Impaired enzymatic antioxidant defense in erythrocytes of rats with ammonia-induced encephalopathy: role NMDA receptors

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Hepatic encephalopathy (HE), a medical term that deals with a neuropsychiatric disorder seen in patients with severe hepatic dysfunction, has been known for more than a century, however, pathogenetic mechanisms underlying cerebral dysfunction during conditions of liver disease are still not entirely understood. There is a consensus that an accumulation of ammonia in brain as a result of impaired detoxification capacity of the liver or the appearance of a portosystemic shunt is a primary cause of HE. Current evidence suggests that ammonia toxicity is mediated by hyperactivation of glutamate receptors, mainly N-methyl-D-aspartate receptors (NMDA-R) and affects many processes of aerobic metabolism that provides energy for a myriad of specific functions and viability of nerve cells. Recent reports on the presence of functional NMDA receptors in erythrocytes and deviations from normal ranges in many blood test parameters that was indicative of impaired hemodynamics and reduced carrying capacity for oxygen in erythrocytes in most patients with HE implicate the relationship between “erythrocyte damage” and cerebral dysfunction. In order to understand how, during hyperammonemia, disturbances in energy metabolism in brain that needs a constant supply of a high level of oxygen in the blood lead to encephalopathy, it is necessary to reveal ammonia-induced disorders in energy metabolism and antioxidant defense system of erythrocytes and explore the potential role of ammonia in reduced brain oxygenation. To detect the said missing link, the activities of erythrocyte antioxidant enzymes and concentrations of GSH, GSSG and H2O2 were measured in animals with hyperammonemia by using MK-801, a powerful noncompetitive NMDA receptor antagonist. It was found that the accumulation of ammonia in the blood of animals with hyperammonemia occurs within rat erythrocytes in large amounts and makes these cells which do not contain enzymes for the removal of ammonia, more susceptible to a prooxidant environment of ammonia created during oxidative stress that was completely or partially inhibited with the help of MK-801. Data obtained provide a support to identification of extra risk factors in cognitive disorders and in the prediction of unfavorable outcome with hypoperfusion in patients with elevated concentrations of ammonia in the blood.

About the authors

E. A Kosenko

Institute of Theoretical and Experimental Biophysics of Russian Academy of Sciences

Email: eakos@rambler.ru
142290 Pushchino, Russia

G. A Alilova

Institute of Theoretical and Experimental Biophysics of Russian Academy of Sciences

142290 Pushchino, Russia

L. A Tikhonova

Institute of Theoretical and Experimental Biophysics of Russian Academy of Sciences

142290 Pushchino, Russia

References

  1. Butterworth, R. F. (1992) Pathogenesis and treatment of portal-systemic encephalopathy: An update, Dig. Dis. Sci., 37, 321-327, doi: 10.1007/BF01307722.
  2. Von Frerichs, F. T. (1860) A Clinical Treatise on Diseases of the Liver by Dr Friedrich Theodor Frerichs, The New Sydenham Society, London, V1, pp. 193-246.
  3. Butterworth, R. F., Giguère, J. F., Michaud, J., Lavoie, J., and Layrargues, G. P. (1987) Ammonia: key factor in the pathogenesis of hepatic encephalopathy, Neurochem. Pathol., 6, 1-12, doi: 10.1007/BF02833598.
  4. Cooper, A. J., and Plum, F. (1987) Biochemistry and physiology of brain ammonia, Physiol. Rev., 67, 440-519, doi: 10.1152/physrev.1987.67.2.440.
  5. Kosenko, E., Felipo, V., Montoliu, C., Grisolía, S., and Kaminsky, Y. (1997) Effects of acute hyperammonemia in vivo on oxidative metabolism in nonsynaptic rat brain mitochondria, Metab. Brain Dis., 12, 69-82, doi: 10.1007/BF02676355.
  6. Kosenko, E., Kaminsky, Y., Stavroskaya, I. G., and Felipo, V. (2000) Alteration of mitochondrial calcium homeostasis by ammonia-induced activation of NMDA receptors in rat brain in vivo, Brain Res., 880, 139-146, doi: 10.1016/s0006-8993(00)02785-2.
  7. Kosenko, E. A., Tikhonova, L. A., Alilova, G. A., Montoliu, C., Barreto, G. E., Aliev, G., and Kaminsky, Y. G. (2017) Portacaval shunting causes differential mitochondrial superoxide production in brain regions, Free Radic. Biol. Med., 113, 109-118, doi: 10.1016/j.freeradbiomed.2017.09.023.
  8. Kosenko, E., Kaminski, Y., Lopata, O., Muravyov, N., and Felipo, V. (1999) Blocking NMDA receptors prevents the oxidative stress induced by acute ammonia intoxication, Free Radic. Biol. Med., 26, 1369-1374, doi: 10.1016/s0891-5849(98)00339-6.
  9. Kosenko, E., Kaminsky, Y., Grau, E., Miñana, M. D., Grisolía, S., and Felipo, V. (1995) Nitroarginine, an inhibitor of nitric oxide synthetase, attenuates ammonia toxicity and ammonia-induced alterations in brain metabolism, Neurochem. Res., 20, 451-456, doi: 10.1007/BF00973101.
  10. Monfort, P., Kosenko, E., Erceg, S., Canales, J.-J., and Felipo, V. (2002) Molecular mechanism of acute ammonia toxicity: role of NMDA receptors, Neurochem. Int., 41, 95-102, doi: 10.1016/s0197-0186(02)00029-3.
  11. Makhro, A., Wang, J., Vogel, J., Boldyrev, A. A., Gassmann, M., Kaestner, L., and Bogdanova, A. (2010) Functional NMDA receptors in rat erythrocytes, Am. J. Physiol. Cell Physiol., 298, C1315-C1325, doi: 10.1152/ajpcell.00407.2009.
  12. Perazzo, J. C., Tallis, S., Delfante, A., Souto, P. A., Lemberg, A., Eizayaga, F. X., and Romay, S. (2012) Hepatic encephalopathy: An approach to its multiple pathophysiological features, World J. Hepatol., 4, 50-65, doi: 10.4254/wjh.v4.i3.50.
  13. Sener, A., Hutton, J. C., Kawazu, S., Boschero, A. C., Somers, G., Devis, G., Herchuelz, A., and Malaisse, W. J. (1978) The stimulus-secretion coupling of glucose-induced insulin release. Metabolic and functional effects of NH4+ in rat islets, J. Clin. Invest., 62, 868-878, doi: 10.1172/JCI109199.
  14. Gupte, P., and Nagral, A. (2009) Hematological problems and liver disease, Trop. Gastroenterol., 30, 65-70.
  15. Singh, S., Manrai, M., Parvathi, V. S., Kumar, D., Srivastava, S., and Pathak, B. (2020) Association of liver cirrhosis severity with anemia: does it matter? Ann. Gastroenterol., 33, 272-276, doi: 10.20524/aog.2020.0478.
  16. Owen, J. S., Brown, D. J., Harry, D. S., McIntyre, N., Beaven, G. H., Isenberg, H., and Gratzer, W. B. (1985) Erythrocyte echinocytosis in liver disease. Role of abnormal plasma high density lipoproteins, J. Clin. Invest., 76, 2275-2285, doi: 10.1172/JCI112237.
  17. Djiambou-Nganjeu, H. (2017) Hepatic encephalopathy in liver cirrhosis, J. Transl. Int. Med., 5, 64-67, doi: 10.1515/jtim-2017-0013.
  18. Senzolo, M., and Burroughs, A. K. (2007) Haematological abnormalities in liver disease, In Textbook of Hepatology (Rodés, J., Benhaumou, J. P., Blei, A. T., Reichen, J., and Rizzetto, M., eds) Oxford, Blackwell Sci. Pub., pp. 1767-1779, doi: 10.1002/9780470691861.ch21c.
  19. Moreau, R., Lee, S. S., Hadengue, A., Ozier, Y., Sicot, C., and Lebrec, D. (1989) Relationship between oxygen transport and oxygen uptake in patients with cirrhosis: effects of vasoactive drugs, Hepatology, 9, 427-432, doi: 10.1002/hep.1840090314.
  20. Bailey, D. M., Willie, C. K., Hoiland, R. L., Bain, A. R., MacLeod, D. B., Santoro, M. A., DeMasi, D. K., Andrijanic, A., Mijacika, T., Barak, O. F., Dujic Z., and Ainslie P. N. (2017) Surviving without oxygen: how low can the human brain go? High Alt. Med. Biol., 18, 73-79, doi: 10.1089/ham.2016.0081.
  21. Leithner, C., and Royl, G. (2014) The oxygen paradox of neurovascular coupling, J. Cereb. Blood Flow Metab., 34, 19-29, doi: 10.1038/jcbfm.2013.181.
  22. Bosman, G. J. C. G. M. (2018) Disturbed red blood cell structure and function: an exploration of the role of red blood cells in neurodegeneration, Front. Med. (Lausanne), 5, 198, doi: 10.3389/fmed.2018.00198.
  23. Kosenko, E. A., Tikhonova, L. A., Montoliu, C., Barreto, G. E., Aliev, G., and Kaminsky, Y. G. (2017) Metabolic abnormalities of erythrocytes as a risk factor for Alzheimer's disease, Front. Neurosci., 11, 728, doi: 10.3389/fnins.2017.00728.
  24. Kosenko, E., Tikhonova, L., Alilova, G., and Montoliu, C. (2020) A look into liver mitochondrial dysfunction as a hallmark in progression of brain energy crisis and development of neurologic symptoms in hepatic encephalopathy, J. Clin. Med., 9, 2259, doi: 10.3390/jcm9072259.
  25. Brewer, G. J., and Eaton, J. W. (1971) Erythrocyte metabolism: interaction with oxygen transport, Science, 171, 1205-1211, doi: 10.1126/science.171.3977.1205.
  26. Van Wijk, R., and van Solinge, W. W. (2005) The energy-less red blood cell is lost: erythrocyte enzyme abnormalities of glycolysis, Blood, 106, 4034-4042, doi: 10.1182/blood-2005-04-1622.
  27. Kosenko, E., Tikhonova, L., Alilova, G., and Montoliu, C. (2022) Is NMDA-receptor-mediated oxidative stress in mitochondria of peripheral tissues the essential factor in the pathogenesis of hepatic encephalopathy? J. Clin. Med., 11, 827, doi: 10.3390/jcm11030827.
  28. Beutler, E., Blume, K. G., Kaplan, J. C., Löhr, G. W., Ramot, B., and Valentine, W. N. (1977) International committee for standardization in haematology: recommended methods for red-cell enzyme analysis, Br. J. Haematol., 35, 331-340, doi: 10.1111/j.1365-2141.1977.tb00589.x.
  29. Kosenko, E. A., Venediktova, N. I., Kudryavtsev, A. A., Ataullakhanov, F. I., Kaminsky, Y. G., Felipo, V., and Montoliu, C. (2008) Encapsulation of glutamine synthetase in mouse erythrocytes: a new procedure for ammonia detoxification, Biochem. Cell. Biol., 86, 469-476, doi: 10.1139/O08-134.
  30. Tappel, A. L. (1978) Glutathione peroxidase and hydroperoxides, Methods Enzymol., 52, 506-513, doi: 10.1016/s0076-6879(78)52055-7.
  31. Anderson, M. E. (1985) Determination of glutathione and glutathione disulfide in biological samples, Methods Enzymol., 113, 548-555, doi: 10.1016/s0076-6879(85)13073-9.
  32. Beauchamp, C., and Fridovich, I. (1971) Superoxide dismutase: improved assays and an assay applicable to acrylamide gels, Anal. Biochem., 44, 276-287, doi: 10.1016/0003-2697(71)90370-8.
  33. Lawrence, R. A., and Burk, R. F. (1976) Glutathione peroxidase activity in selenium-deficient rat liver, Biochem. Biophys. Res. Commun., 71, 952-958, doi: 10.1016/0006-291x(76)90747-6.
  34. Kosenko, E., Venediktova, N., Kaminsky, Y., Montoliu, C., and Felipo, V. (2003) Sources of oxygen radicals in brain in acute ammonia intoxication in vivo, Brain Res., 981, 193-200, doi: 10.1016/s0006-8993(03)03035-x.
  35. Aebi, H. E. (1984) Catalase, in Methods of Enzymatic Analysis (Bergmeyer, H. U., ed) Verlag Chemie, Weinheim, Germany, Vol. 3, pp. 273-286.
  36. Warholm, M., Guthenberg, C., von Bahr, C., and Mannervik, B. (1985) Glutathione transferases from human liver, Methods Enzymol., 113, 499-504, doi: 10.1016/s0076-6879(85)13065-x.
  37. Beutler, E. (1971) Red Cell Metabolism: a Manual of Biochemical Methods, Grune and Stratton, New York, pp. 62-64.
  38. Bergmeyer, H.-Ui. (2012) Methods of Enzymatic Analysis, Elsevier, ISBN 978-0-323-14177-2.
  39. Kosenko, E., Kaminsky, Y., Grau, E., Miñana, M. D., Marcaida, G., Grisolía, S., and Felipo, V. (1994) Brain ATP depletion induced by acute ammonia intoxication in rats is mediated by activation of the NMDA receptor and Na+,K(+)-ATPase, J. Neurochem., 63, 2172-2178, doi: 10.1046/j.1471-4159.1994.63062172.x.
  40. Labotka, R. J., Lundberg, P., and Kuchel, P. W. (1995) Ammonia permeability of erythrocyte membrane studied by 14N and 15N saturation transfer NMR spectroscopy, Am. J. Physiol., 268, C686-C699, doi: 10.1152/ajpcell.1995.268.3.C686.
  41. Westhoff, C. M., Ferreri-Jacobia, M., Mak, D. O., and Foskett, J. K. (2002) Identification of the erythrocyte Rh blood group glycoprotein as a mammalian ammonium transporter, J. Biol. Chem., 277, 12499-12502, doi: 10.1074/jbc.C200060200.
  42. Reeves, R. B. (1976) Temperature-induced changes in blood acid-base status: Ph and PCO2 in a binary buffer, J. Appl. Physiol., 40, 752-761, doi: 10.1152/jappl.1976.40.5.752.
  43. Nakamura, K., Yamane, K., Shinohara, K., Doi, K., Inokuchi, R., Hiruma, T., Nakajima, S., Noiri, E., and Yahagi, N. (2013) Hyperammonemia in idiopathic epileptic seizure, Am. J. Emerg. Med., 31, 1486-1489, doi: 10.1016/j.ajem.2013.08.003.
  44. Huizenga, J. R., Tangerman, A., and Gips, C. H. (1994) Determination of ammonia in biological fluids, Ann. Clin. Biochem., 31 (Pt 6), 529-543, doi: 10.1177/000456329403100602.
  45. Huizenga, J. R., Gips, C. H., and Tangerman, A. (1996) The contribution of various organs to ammonia formation: a review of factors determining the arterial ammonia concentration, Ann. Clin. Biochem., 33 (Pt 1), 23-30, doi: 10.1177/000456329603300103.
  46. Klocke, R. A., Andersson, K. K., Rotman, H. H., and Forster, R. E. (1972) Permeability of human erythrocytes to ammonia and weak acids, Am. J. Physiol., 222, 1004-1013, doi: 10.1152/ajplegacy.1972.222.4.1004.
  47. Soliani, F., Lusenti, T., Franco, V., Lindner, G., Davoli, V., Parisoli, A., Brini, M., and Borgatti, P. P. (1990) Intradialytic variations in hemoglobin affinity for oxygen during bicarbonate dialysis and hemodiafiltration, Int. J. Artif. Organs, 13, 321-322.
  48. Cichoż-Lach, H., and Michalak, A. (2014) Oxidative stress as a crucial factor in liver diseases, World J. Gastroenterol., 20, 8082-8091, doi: 10.3748/wjg.v20.i25.8082.
  49. Kosenko, E., Kaminsky, Y., Lopata, O., Muravyov, N., Kaminsky, A., Hermenegildo, C., and Felipo, V. (1998) Nitroarginine, an inhibitor of nitric oxide synthase, prevents changes in superoxide radical and antioxidant enzymes induced by ammonia intoxication, Metab. Brain Dis., 13, 29-41, doi: 10.1023/a:1020626928259.
  50. Kiefer, C. R., and Snyder, L. M. (2000) Oxidation and erythrocyte senescence, Curr. Opin. Hematol., 7, 113-116, doi: 10.1097/00062752-200003000-00007.
  51. Kirkman, H. N., and Gaetani, G. F. (1984) Catalase: a tetrameric enzyme with four tightly bound molecules of NADPH, Proc. Natl. Acad. Sci. USA, 81, 4343-4347, doi: 10.1073/pnas.81.14.4343.
  52. Test, S. T., and Weiss, S. J. (1984) Quantitative and temporal characterization of the extracellular H2O2 pool generated by human neutrophils, J. Biol. Chem., 259, 399-405, doi: 10.1016/S0021-9258(17)43674-X.
  53. Giulivi, C., Hochstein, P., and Davies, K. J. (1994) Hydrogen peroxide production by red blood cells, Free Radic. Biol. Med., 16, 123-129, doi: 10.1016/0891-5849(94)90249-6.
  54. Mohanty, J. G., Nagababu, E., and Rifkind, J. M. (2014) Red blood cell oxidative stress impairs oxygen delivery and induces red blood cell aging, Front. Physiol., 5, 84, doi: 10.3389/fphys.2014.00084.
  55. Johnson, R. M., Goyette, G., Ravindranath, Y., and Ho, Y.-S. (2005) Hemoglobin autoxidation and regulation of endogenous H2O2 levels in erythrocytes, Free Radic. Biol. Med., 39, 1407-1417, doi: 10.1016/j.freeradbiomed.2005.07.002.
  56. Jones, D. P. (2006) Extracellular redox state: refining the definition of oxidative stress in aging, Rejuvenation Res., 9, 169-181, doi: 10.1089/rej.2006.9.169.
  57. Scott, M. D., Zuo, L., Lubin, B. H., and Chiu, D. T. (1991) NADPH, not glutathione, status modulates oxidant sensitivity in normal and glucose-6-phosphate dehydrogenase-deficient erythrocytes, Blood, 77, 2059-2064, doi: 10.1182/blood.V77.9.2059.bloodjournal7792059.
  58. Veech, R. L., Eggleston, L. V., and Krebs, H. A. (1969) The redox state of free nicotinamide-adenine dinucleotide phosphate in the cytoplasm of rat liver, Biochem. J., 115, 609-619, doi: 10.1042/bj1150609a.
  59. Wurster, B., and Hess, B. (1970) Kinetic analysis of the glucosephosphate isomerase-glucose-6-phosphate dehydrogenase system from yeast in vitro, Hoppe Seylers Z. Physiol. Chem., 351, 1537-1544, doi: 10.1515/bchm2.1970.351.2.1537.
  60. Pandolfi, P. P., Sonati, F., Rivi, R., Mason, P., Grosveld, F., and Luzzatto, L. (1995) Targeted disruption of the housekeeping gene encoding glucose 6-phosphate dehydrogenase (G6PD): G6PD is dispensable for pentose synthesis but essential for defense against oxidative stress, EMBO J., 14, 5209-5215, doi: 10.1002/j.1460-2075.1995.tb00205.x.
  61. Arese, P., Gallo, V., Pantaleo, A., and Turrini, F. (2012) Life and death of glucose-6-phosphate dehydrogenase (G6PD) deficient erythrocytes - role of redox stress and Band 3 modifications, Transfus. Med. Hemother., 39, 328-334, doi: 10.1159/000343123.
  62. Kosenko, E., Tikhonova, L., Alilova, G., Urios, A., and Montoliu, C. (2020) The erythrocytic hypothesis of brain energy crisis in sporadic Alzheimer disease: possible consequences and supporting evidence, J. Clin. Med., 9, 206, doi: 10.3390/jcm9010206.
  63. Romero-Gómez, M., Jover, M., Galán, J. J., and Ruiz, A. (2009) Gut ammonia production and its modulation, Metab. Brain Dis., 24, 147-157, doi: 10.1007/s11011-008-9124-3.
  64. Elgouhari, H. M., and O'Shea, R. (2009) What is the utility of measuring the serum ammonia level in patients with altered mental status? Cleve Clin. J. Med., 76, 252-254, doi: 10.3949/ccjm.76a.08072.

Copyright (c) 2023 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies