Novel potential mechanisms of regulatory B cell-mediated immunosuppression

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

B lymphocytes play an important role in the regulation of immune response in both normal and pathological conditions. Traditionally, the main functions of B cells were considered to be antibody production and antigen presentation, but in recent decades there have been discovered several subpopulations of regulatory B lymphocytes (Bregs) which maintain immunological tolerance and prevent overactivation of the immune system. Memory (mBregs, CD19+CD24hiCD27+) and transitional (tBregs, CD19+CD24hiCD38hi) subpopulations of Bregs are usually considered in the context of studying the role of these B cells in various human pathologies. However, the mechanisms by which these Breg subpopulations exert their immunosuppressive activity remain poorly understood. In this work, we used bioinformatic analysis of open-source RNA sequencing data to propose potential mechanisms of B cell immunosuppression. Analysis of differential gene expression before and after activation of these subpopulations allowed us to identify six candidate molecules that may determine the functionality of mBregs and tBregs. IL4I1-, SIRPA-, and SLAMF7-dependent mechanisms of immunosuppression may be characteristic of both Breg subsets, while NID1-, CST7-, and ADORA2B-dependent mechanisms may be predominantly characteristic of tBregs. An in-depth understanding of the molecular mechanisms of anti-inflammatory immune response of B lymphocytes is an important task for both basic science and applied medicine and can facilitate the introduction of new approaches to the therapy of complex diseases.

Авторлар туралы

E. Zheremyan

Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences;Faculty of Biology, Lomonosov Moscow State University

Email: elyazheremyan@mail.ru
119991 Moscow, Russia;119234 Moscow, Russia

A. Ustiugova

Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences

Email: elyazheremyan@mail.ru
119991 Moscow, Russia

A. Radko

Moscow Institute of Physics and Technology

Email: elyazheremyan@mail.ru
141701 Dolgoprudny, Moscow Region, Russia

E. Stasevich

Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences;Moscow Institute of Physics and Technology

Email: elyazheremyan@mail.ru
119991 Moscow, Russia;141701 Dolgoprudny, Moscow Region, Russia

A. Uvarova

Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences;Faculty of Biology, Lomonosov Moscow State University

Email: elyazheremyan@mail.ru
119991 Moscow, Russia;119234 Moscow, Russia

N. Mitkin

Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences

Email: elyazheremyan@mail.ru
119991 Moscow, Russia

D. Kuprash

Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences;Faculty of Biology, Lomonosov Moscow State University;Moscow Institute of Physics and Technology

Email: elyazheremyan@mail.ru
119991 Moscow, Russia;119234 Moscow, Russia;141701 Dolgoprudny, Moscow Region, Russia

K. Korneev

Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences;National Research Center for Hematology

Email: kirkorneev@gmail.com
119991 Moscow, Russia;125167 Moscow, Russia

Әдебиет тізімі

  1. Katz, S. I., Parker, D., and Turk, J. L. (1974) B-cell suppression of delayed hypersensitivity reactions, Nature, 251, 550-551, doi: 10.1038/251550a0.
  2. Mizoguchi, A., Mizoguchi, E., Takedatsu, H., Blumberg, R. S., and Bhan, A. K. (2002) Chronic intestinal inflammatory condition generates IL10-producing regulatory B cell subset characterized by CD1d upregulation, Immunity, 16, 219-230, doi: 10.1016/s1074-7613(02)00274-1.
  3. Wu, H., Su, Z., and Barnie, P. A. (2020) The role of B regulatory (B10) cells in inflammatory disorders and their potential as therapeutic targets, Int. Immunopharmacol., 78, 106111, doi: 10.1016/j.intimp.2019.106111.
  4. Jansen, K., Cevhertas, L., Ma, S., Satitsuksanoa, P., Akdis, M., and van de Veen, W. (2021) Regulatory B cells, A to Z, Allergy, 76, 2699-2715, doi: 10.1111/all.14763.
  5. Yanaba, K., Kamata, M., Ishiura, N., Shibata, S., Asano, Y., Tada, Y., Sugaya, M., Kadono, T., Tedder, T. F., and Sato, S. (2013) Regulatory B cells suppress imiquimod-induced, psoriasis-like skin inflammation, J. Leukoc. Biol., 94, 563-573, doi: 10.1189/jlb.1112562.
  6. Inoue, S., Leitner, W. W., Golding, B., and Scott, D. (2006) Inhibitory effects of B cells on antitumor immunity, Cancer Res., 66, 7741-7747, doi: 10.1158/0008-5472.CAN-05-3766.
  7. Sarvaria, A., Madrigal, J. A., and Saudemont, A. (2017) B cell regulation in cancer and anti-tumor immunity, Cell. Mol. Immunol., 14, 662-674, doi: 10.1038/cmi.2017.35.
  8. Mauri, C., and Menon, M. (2015) The expanding family of regulatory B cells, Int. Immunol., 27, 479-486, doi: 10.1093/intimm/dxv038.
  9. Nouel, A., Pochard, P., Simon, Q., Segalen, I., Le Meur, Y., Pers, J. O., and Hillion, S. (2015) B-Cells induce regulatory T cells through TGF-beta/IDO production in A CTLA-4 dependent manner, J. Autoimmun., 59, 53-60, doi: 10.1016/j.jaut.2015.02.004.
  10. Shen, P., Roch, T., Lampropoulou, V., O'Connor, R. A., Stervbo, U., Hilgenberg, E., Ries, S., Dang V. D., Jaimes, Y., Daridon, C., Li, R., Jouneau, L., Boudinot, P., Wilantri, S., Sakwa, I., Miyazaki, Y., Leech, M. D., McPherson, R. C., Wirtz, S., Neurath, M., Hoehlig, K., Meinl, E., Grutzkau, A., Grun, J. R., Horn, K., Kuhl, A. A., Dorner, T., Bar-Or, A., Kaufmann, S. H. E., Anderton, S. M., and Fillatreau, S. (2014) IL35-producing B cells are critical regulators of immunity during autoimmune and infectious diseases, Nature, 507, 366-370, doi: 10.1038/nature12979.
  11. Xu, L., Liu, X., Liu, H., Zhu, L., Zhu, H., Zhang, J., Ren, L., Wang, P., Hu, F., and Su, Y. (2017) Impairment of granzyme B-producing regulatory B cells correlates with exacerbated rheumatoid arthritis, Front. Immunol., 8, 768, doi: 10.3389/fimmu.2017.00768.
  12. Figueiro, F., Muller, L., Funk, S., Jackson, E. K., Battastini, A. M., and Whiteside, T. L. (2016) Phenotypic and functional characteristics of CD39(high) human regulatory B cells (Breg), Oncoimmunology, 5, e1082703, doi: 10.1080/2162402X.2015.1082703.
  13. Sokolov, A. V., Shmidt, A. A., and Lomakin, Y. A. (2018) B cell regulation in autoimmune diseases, Acta Naturae, 10, 11-22, doi: 10.32607/20758251-2018-10-3-11-22.
  14. Matsushita, T. (2019) Regulatory and effector B cells: friends or foes? J. Dermatol. Sci., 93, 2-7, doi: 10.1016/j.jdermsci.2018.11.008.
  15. Kalampokis, I., Yoshizaki, A., and Tedder, T. F. (2013) IL10-producing regulatory B cells (B10 cells) in autoimmune disease, Arthritis Res. Ther., 15, S1, doi: 10.1186/ar3907.
  16. Bots, M., and Medema, J. P. (2006) Granzymes at a glance, J. Cell Sci., 119, 5011-5014, doi: 10.1242/jcs.03239.
  17. Wieckowski, E., Wang, G. Q., Gastman, B. R., Goldstein, L. A., and Rabinowich, H. (2002) Granzyme B-mediated degradation of T-cell receptor zeta chain, Cancer Res., 62, 4884-4889.
  18. Dong, H., Zhu, G., Tamada, K., and Chen, L. (1999) B7-H1, a third member of the B7 family, co-stimulates T-cell proliferation and interleukin-10 secretion, Nat. Med., 5, 1365-1369, doi: 10.1038/70932.
  19. Oleinika, K., Rosser, E. C., Matei, D. E., Nistala, K., Bosma, A., Drozdov, I., and Mauri, C. (2018) CD1d-dependent immune suppression mediated by regulatory B cells through modulations of iNKT cells, Nat. Commun., 9, 684, doi: 10.1038/s41467-018-02911-y.
  20. Tao, H., Lu, L., Xia, Y., Dai, F., Wang, Y., Bao, Y., Lundy, S. K., Ito, F., Pan, Q., Zhang, X., Zheng, F., Shu, G., Fang, B., Jiang, J., Xia, J., Huang, S., Li, Q., and Chang, A. E. (2015) Antitumor effector B cells directly kill tumor cells via the Fas/FasL pathway and are regulated by IL10, Eur. J. Immunol., 45, 999-1009, doi: 10.1002/eji.201444625.
  21. Cherukuri, A., Mohib, K., and Rothstein, D. M. (2021) Regulatory B cells: TIM-1, transplant tolerance, and rejection, Immunol. Rev., 299, 31-44, doi: 10.1111/imr.12933.
  22. Zacca, E. R., Amezcua Vesely, M. C., Ferrero, P. V., Acosta, C. D. V., Ponce, N. E., Bossio, S. N., Mussano, E., Onetti, L., Cadile, I., Acosta Rodriguez, E. V., Montes, C. L., and Gruppi, A. (2021) B cells from patients with rheumatoid arthritis show conserved CD39-mediated regulatory function and increased CD39 expression after positive response to therapy, J. Mol. Biol., 433, 166687, doi: 10.1016/j.jmb.2020.10.021.
  23. Moens, L., Hershfield, M., Arts, K., Aksentijevich, I., and Meyts, I. (2019) Human adenosine deaminase 2 deficiency: a multi-faceted inborn error of immunity, Immunol. Rev., 287, 62-72, doi: 10.1111/imr.12722.
  24. Hasan, M. M., Thompson-Snipes, L., Klintmalm, G., Demetris, A. J., O'Leary, J., Oh, S., and Joo, H. (2019) CD24hiCD38hi and CD24hiCD27+ human regulatory B cells display common and distinct functional characteristics, J. Immunol., 203, 2110-2120, doi: 10.4049/jimmunol.1900488.
  25. Catal�n, D., Mansilla, M. A., Ferrier, A., Soto, L., Oleinika, K., Aguill�n, J. C., and Aravena, O. (2021) Immunosuppressive mechanisms of regulatory B cells, Front. Immunol., 12, 611795, doi: 10.3389/fimmu.2021.611795.
  26. Glass, M. C., Glass, D. R., Oliveria, J. P., Mbiribindi, B., Esquivel, C. O., Krams, S. M., Bendall, S. C., and Martinez, O. M. (2022) Human IL-10-producing B cells have diverse states that are induced from multiple B cell subsets, Cell Rep., 39, 110728, doi: 10.1016/j.celrep.2022.110728.
  27. Zhou, Y., Zhang, Y., Han, J., Yang, M., Zhu, J., and Jin, T. (2020) Transitional B cells involved in autoimmunity and their impact on neuroimmunological diseases, J. Transl. Med., 18, 1-12, doi: 10.1186/s12967-020-02289-w.
  28. Lomakin, Y. A., Zvyagin, I. V., Ovchinnikova, L. A., Kabilov, M., Staroverov, D. B., Mikelov, A., Tupikin, A. E., Zakharova, M. Y., Bykova, N. A., Mukhina, V. S., Favorov, A. V., Ivanova, M., Simaniv, T., Rubtsov, Y. P., Chudakov, D. M., Zakharova, M. N., Illarioshkin, S. N., Belogurov, A. A. Jr., and Gabibov, A. G. (2022) Deconvolution of B cell receptor repertoire in Multiple Sclerosis patients revealed a delay in tBreg maturation, Front. Immunol., 13, 803229, doi: 10.3389/fimmu.2022.803229.29.
  29. Guan, H., Wan, Y., Lan, J., Wang, Q., Wang, Z., Li, Y., Zheng, J., Zhang, X., Wang, Z., Shen, Y., and Xie, F. (2016) PD-L1 is a critical mediator of regulatory B cells and T cells in invasive breast cancer, Sci. Rep., 6, 35651, doi: 10.1038/srep35651.
  30. Murakami, Y., Saito, H., Shimizu, S., Kono, Y., Shishido, Y., Miyatani, K., Matsunaga, T., Fukumoto, Y., Ashida, K., Sakabe, T., Nakayama, Y., and Fujiwara, Y. (2019) Increased regulatory B cells are involved in immune evasion in patients with gastric cancer, Sci. Rep., 9, 1-9, doi: 10.1038/s41598-019-49581-4.
  31. Blair, P. A., Nore�a, L. Y., Flores-Borja, F., Rawlings, D. J., Isenberg, D. A., Ehrenstein, M. R., and Mauri, C. (2010) CD19+CD24hiCD38hi B cells exhibit regulatory capacity in healthy individuals but are functionally impaired in systemic lupus erythematosus patients, Immunity, 32, 129-140, doi: 10.1016/j.immuni.2009.11.009.
  32. Kamekura, R., Shigehara, K., Miyajima, S., Jitsukawa, S., Kawata, K., Yamashita, K., Nagaya, T., Kumagai, A., Sato, A., Matsumiya, H., Ogasawara, N., Seki, N., Takano, K., Kokai, Y., Takahashi, H., Himi, T., and Ichimiya, S. (2015) Alteration of circulating type 2 follicular helper T cells and regulatory B cells underlies the comorbid association of allergic rhinitis with bronchial asthma, Clin. Immunol., 158, 204-211, doi: 10.1016/j.clim.2015.02.016.
  33. Hasan, M. M., Nair, S. S., O'Leary, J. G., Thompson-Snipes, L., Nyarige, V., Wang, J., Park, W., Stegall, M., Heilman, R., Klintmalm, G. B., Joo, H., and Oh, S. (2021) Implication of TIGIT+ human memory B cells in immune regulation, Nat. Commun., 12, 1534, doi: 10.1038/s41467-021-21413-y.
  34. Ewels, P., Magnusson, M., Lundin, S., and Kaller, M. (2016) MultiQC: summarize analysis results for multiple tools and samples in a single report, Bioinformatics, 32, 3047-3048, doi: 10.1093/bioinformatics/btw354.
  35. Liao, Y., Smyth, G. K., and Shi, W. (2014) featureCounts: an efficient general purpose program for assigning sequence reads to genomic features, Bioinformatics, 30, 923-930, doi: 10.1093/bioinformatics/btt656.
  36. Dobin, A., Davis, C. A., Schlesinger, F., Drenkow, J., Zaleski, C., Jha, S., Batut, P., Chaisson, M., and Gingeras, T. R. (2013) STAR: ultrafast universal RNA-seq aligner, Bioinformatics, 29, 15-21, doi: 10.1093/bioinformatics/bts635.
  37. Martin, M. (2011) Cutadapt removes adapter sequences from high-throughput sequencing reads, EMBnet J., 17, 10-12, doi: 10.14806/ej.17.1.200.
  38. Bray, N. L., Pimentel, H., Melsted, P., and Pachter, L. (2016) Near-optimal probabilistic RNA-seq quantification, Nat. Biotechnol., 34, 525-527, doi: 10.1038/nbt.3519.
  39. Robinson, M. D., McCarthy, D. J., and Smyth, G. K. (2010) EdgeR: a Bioconductor package for differential expression analysis of digital gene expression data, Bioinformatics, 26, 139-140, doi: 10.1093/bioinformatics/btp616.
  40. Waskom, M. L. (2021) Seaborn: statistical data visualization, J. Open Source Software, 6, 3021, doi: 10.21105/joss.03021.
  41. Zhou, Y., Zhou, B., Pache, L., Chang, M., Khodabakhshi, A. H., Tanaseichuk, O., Benner, C., and Chanda, S. K. (2019) Metascape provides a biologist-oriented resource for the analysis of systems-level datasets, Nat. Commun., 10, 1523, doi: 10.1038/s41467-019-09234-6.
  42. Awwad, M. H. S., Mahmoud, A., Bruns, H., Echchannaoui, H., Kriegsmann, K., Lutz, R., Raab, M. S., Bertsch, U., Munder, M., Jauch, A., Weisel, K., Maier, B., Weinhold, N., Salwender, H. J., Eckstein, V., Hanel, M., Fenk, R., During, J., Brors, B., Benner, A., Muller-Tidow, C., Goldschmidt, H., and Hundemer, M. (2021) Selective elimination of immunosuppressive T cells in patients with multiple myeloma, Leukemia, 35, 2602-2615, doi: 10.1038/s41375-021-01172-x.
  43. O'Connell, P., Hyslop, S., Blake, M.K., Godbehere, S., Amalfitano, A., and Aldhamen, Y. A. (2021) SLAMF7 signaling reprograms T cells toward exhaustion in the tumor microenvironment, J. Immunol., 206, 193-205, doi: 10.4049/jimmunol.2000300.
  44. Kikuchi, J., Hori, M., Iha, H., Toyama-Sorimachi, N., Hagiwara, S., Kuroda, Y., Koyama, D., Izumi, T., Yasui, H., Suzuki, A., and Furukawa, Y. (2020) Soluble SLAMF7 promotes the growth of myeloma cells via homophilic interaction with surface SLAMF7, Leukemia, 34, 180-195, doi: 10.1038/s41375-019-0525-6.
  45. Ishibashi, M., Soeda, S., Sasaki, M., Handa, H., Imai, Y., Tanaka, N., Tanosaki, S., Ito, S., Odajima, T., Sugimori, H., Asayama, T., Sunakawa, M., Kaito, Y., Kinoshita, R., Kuribayashi, Y., Onodera, A., Moriya, K., Tanaka, J., Tsukune, Y., Komatsu, N., Inokuchi, K., and Tamura, H. (2018) Clinical impact of serum soluble SLAMF7 in multiple myeloma, Oncotarget, 9, 34784-34793, doi: 10.18632/oncotarget.26196.
  46. Otsuji, M., Kimura, Y., Aoe, T., Okamoto, Y., and Saito, T. (1996) Oxidative stress by tumor-derived macrophages suppresses the expression of CD3 zeta chain of T-cell receptor complex and antigen-specific T-cell responses, Proc. Natl. Acad. Sci. USA, 93, 13119-13124, doi: 10.1073/pnas.93.23.13119.
  47. Cousin, C., Aubatin, A., Le Gouvello, S., Apetoh, L., Castellano, F., and Molinier-Frenkel, V. (2015) The immunosuppressive enzyme IL4I1 promotes FoxP3(+) regulatory T lymphocyte differentiation, Eur. J. Immunol., 45, 1772-1782, doi: 10.1002/eji.201445000.
  48. Boulland, M. L., Marquet, J., Molinier-Frenkel, V., Moller, P., Guiter, C., Lasoudris, F., Copie-Bergman, C., Baia, M., Gaulard, P., Leroy, K., and Castellano, F. (2007) Human IL4I1 is a secreted L-phenylalanine oxidase expressed by mature dendritic cells that inhibits T-lymphocyte proliferation, Blood, 110, 220-227, doi: 10.1182/blood-2006-07-036210.
  49. Yue, Y., Huang, W., Liang, J., Guo, J., Ji, J., Yao, Y., Zheng, M., Cai, Z., Lu, L., and Wang, J. (2015) IL4I1 is a novel regulator of M2 macrophage polarization that can inhibit T cell activation via L-tryptophan and arginine depletion and IL10 production, PLoS One, 10, e0142979, doi: 10.1371/journal.pone.0142979.
  50. Prevost-Blondel, A., and Richard, Y. (2019) Interleukin 4-induced gene 1 as an emerging regulator of B-cell biology and its role in cutaneous melanoma, Crit. Rev. Immunol., 39, 39-57, doi: 10.1615/CritRevImmunol.2019030020.
  51. Ni, J., Fernandez, M. A., Danielsson, L., Chillakuru, R. A., Zhang, J., Grubb, A., Su, J., Gentz, R., and Abrahamson, M. (1998) Cystatin F is a glycosylated human low molecular weight cysteine proteinase inhibitor, J. Biol. Chem., 273, 24797-24804, doi: 10.1074/jbc.273.38.24797.
  52. Kos, J., Nanut, M. P., Prunk, M., Sabotic, J., Dautovic, E., and Jewett, A. (2018) Cystatin F as a regulator of immune cell cytotoxicity, Cancer Immunol. Immunother., 67, 1931-1938, doi: 10.1007/s00262-018-2165-5.
  53. Prunk, M., Nanut, M. P., Sabotic, J., Svajger, U., and Kos, J. (2019) Increased cystatin F levels correlate with decreased cytotoxicity of cytotoxic T cells, Radiol. Oncol., 53, 57-68, doi: 10.2478/raon-2019-0007.
  54. Sawyer, A. J., Garand, M., Chaussabel, D., and Feng, C. G. (2021) Transcriptomic profiling identifies neutrophil specific upregulation of cystatin f as a marker of acute inflammation in humans, Front. Immunol., 12, 634119, doi: 10.3389/fimmu.2021.634119.
  55. Gaggero, S., Bruschi, M., Petretto, A., Parodi, M., Del Zotto, G., Lavarello, C., Prato, C., Santucci, L., Barbuto, A., Bottino, C., Candiano, G., Moretta, A., Vitale, M., Moretta, L., and Cantoni, C. (2018) Nidogen-1 is a novel extracellular ligand for the NKp44 activating receptor, Oncoimmunology, 7, e1470730, doi: 10.1080/2162402X.2018.1470730.
  56. Morrissey, M. A., Kern, N., and Vale, R. D. (2020) CD47 ligation repositions the inhibitory receptor SIRPA to suppress integrin activation and phagocytosis, Immunity, 53, 290-302, doi: 10.1016/j.immuni.2020.07.008.
  57. Chen, Y. P., Kim, H. J., Wu, H., Price-Troska, T., Villasboas, J. C., Jalali, S., Feldman, A. L., Novak, A. J., Yang, Z. Z., and Ansell, S. M. (2019) SIRPalpha expression delineates subsets of intratumoral monocyte/macrophages with different functional and prognostic impact in follicular lymphoma, Blood Cancer J., 9, 84, doi: 10.1038/s41408-019-0246-0.
  58. Mittal, D., Sinha, D., Barkauskas, D., Young, A., Kalimutho, M., Stannard, K., Caramia, F., Haibe-Kains, B., Stagg, J., Khanna, K. K., Loi, S., and Smyth, M. J. (2016) Adenosine 2B receptor expression on cancer cells promotes metastasis, Cancer Res., 76, 4372-4382, doi: 10.1158/0008-5472.CAN-16-0544.
  59. Ryzhov, S., Novitskiy, S. V., Zaynagetdinov, R., Goldstein, A. E., Carbone, D. P., Biaggioni, I., Dikov, M. M., and Feoktistov, I. (2008) Host A(2B) adenosine receptors promote carcinoma growth, Neoplasia, 10, 987-995, doi: 10.1593/neo.08478.
  60. Morello, S., and Miele, L. (2014) Targeting the adenosine A2b receptor in the tumor microenvironment overcomes local immunosuppression by myeloid-derived suppressor cells, Oncoimmunology, 3, e27989, doi: 10.4161/onci.27989.

© Russian Academy of Sciences, 2023

Осы сайт cookie-файлдарды пайдаланады

Біздің сайтты пайдалануды жалғастыра отырып, сіз сайттың дұрыс жұмыс істеуін қамтамасыз ететін cookie файлдарын өңдеуге келісім бересіз.< / br>< / br>cookie файлдары туралы< / a>