorg. Med. Chem., 13, 6588-6597, doi: 10.1016/j.bmc.2005.09.029.
  19. Sepsova,V., Karasova, J. Z., Tobin, G., Jun, D., Korabecny, J., Cabelova, P., Janska, K., Krusek, J., Skrenkova, K., Kuca, K., and Soukup, O. (2015) Cholinergic properties of new 7-methoxytacrinedonepezil derivatives, Gen. Physiol. Biophys., 34, 189-200, doi: 10.4149/gpb_2014036.
  20. Xie, S. S., Lan, J. S., Wang, X., Wang, Z. M., Jiang, N., Li, F., Wu, J.-J., Wang, J., and Kong, L.-Yi (2016) Design, synthesis and biological evaluation of novel donepezil-coumarin hybrids as multi-target agents for the treatment of Alzheimer's disease, Bioorg. Med. Chem., 24, 1528-1539, doi: 10.1016/j.bmc.2016.02.023.
  21. Shen, Y., Zhang, J., Sheng, Dong, R. X., He, Q., Yang, B., and Hu, Y. (2009) Synthesis and biological evaluation of novel flavonoid derivatives as dual binding acetylcholinesterase inhibitors, J. Enzyme Inhib. Med. Chem., 24, 372-380, doi: 10.1080/14756360802187885.
  22. Rodríguez-Franco, M. I., Fernández-Bachiller, M. I., Pérez, C., Castro, A., and Martínez, A. (2005) Design and synthesis of N-benzylpiperidine-purine derivatives as new dual inhibitors of acetyl-and butyrylcholinesterase, Bioorg. Med. Chem., 13, 6795-6802, doi: 10.1016/j.bmc.2005.07.019.
  23. Moridani, M. Y., Scobie, H., Jamshidzadeh, A., Salehi, P., and O'Brien, P. J. (2001) Caffeic acid, chlorogenic acid, and dihydrocaffeic acid metabolism: glutathione conjugate formation, Drug Metab. Dispos., 29, 1432-1439.
  24. Scalbert, A., Manach, C., Morand, C., Rémésy, C., Jiménez, L. (2005) Dietary polyphenols and the prevention of diseases, Crit. Rev. Food Sci. Nutr., 45, 287-306, doi: 10.1080/1040869059096.
  25. Touaibia, M., Jean-François, J., and Doiron, J. (2011) Caffeic acid, a versatile pharmacophore: an overview, Mini Rev. Med. Chem., 11, 695-713, doi: 10.2174/138955711796268750.
  26. Rehman, U. M., and Sultana, S. (2011) Attenuation of oxidative stress, inflammation and early markers of tumor promotion by caffeic acid in Fe-NTA exposed kidneys of Wistar rats, Mol. Cell Biochem., 357, 115-124, doi: 10.1007/s11010-011-0881-7.
  27. Roos, T. U., Heiss, E. H., Schwaiberger, A. V., Schachner, D., Sroka, I. M., Oberan, T., Vollmar, A. M., and Dirsch, V. M. (2011) Caffeic acid phenethyl ester inhibits PDGF-induced proliferation of vascular smooth muscle cells via activation of p38 MAPK, HIF-1α, and heme oxygenase-1, J. Nat. Prod., 74, 352-356, doi: 10.1021/np100724f.
  28. Scapagnini, G., Vasto, S., Abraham, N. G., Caruso, C., Zella, D., and Fabio, G. (2011) Modulation of Nrf2/ARE pathway by food polyphenols: a nutritional neuroprotective strategy for cognitive and neurodegenerative disorders, Mol. Neurobiol., 44, 192-201, doi: 10.1007/s12035-011-8181-5.
  29. Eom,T. K., Ryu, B., Lee, J. K., Byun, H. G., Park, S. J., and Kim, S. K. (2013) β-secretase inhibitory activity of phenolic acid conjugated chitooligosaccharides, J. Enzyme Inhib. Med. Chem., 28, 214-217, doi: 10.3109/14756366.2011.629197.
  30. Sul, D., Kim, H. S., Lee, D., Joo, S. S., Hwang, K. W., and Park, S. Y. (2009) Protective effect of caffeic acid against beta-amyloid-induced neurotoxicity by the inhibition of calcium influx and tau phosphorylation, Life Sci., 84, 257-262, doi: 10.1016/j.lfs.2008.12.001.
  31. Valko, M., Leibfritz, D., Moncol, J., Cronin, M. T. D., Mazur, M., and Telser, J. (2007) Free radicals and antioxidants in normal physiological functions and human disease, Int. J. Biochem. Cell. Biol., 39, 44-84, doi: 10.1016/j.biocel.2006.07.001.
  32. Zhang, P., Tang, Y., Li, N. G., Zhu, Y., and Duan, J. A. (2014) Bioactivity and chemical synthesis of caffeic acid phenethyl ester and its derivatives, Molecules, 19, 16458-16476, doi: 10.3390/molecules191016458.
  33. Turgut, E., Gungor, O., Kirpik, H., Kose, A., Gungor, S. A., and Kose, M. (2021) Benzimidazole ligands with allyl, propargyl or allene groups, DNA binding properties, and molecular docking studies, Appl. Organometallic Chem., 35, e6323, doi: 10.1002/aoc.6323.
  34. Ellman, G. L., Courtney, K. D., Andres, Jr. V., and Featherstone, R. M. (1961) A new and rapid colorimetric determination of acetylcholinesterase activity, Biochem. Pharmacol., 7, 88-95, doi: 10.1016/0006-2952(61)90145-9.
  35. Mohammadi-Khanaposhtani, M., Saeedi, M., Zafarghandi, N. S., Mahdavi, M., Sabourian, R., Razkenari, E. K., and Akbarzadeh, T. (2015) Potent acetylcholinesterase inhibitors: Design, synthesis, biological evaluation, and docking study of acridone linked to 1,2,3-triazole derivatives, Eur. J. Med. Chem., 92, 799-806, doi: 10.1016/j.ejmech.2015.01.044.
  36. Schrödinger Release 2021-1: Maestro, Schrödinger, LLC, New York, NY, 2021.
  37. Isika, D., Çeşme, M., Osonga, F. J., and Sadik, O. A. (2020) Novel quercetin and apigenin-acetamide derivatives: Design, synthesis, characterization, biological evaluation and molecular docking studies, RSC Adv., 10, 25046-25058, doi: 10.1039/d0ra04559d.
  38. Adımcılar, V., Çeşme, M., Şenel, P., Danış, İ., Ünal, D., and Gölcü, A. (2021) Comparative study of cytotoxic activities, DNA binding and molecular docking interactions of anti-cancer agent epirubicin and its novel copper complex, J. Mol. Struct., 1232, 130072, doi: 10.1016/j.molstruc.2021.130072.
  39. Onur, S., Çeşme, M., Köse, M., and Tümer, F. (2022) New imino-methoxy derivatives: design, synthesis, characterization, antimicrobial activity, DNA interaction and molecular docking studies, J. Biomol. Struct. Dyn., 40, 11082-11094, doi: 10.1080/07391102.2021.1955741.
  40. Ebru, U., Derya, K., Hakan, K. A., Bilge, A., and Adem, D. (2021) Melatonin metabolites protect human retinal pigment epithelial cells from death caused by oxidative stress, Pharmaceut. Chem. J., 55, 762-768, doi: 10.1016/j.exer.2004.02.003.
  41. Zurek, E., Szymanski, P., and Mikiciuk-Olasik, E. (2013) Synthesis and biological activity of new donepezil-hydrazinonicotinamide hybrids, Drug Res., 63, 137-144, doi: 10.1055/s-0033-1333735.
  42. Sugumaran, M., and Yokesh, K. M. (2012) Synthesis and biological activity of novel 2, 5-disubstituted benzimidazole derivatives, Int. J. Pharm. Sci. Drug Res., 4, 80-83.
  43. Pyle, A. M., Rehmann, J. P., Meshoyrer, R., Kumar, C. V., Turro, N. J., and Barton, J. K. (1989) Mixed-ligand complexes of ruthenium(II): factors governing binding to DNA, J. Am. Chem. Soc., 111, 3051-3058, doi: 10.1021/ja00190a046.
  44. İçsel, C. (2013) Synthesis, crystal structures, spectroscopic, thermal and DNA binding properties of palladium (II) and platinum (II) complexes containing 2-(hydroxymethyl) pyridine and 2-(2-hydroxyethyl) pyridine ligands. PhD Thesis. Bursa Uludag University (Turkey).
  45. Rafique, B., Khalid, A. M., Akhtar, K., and Jabbar, A. (2013) Interaction of anti-cancer drug methotrexate with DNA analyzed by electrochemical and spectroscopic methods. Biosensors Bioelectronics, 44, 21-26, doi: 10.1016/j.bios.2012.12.028.
  46. Meyer-Almes, F. J., and Porschke, D. (1993) Mechanism of intercalation into the DNA double helix by ethidium, Biochemistry, 32, 4246-4253, doi: 10.1021/bi00067a012.
  47. Baguley, B. C., and LeBret, M. (1984) Quenching of DNA-ethidium fluorescence by amsacrine and other antitumor agents: a possible electron-transfer effect, Biochemistry, 23, 937-943, doi: 10.1021/bi00300a022.
  48. Sagaama, A., and Issaoui, N. (2020) Design, molecular docking analysis of an anti-inflammatory drug, computational analysis and intermolecular interactions energy studies of 1-benzothiophene-2-carboxylic acid, Comput. Biol. Chem., 88, 107348, doi: 10.1016/j.compbiolchem.2020.107348.
  49. Şahin, I., Çeşme, M., Özgeriş, F. B., Güngör, Ö., and Tümer, F. (2022) Design and synthesis of 1,4 disubstituted 1,2,3-triazoles: biological evaluation, in silico molecular docking and ADME screening, J. Mol. Struct., 1247, 131344, doi: 10.1016/j.molstruc.2021.131344.
  50. Raghi, K. R., Sherin, D. R., Saumya, M. J., Arun, P. S., Sobha,V. N., and Manojkumar, T. K. (2018) Computational study of molecular electrostatic potential, docking and dynamics simulations of gallic acid derivatives as ABL inhibitors, Comput. Biol. Chem., 74, 239-246, doi: 10.1016/j.compbiolchem.2018.04.001.
  51. Sepay, N., Sepay, N., Al Hoque, A., Mondal, R., Halder, U. C., and Muddassir, M. (2020) In silico fight against novel coronavirus by finding chromone derivatives as inhibitor of coronavirus main proteases enzyme, Struct. Chem., 31, 1831-1840, doi: 10.1007/s11224-020-01537-5.
  52. Akhoon, B. A., Choudhary, S., Tiwari, H., Kumar, A., Barik, M. R., Rathor, L., Pandey, R. and Nargotra, A. (2020) Discovery of a new donepezil-like acetylcholinesterase inhibitor for targeting Alzheimer's disease: computational studies with biological validation, J. Chem. Inf. Model., 60, 4717-4729, doi: 10.1021/acs.jcim.0c00496.
  53. Saǧlık, B. N., Osmaniye, D., Çevik, U. A., Levent, S., Çavuşoǧlu, B. K., Özkay, Y., and Kaplancıklı, Z. A. (2020) Design, Synthesis, and structure-activity relationships of thiazole analogs as anticholinesterase agents for Alzheimer's disease, Molecules, 25, 312, doi: 10.3390/molecules25184312.

Copyright (c) 2023 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies