Инкапсулины: структура, свойства, применение в биотехнологии

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

В 1994 году был обнаружен новый класс прокариотических компартментов, получивших собирательное название «инкапсулины» или «нанокомпартменты». Белки-протомеры оболочек инкапсулинов самоорганизуются с образованием икосаэдрических структур различных диаметров (24-42 нм). Внутри оболочек нанокомпартментов могут быть инкапсулированы один или несколько грузовых белков, разнообразных по своим функциям. Кроме того, в нанокомпартменты могут быть загружены ненативные грузовые белки, а поверхности оболочек возможно модифицировать при помощи различных соединений, что позволяет создавать системы направленной доставки препаратов, метки для оптической и МРТ-визуализации, а также использовать инкапсулины в качестве биореакторов. В настоящем обзоре описывается ряд подходов к применению инкапсулинов в различных областях науки, включая биомедицину и нанобиотехнологии.

Об авторах

Н. С Чмелюк

ФГАОУ ВО «Национальный исследовательский технологический университет «МИСиС»;ФГАОУ ВО «Российский национальный исследовательский медицинский университет имени Н.И. Пирогова» Минздрава России

Email: abakumov1988@gmail.com
119049 Москва, Россия;117977 Москва, Россия

В. В Ода

ФГАОУ ВО «Национальный исследовательский технологический университет «МИСиС»

Email: abakumov1988@gmail.com
119049 Москва, Россия

А. Н Габашвили

ФГАОУ ВО «Национальный исследовательский технологический университет «МИСиС»

Email: abakumov1988@gmail.com
119049 Москва, Россия

М. А Абакумов

ФГАОУ ВО «Национальный исследовательский технологический университет «МИСиС»;ФГАОУ ВО «Российский национальный исследовательский медицинский университет имени Н.И. Пирогова» Минздрава России

Email: abakumov1988@gmail.com
119049 Москва, Россия;117977 Москва, Россия

Список литературы

  1. Valdes-Stauber, N., and Scherer, S. (1994) Isolation and characterization of linocin M18, a bacteriocin produced by Brevibacterium linens, Appl. Environ. Microbiol., 60, 3809-3814, doi: 10.1128/aem.60.10.3809-3814.1994.
  2. Rosenkrands, I., Rasmussen, P. B., Carnio, M., Jacobsen, S., Theisen, M., et al. (1998) Identification and characterization of a 29-kilodalton protein from Mycobacterium tuberculosis culture filtrate recognized by mouse memory effector cells, Infect. Immun., 66, 2728-2735, doi: 10.1128/iai.66.6.2728-2735.1998.
  3. Hicks, P. M., Rinker, K. D., Baker, J. R., and Kelly, R. M. (1998) Homomultimeric protease in the hyperthermophilic bacterium Thermotoga maritima has structural and amino acid sequence homology to bacteriocins in mesophilic bacteria, FEBS Lett., 440, 393-398, doi: 10.1016/S0014-5793(98)01451-3.
  4. Giessen, T. W., and Silver, P. A. (2017) Widespread distribution of encapsulin nanocompartments reveals functional diversity, Nat. Microbiol., 2, 17029, doi: 10.1038/nmicrobiol.2017.29.
  5. Winter, N., Triccas, J. A., Rivoire, B., Pessolani, M. C. V., Eiglmeier, K., et al. (1995) Characterization of the gene encoding the immunodominant 35 kDa protein of Mycobacterium leprae, Mol. Microbiol., 16, 865-876, doi: 10.1111/j.1365-2958.1995.tb02314.x.
  6. Triccas, J. A., Roche, P. W., Winter, N., Feng, C. G., Ruth Butlin, C., et al. (1996) A 35-kilodalton protein is a major target of the human immune response to Mycobacterium leprae, Infect. Immun., 64, 5171-5177, doi: 10.1128/iai.64.12.5171-5177.1996.
  7. Kawamoto, S., Watanabe, M., Saito, N., Hesketh, A., Vachalova, K., et al. (2001) Molecular and functional analyses of the gene (eshA) encoding the 52-kilodalton protein of Streptomyces coelicolor A3(2) required for antibiotic production, J. Bacteriol., 183, 6009-6016, doi: 10.1128/JB.183.20.6009-6016.2001.
  8. Kwak, J., McCue, L. A., Trczianka, K., and Kendrick, K. E. (2001) Identification and characterization of a developmentally regulated protein, EshA, required for sporogenic hyphal branches in Streptomyces griseus, J. Bacteriol., 183, 3004-3015, doi: 10.1128/JB.183.10.3004-3015.2001.
  9. Saito, N., Matsubara, K., Watanabe, M., Kato, F., and Ochi, K. (2003) Genetic and biochemical characterization of EshA, a protein that forms large multimers and affects developmental processes in Streptomyces griseus, J. Biol. Chem., 278, 5902-5911, doi: 10.1074/jbc.M208564200.
  10. Sutter, M., Boehringer, D., Gutmann, S., G�nther, S., Prangishvili, D., et al. (2008) Structural basis of enzyme encapsulation into a bacterial nanocompartment, Nat. Struct. Mol. Biol., 15, 939-947, doi: 10.1038/nsmb.1473.
  11. Namba, K., Hagiwara, K., Tanaka, H., Nakaishi, Y., Chong, K. T., et al. (2005) Expression and molecular characterization of spherical particles derived from the genome of the hyperthermophilic euryarchaeote Pyrococcus furiosus, J. Biochem., 138, 193-199, doi: 10.1093/jb/mvi111.
  12. Akita, F., Chong, K. T., Tanaka, H., Yamashita, E., Miyazaki, N., et al. (2007) The crystal structure of a virus-like particle from the hyperthermophilic archaeon Pyrococcus furiosus provides insight into the evolution of viruses, J. Mol. Biol., 368, 1469-1483, doi: 10.1016/j.jmb.2007.02.075.
  13. Moon, H., Lee, J., Min, J., and Kang, S. (2014) Developing genetically engineered encapsulin protein cage nanoparticles as a targeted delivery nanoplatform, Biomacromolecules, 15, 3794-3801, doi: 10.1021/bm501066m.
  14. Rurup, W. F., Snijder, J., Koay, M. S. T., Heck, A. J. R., and Cornelissen, J. J. L. M. (2014) Self-sorting of foreign proteins in a bacterial nanocompartment, J. Am. Chem. Soc., 136, 3828-3832, doi: 10.1021/ja410891c.
  15. Snijder, J., Van De Waterbeemd, M., Damoc, E., Denisov, E., Grinfeld, D., et al. (2014) Defining the stoichiometry and cargo load of viral and bacterial nanoparticles by orbitrap mass spectrometry, J. Am. Chem. Soc., 136, 7295-7299, doi: 10.1021/ja502616y.
  16. Tamura, A., Fukutani, Y., Takami, T., Fujii, M., Nakaguchi, Y., et al. (2015) Packaging guest proteins into the encapsulin nanocompartment from Rhodococcus erythropolis N771, Biotechnol. Bioeng., 112, 13-20, doi: 10.1002/bit.25322.
  17. Cassidy-Amstutz, C., Oltrogge, L., Going, C. C., Lee, A., Teng, P., et al. (2016) Identification of a minimal peptide tag for in vivo and in vitro loading of encapsulin, Biochemistry, 55, 3461-3468, doi: 10.1021/acs.biochem.6b00294.
  18. Choi, B., Moon, H., Hong, S. J., Shin, C., Do, Y., et al. (2016) Effective delivery of antigen-encapsulin nanoparticle fusions to dendritic cells leads to antigen-specific cytotoxic T cell activation and tumor rejection, ACS Nano, 10, 7339-7350, doi: 10.1021/acsnano.5b08084.
  19. Giessen, T. W., and Silver, P. A. (2016) Converting a natural protein compartment into a nanofactory for the size-constrained synthesis of antimicrobial silver nanoparticles, ACS Synth. Biol., 5, 1497-1504, doi: 10.1021/acssynbio.6b00117.
  20. Sonotaki, S., Takami, T., Noguchi, K., Odaka, M., Yohda, M., et al. (2017) Successful PEGylation of hollow encapsulin nanoparticles from: Rhodococcus erythropolis N771 without affecting their disassembly and reassembly properties, Biomater. Sci., 5, 1082-1089, doi: 10.1039/c7bm00207f.
  21. Rahmanpour, R., and Bugg, T. D. H. (2013) Assembly in vitro of Rhodococcus jostii RHA1 encapsulin and peroxidase DypB to form a nanocompartment, FEBS J., 280, 2097-2104, doi: 10.1111/febs.12234.
  22. Contreras, H., Joens, M. S., McMath, L. M., Le, V. P., Tullius, M. V., et al. (2014) Characterization of a Mycobacterium tuberculosis nanocompartment and its potential cargo proteins, J. Biol. Chem., 289, 18279-18289, doi: 10.1074/jbc.M114.570119.
  23. McHugh, C. A., Fontana, J., Nemecek, D., Cheng, N., Aksyuk, A. A., et al. (2014) A virus capsid-like nanocompartment that stores iron and protects bacteria from oxidative stress, EMBO J., 33, 1896-1911, doi: 10.15252/embj.201488566.
  24. He, D., Hughes, S., Vanden-Hehir, S., Georgiev, A., Altenbach, K., et al. (2016) Structural characterization of encapsulated ferritin provides insight into iron storage in bacterial nanocompartments, Elife, 5, e18972, doi: 10.7554/eLife.18972.
  25. Ochoa, J. M., Bair, K., Holton, T., Bobik, T. A., and Yeates, T. O. (2021) MCPdb: The bacterial microcompartment database, PLoS One, 16, e0248269, doi: 10.1371/journal.pone.0248269.
  26. Wikoff, W. R., Liljas, L., Duda, R. L., Tsuruta, H., Hendrix, R. W., et al. (2000) Topologically linked protein rings in the bacteriophage HK97 capsid, Science, 289, 2129-2133, doi: 10.1126/science.289.5487.2129.
  27. Caspar, D. L., and Klug, A. (1962) Physical principles in the construction of regular viruses, Cold Spring Harb. Symp. Quant. Biol., 27, 1-24, doi: 10.1101/SQB.1962.027.001.005.
  28. Almeida, A. V., Carvalho, A. J., and Pereira, A. S. (2021) Encapsulin nanocages: protein encapsulation and iron sequestration, Coord. Chem. Rev., 448, 214188, doi: 10.1016/j.ccr.2021.214188.
  29. Tracey, J. C., Coronado, M., Giessen, T. W., Lau, M. C. Y., Silver, P. A., et al. (2019) The discovery of twenty-eight new encapsulin sequences, including three in anammox bacteria, Sci. Rep., 9, 20122, doi: 10.1038/s41598-019-56533-5.
  30. Giessen, T. W., Orlando, B. J., Verdegaal, A. A., Chambers, M. G., Gardener, J., et al. (2019) Large protein organelles form a new iron sequestration system with high storage capacity, Elife, 8, e46070, doi: 10.7554/eLife.46070.
  31. El-Gebali, S., Mistry, J., Bateman, A., Eddy, S. R., Luciani, A., et al. (2019) The Pfam protein families database in 2019, Nucleic Acids Res., 47, D427-D432, doi: 10.1093/nar/gky995.
  32. Nichols, R. J., LaFrance, B., Phillips, N. R., Radford, D. R., Oltrogge, L. M., et al. (2021) Discovery and characterization of a novel family of prokaryotic nanocompartments involved in sulfur metabolism, Elife, 10, e59288, doi: 10.7554/eLife.59288.
  33. Wiryaman, T., and Toor, N. (2021) Cryo-EM structure of a thermostable bacterial nanocompartment, IUCrJ, 8, 342-350, doi: 10.1107/S2052252521001949.
  34. Wiryaman, T., and Toor, N. (2022) Recent advances in the structural biology of encapsulin bacterial nanocompartments, J. Struct. Biol. X, 6, 100062, doi: 10.1016/j.yjsbx.2022.100062.
  35. Ross, J., McIver, Z., Lambert, T., Piergentili, C., Bird, J. E., et al. (2022) Pore dynamics and asymmetric cargo loading in an encapsulin nanocompartment, Sci. Adv., 8, eabj4461, doi: 10.1126/sciadv.abj4461.
  36. Williams, E. M., Jung, S. M., Coffman, J. L., and Lutz, S. (2018) Pore engineering for enhanced mass transport in encapsulin nanocompartments, ACS Synth. Biol., 7, 2514-2517, doi: 10.1021/acssynbio.8b00295.
  37. Snijder, J., Kononova, O., Barbu, I. M., Uetrecht, C., Rurup, W. F., et al. (2016) Assembly and mechanical properties of the cargo-free and cargo-loaded bacterial nanocompartment encapsulin, Biomacromolecules, 17, 2522-2529, doi: 10.1021/acs.biomac.6b00469.
  38. Putri, R. M., Allende-Ballestero, C., Luque, D., Klem, R., Rousou, K. A., et al. (2017) Structural characterization of native and modified encapsulins as nanoplatforms for in vitro catalysis and cellular uptake, ACS Nano, 11, 12796-12804, doi: 10.1021/acsnano.7b07669.
  39. Kirykowicz, A. M., and Woodward, J. D. (2020) Shotgun EM of mycobacterial protein complexes during stationary phase stress, Curr. Res. Struct. Biol., 2, 204-212, doi: 10.1016/j.crstbi.2020.09.002.
  40. Tang, Y., Mu, A., Zhang, Y., Zhou, S., Wang, W., et al. (2021) Cryo-EM structure of Mycobacterium smegmatis DyP-loaded encapsulin, Proc. Natl. Acad. Sci., 118, e2025658118, doi: 10.1073/pnas.2025658118.
  41. LaFrance, B. J., Cassidy-Amstutz, C., Nichols, R. J., Oltrogge, L. M., Nogales, E., et al. (2021) The encapsulin from Thermotoga maritima is a flavoprotein with a symmetry matched ferritin-like cargo protein, Sci. Rep., 11, 22810, doi: 10.1038/s41598-021-01932-w.
  42. Sigmund, F., Pettinger, S., Kube, M., Schneider, F., Schifferer, M., et al. (2019) Iron-sequestering nanocompartments as multiplexed electron microscopy gene reporters, ACS Nano, 13, 8114-8123, doi: 10.1021/acsnano.9b03140.
  43. Imlay, J. A., Chin, S. M., and Linn, S. (1988) Toxic DNA damage by hydrogen peroxide through the fenton reaction in vivo and in vitro, Science, 240, 640-642, doi: 10.1126/science.2834821.
  44. Andrews, S. C. (1998) Iron storage in bacteria, Adv. Microb. Physiol., 40, 281-351, doi: 10.1038/279015a0.
  45. Goulding, C. W., Apostol, M. I., Sawaya, M. R., Phillips, M., Parseghian, A., et al. (2005) Regulation by oligomerization in a mycobacterial folate biosynthetic enzyme, J. Mol. Biol., 349, 61-72, doi: 10.1016/j.jmb.2005.03.023.
  46. Sugano, Y., Muramatsu, R., Ichiyanagi, A., Sato, T., and Shoda, M. (2007) DyP, a unique dye-decolorizing peroxidase, represents a novel heme peroxidase family: ASP171 replaces the distal histidine of classical peroxidases, J. Biol. Chem., 282, 36652-36658, doi: 10.1074/jbc.M706996200.
  47. Pandey, R., and Rodriguez, G. M. (2012) A ferritin mutant of Mycobacterium tuberculosis is highly susceptible to killing by antibiotics and is unable to establish a chronic infection in mice, Infect. Immun., 80, 3650-3659, doi: 10.1128/IAI.00229-12.
  48. Reddy, P. V., Puri, R. V., Khera, A., and Tyagi, A. K. (2012) Iron storage proteins are essential for the survival and pathogenesis of Mycobacterium tuberculosis in THP-1 macrophages and the guinea pig model of infection, J. Bacteriol., 194, 567-575, doi: 10.1128/JB.05553-11.
  49. Ahmad, M., Roberts, J. N., Hardiman, E. M., Singh, R., Eltis, L. D., et al. (2011) Identification of DypB from Rhodococcus jostii RHA1 as a lignin peroxidase, Biochemistry, 50, 5096-5107, doi: 10.1021/bi101892z.
  50. Bobik, T. A., Lehman, B. P., and Yeates, T. O. (2015) Bacterial microcompartments: widespread prokaryotic organelles for isolation and optimization of metabolic pathways, Mol. Microbiol., 98, 193-207, doi: 10.1111/mmi.13117.
  51. Green, E. R., and Mecsas, J. (2016) Bacterial secretion systems: an overview, Microbiol. Spectr., 4, doi: 10.1128/microbiolspec.vmbf-0012-2015.
  52. Wang, P., Robert, L., Pelletier, J., Dang, W. L., Taddei, F., et al. (2010) Robust growth of Escherichia coli, Curr. Biol., 20, 1099-1103, doi: 10.1016/j.cub.2010.04.045.
  53. Gong, J., Chen, M., Zheng, Y., Wang, S., and Wang, Y. (2012) Polymeric micelles drug delivery system in oncology, J. Control. Release, 159, 312-323, doi: 10.1016/j.jconrel.2011.12.012.
  54. R�sler, A., Vandermeulen, G. W. M., and Klok, H. A. (2012) Advanced drug delivery devices via self-assembly of amphiphilic block copolymers, 53, 95-108, Adv. Drug Deliv. Rev., doi: 10.1016/j.addr.2012.09.026.
  55. Allen, T. M., and Cullis, P. R. (2013) Liposomal drug delivery systems: from concept to clinical applications, Adv. Drug Deliv. Rev., 65, 36-48, doi: 10.1016/j.addr.2012.09.037.
  56. Wang, A. Z., Langer, R., and Farokhzad, O. C. (2012) Nanoparticle delivery of cancer drugs, Annu. Rev. Med., 63, 185-198, doi: 10.1146/annurev-med-040210-162544.
  57. Haag, R., and Kratz, F. (2006, February 13) Polymer therapeutics: Concepts and applications, Angew. Chemie Int. Ed., 45, 1198-215, doi: 10.1002/anie.200502113.
  58. Ma, Y., Nolte, R. J. M., and Cornelissen, J. J. L. M. (2012) Virus-based nanocarriers for drug delivery, Adv. Drug Deliv. Rev., 64, 811-825, doi: 10.1016/j.addr.2012.01.005.
  59. MaHam, A., Tang, Z., Wu, H., Wang, J., and Lin, Y. (2009) Protein-based nanomedicine platforms for drug delivery, Small, 5, 1706-1721, doi: 10.1002/smll.200801602.
  60. Brigger, I., Dubernet, C., and Couvreur, P. (2002) Nanoparticles in cancer therapy and diagnosis, Adv. Drug Deliv. Rev., 54, 631-651, doi: 10.1016/S0169-409X(02)00044-3.
  61. Toita, R., Murata, M., Tabata, S., Abe, K., Narahara, S., et al. (2012) Development of human hepatocellular carcinoma cell-targeted protein cages, Bioconjug. Chem., 23, 1494-1501, doi: 10.1021/bc300015f.
  62. Toita, R., Murata, M., Abe, K., Narahara, S., Piao, J. S., et al. (2013) A nanocarrier based on a genetically engineered protein cage to deliver doxorubicin to human hepatocellular carcinoma cells, Chem. Commun., 49, 7442-7444, doi: 10.1039/c3cc44508a.
  63. Diaz, D., Vidal, X., Sunna, A., and Care, A. (2021) Bioengineering a light-responsive encapsulin nanoreactor: a potential tool for in vitro photodynamic therapy, ACS Appl. Mater. Interfaces, 13, 7977-7986, doi: 10.1021/acsami.0c21141.
  64. Van de Steen, A., Khalife, R., Colant, N., Mustafa Khan, H., Deveikis, M., et al. (2021) Bioengineering bacterial encapsulin nanocompartments as targeted drug delivery system, Synth. Syst. Biotechnol., 6, 231-241, doi: 10.1016/j.synbio.2021.09.001.
  65. Moon, H., Lee, J., Kim, H., Heo, S., Min, J., et al. (2014) Genetically engineering encapsulin protein cage nanoparticle as a SCC-7 cell targeting optical nanoprobe, Biomater. Res., 18, 21, doi: 10.1186/2055-7124-18-21.
  66. Jung, Y., Kang, H. J., Lee, J. M., Jung, S. O., Yun, W. S., et al. (2008) Controlled antibody immobilization onto immunoanalytical platforms by synthetic peptide, Anal. Biochem., 374, 99-105, doi: 10.1016/j.ab.2007.10.022.
  67. Lagoutte, P., Mignon, C., Stadthagen, G., Potisopon, S., Donnat, S., et al. (2018) Simultaneous surface display and cargo loading of encapsulin nanocompartments and their use for rational vaccine design, Vaccine, 36, 3622-3628, doi: 10.1016/j.vaccine.2018.05.034.
  68. Cho, K. J., Schepens, B., Seok, J. H., Kim, S., Roose, K., et al. (2015) Structure of the extracellular domain of matrix protein 2 of influenza A virus in complex with a protective monoclonal antibody, J. Virol., 89, 3700-3711, doi: 10.1128/jvi.02576-14.
  69. Putri, R. M., Fredy, J. W., Cornelissen, J. J. L. M., Koay, M. S. T., and Katsonis, N. (2016) Labelling bacterial nanocages with photo-switchable fluorophores, ChemPhysChem, 17, 1815-1818, doi: 10.1002/cphc.201600013.
  70. Klajn, R. (2014) Spiropyran-based dynamic materials, Chem. Soc. Rev., 43, 148-184, doi: 10.1039/c3cs60181a.
  71. K�nzle, M., Mangler, J., Lach, M., and Beck, T. (2018) Peptide-directed encapsulation of inorganic nanoparticles into protein containers, Nanoscale, 10, 22917-22926, doi: 10.1039/c8nr06236f.
  72. Zhang, Y., Wang, X., Chu, C., Zhou, Z., Chen, B., et al. (2020) Genetically engineered magnetic nanocages for cancer magneto-catalytic theranostics, Nat. Commun., 11, 5421, doi: 10.1038/s41467-020-19061-9.
  73. Wang, Q., Zhou, Y.-M., Xing, C.-Y., Li, W.-C., Shen, Y., et al. (2022) Encapsulins from Ca. Brocadia fulgida: An effective tool to enhance the tolerance of engineered bacteria (pET-28a-cEnc) to Zn2+, J. Hazard. Mater., 435, 128954, doi: 10.1016/j.jhazmat.2022.128954.
  74. Kim, T., Momin, E., Choi, J., Yuan, K., Zaidi, H., et al. (2011) Mesoporous silica-coated hollow manganese oxide nanoparticles as positive T1 contrast agents for labeling and MRI tracking of adipose-derived mesenchymal stem cells, J. Am. Chem. Soc., 133, 2955-2961, doi: 10.1021/ja1084095.
  75. Di Corato, R., Gazeau, F., Le Visage, C., Fayol, D., Levitz, P., et al. (2013) High-resolution cellular MRI: gadolinium and iron oxide nanoparticles for in-depth dual-cell imaging of engineered tissue constructs, ACS Nano, 7, 7500-7512, doi: 10.1021/nn401095p.
  76. Schrepfer, S., Deuse, T., Reichenspurner, H., Fischbein, M. P., Robbins, R. C., et al. (2007) Stem cell transplantation: the lung barrier, Transplant. Proc., 39, 573-576, doi: 10.1016/j.transproceed.2006.12.019.
  77. Michalet, X., Pinaud, F. F., Bentolila, L. A., Tsay, J. M., Doose, S., et al. (2005) Quantum dots for live cells, in vivo imaging, and diagnostics, Science, 307, 538-544, doi: 10.1126/science.1104274.
  78. Kalchenko, V., Shivtiel, S., Malina, V., Lapid, K., Haramati, S., et al. (2006) Use of lipophilic near-infrared dye in whole-body optical imaging of hematopoietic cell homing, J. Biomed. Opt., 11, 050507, doi: 10.1117/1.2364903.
  79. Himes, N., Min, J. Y., Lee, R., Brown, C., Shea, J., et al. (2004) In vivo MRI of embryonic stem cells in a mouse model of myocardial infarction, Magn. Reson. Med., 52, 1214-1219, doi: 10.1002/mrm.20220.
  80. Arbab, A. S., Bashaw, L. A., Miller, B. R., Jordan, E. K., Bulte, J. W. M., et al. (2003) Intracytoplasmic tagging of cells with ferumoxides and transfection agent for cellular magnetic resonance imaging after cell transplantation: methods and techniques, Transplantation, 76, 1123-1130, doi: 10.1097/01.TP.0000089237.39220.83.
  81. Frank, J. A., Miller, B. R., Arbab, A. S., Zywicke, H. A., Jordan, E. K., et al. (2003) Clinically applicable labeling of mammalian and stem cells by combining superparamagnetic iron oxides and transfection agents, Radiology, 228, 480-487, doi: 10.1148/radiol.2281020638.
  82. Bos, C., Delmas, Y., Desmouli�re, A., Solanilla, A., Hauger, O., et al. (2004) In vivo MR imaging of intravascularly injected magnetically labeled mesenchymal stem cells in rat kidney and liver, Radiology, 233, 781-789, doi: 10.1148/radiol.2333031714.
  83. Di Tucci, A. A., Matta, G., Deplano, S., Gabbas, A., Depau, C., et al. (2008) Myocardial iron overload assessment by T2* magnetic resonance imaging in adult transfusion dependent patients with acquired anemias, Haematologica, 93, 1385-1388, doi: 10.3324/haematol.12759.
  84. Ittrich, H., Lange, C., T�gel, F., Zander, A. R., Dahnke, H., et al. (2007) In vivo magnetic resonance imaging of iron oxide-labeled, arterially-injected mesenchymal stem cells in kidneys of rats with acute ischemic kidney injury: detection and monitoring at 3T, J. Magn. Reson. Imaging, 25, 1179-1191, doi: 10.1002/jmri.20925.
  85. Massoud, T. F., and Gambhir, S. S. (2003) Molecular imaging in living subjects: seeing fundamental biological processes in a new light, Genes Dev., 17, 545-580, doi: 10.1101/gad.1047403.
  86. Wu, J. C., Tseng, J. R., and Gambhir, S. S. (2004) Molecular imaging of cardiovascular gene products, J. Nucl. Cardiol., 11, 491-505, doi: 10.1016/j.nuclcard.2004.04.004.
  87. Contag, C. H., Jenkins, D., Contag, P. R., and Negrin, R. S. (2000) Use of reporter genes for optical measurements of neoplastic disease in vivo, Neoplasia, 2, 41-52, doi: 10.1038/sj.neo.7900079.
  88. Herschman, H. R. (2004) Noninvasive imaging of reporter gene expression in living subjects, Adv. Cancer Res., 92, 29-80, doi: 10.1016/S0065-230X(04)92003-9.
  89. Inubushi, M., and Tamaki, N. (2007) Radionuclide reporter gene imaging for cardiac gene therapy, Eur. J. Nucl. Med. Mol. Imaging, 34 Suppl 1, S27-S33, doi: 10.1007/s00259-007-0438-x.
  90. Joo, H. K., and Chung, J. K. (2008) Molecular-genetic imaging based on reporter gene expression, J. Nucl. Med., 49 Suppl 2, 164S-179S, doi: 10.2967/jnumed.107.045955.
  91. Gambhir, S. S., Barrio, J. R., Phelps, M. E., Iyer, M., Namavari, M., et al. (1999) Imaging adenoviral-directed reporter gene expression in living animals with positron emission tomography, Proc. Natl. Acad. Sci. USA, 96, 2333-2338, doi: 10.1073/pnas.96.5.2333.
  92. Phelps, M. E. (2000) Positron emission tomography provides molecular imaging of biological processes, Proc. Natl. Acad. Sci. USA, 97, 9226-9233, doi: 10.1073/pnas.97.16.9226.
  93. Zhang, S. J., and Wu, J. C. (2007) Comparison of imaging techniques for tracking cardiac stem cell therapy, J. Nucl. Med., 48, 1916-1919, doi: 10.2967/jnumed.107.043299.
  94. Okada, S., Ishii, K., Yamane, J., Iwanami, A., Ikegami, T., et al. (2005) In vivo imaging of engrafted neural stem cells: its application in evaluating the optimal timing of transplantation for spinal cord injury, FASEB J., 19, 1839-1841, doi: 10.1096/fj.05-4082fje.
  95. Gilad, A. A., Winnard, P. T., van Zijl, P. C. M., and Bulte, J. W. M. (2007) Developing MR reporter genes: promises and pitfalls, NMR Biomed., 20, 275-290, doi: 10.1002/nbm.1134.
  96. Sigmund, F., Massner, C., Erdmann, P., Stelzl, A., Rolbieski, H., et al. (2018) Bacterial encapsulins as orthogonal compartments for mammalian cell engineering, Nat. Commun., 9, 1990, doi: 10.1038/s41467-018-04227-3.
  97. Efremova, M. V, Bodea, S.-V., Sigmund, F., Semkina, A., Westmeyer, G. G., et al. (2021) Genetically encoded self-assembling iron oxide nanoparticles as a possible platform for cancer-cell tracking., Pharmaceutics, 13, 397, doi: 10.3390/pharmaceutics13030397.
  98. Gabashvili, A. N., Vodopyanov, S. S., Chmelyuk, N. S., Sarkisova, V. A., Fedotov, K. A., et al. (2021) Encapsulin based self-assembling iron-containing protein nanoparticles for stem cells MRI visualization., Int. J. Mol. Sci., 22, 12275, doi: 10.3390/ijms222212275.
  99. Gabashvili, A. N., Efremova, M. V., Vodopyanov, S. S., Chmelyuk, N. S., Oda, V. V., et al. (2022) New approach to non-invasive tumor model monitoring via self-assemble iron containing protein nanocompartments, Nanomaterials, 12, 1657, doi: 10.3390/nano12101657.
  100. Roy, N., Gaur, A., Jain, A., Bhattacharya, S., and Rani, V. (2013) Green synthesis of silver nanoparticles: an approach to overcome toxicity, Environ. Toxicol. Pharmacol., 36, 807-812, doi: 10.1016/j.etap.2013.07.005.
  101. Jenkins, M. C., and Lutz, S. (2021) Encapsulin nanocontainers as versatile scaffolds for the development of artificial metabolons, ACS Synth. Biol., 10, 857-869, doi: 10.1021/acssynbio.0c00636.
  102. Maity, B., Fujita, K., and Ueno, T. (2015) Use of the confined spaces of apo-ferritin and virus capsids as nanoreactors for catalytic reactions, Curr. Opin. Chem. Biol., 25, 88-97, doi: 10.1016/j.cbpa.2014.12.026.
  103. Safont-Sempere, M. M., Fern�ndez, G., and W�rthner, F. (2011) Self-sorting phenomena in complex supramolecular systems, Chem. Rev., 111, 5784-5814, doi: 10.1021/cr100357h.
  104. Ai, H. W., Henderson, J. N., Remington, S. J., and Campbell, R. E. (2006) Directed evolution of a monomeric, bright and photostable version of Clavularia cyan fluorescent protein: structural characterization and applications in fluorescence imaging, Biochem. J., 400, 531-540, doi: 10.1042/BJ20060874.

© Российская академия наук, 2023

Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах